Portability  portable 

Stability  experimental 
Maintainer  mik@konecny.aow.cz 
Arithmetic of multivariate polynomials represented by their coefficients it the Chebyshev basis.
The polynomials are never to be used outside the domain [1,1]^n
.
All operations are rounded in such a way that the resulting polynomial is a pointwise upper or lower bound of the exact result.
 data ERChebPoly box b = ERChebPoly {
 chplCoeffs :: Map (TermKey box) b
 type TermKey box = box
Documentation
data ERChebPoly box b Source
A polynomial represented by its coefficients it the Chebyshev basis.
The polynomials are never to be used outside the domain [1,1]^n
.
All operations are rounded in such a way that the resulting polynomial is a pointwise upper or lower bound of the exact result.
ERChebPoly  

Typeable2 ERChebPoly  
(ERRealBase rb, RealFrac rb, DomainBox box varid Int, Ord box, DomainBoxMappable boxb boxbb varid rb [(rb, rb)], DomainBoxMappable boxra boxras varid (ERInterval rb) [ERInterval rb], DomainIntBox boxra varid (ERInterval rb)) => ERUnitFnBase boxb boxra varid rb (ERInterval rb) (ERChebPoly box rb)  
(Eq box, Eq b) => Eq (ERChebPoly box b)  
(ERRealBase b, DomainBox box varid Int, Ord box) => Fractional (ERChebPoly box b)  
(Data box, Data b, Ord box) => Data (ERChebPoly box b)  
(ERRealBase b, DomainBox box varid Int, Ord box) => Num (ERChebPoly box b)  
(ERRealBase b, DomainBox box varid Int, Ord box) => Ord (ERChebPoly box b)  
(ERRealBase b, DomainBox box varid Int, Ord box) => Show (ERChebPoly box b)  
(Ord a, Binary a, Binary b) => Binary (ERChebPoly a b) 