AERN-RnToRm-0.5: polynomial function enclosures (PFEs) approximating exact real functions

Portabilityportable
Stabilityexperimental
Maintainermik@konecny.aow.cz

Data.Number.ER.RnToRm.UnitDom.Base.Tests.Properties.Common

Description

Auxiliary functions for use in test for polynomial enclosure arithmetic.

Documentation

fbAtKeyPointsCanBeLeqSource

Arguments

:: (ERUnitFnBase boxb boxra varid b ra fb, Show boxra, Show testId) 
=> String

report file name

-> testId

item to identify the random input given to the test

-> fb 
-> fb 
-> Bool 

fbAtKeyPointsPointwiseBinaryDownUpConsistentSource

Arguments

:: (ERUnitFnBase boxb boxra varid b ra fb, Show boxra, Show testId) 
=> String

report file name

-> testId

item to identify the random input given to the test

-> (ra -> ra -> ra) 
-> fb 
-> fb 
-> (fb, fb) 
-> Bool 

enclAtKeyPointsPointwiseBinaryInnerInOuterSource

Arguments

:: (ERUnitFnBaseEncl boxb boxra varid b ra fb, Show boxra, Show testId) 
=> String

report file name

-> testId

item to identify the random input given to the test

-> (ra -> ra -> ra)

this real approx operation has to return an *inner* approximation of the exact result set, ie each number that the approximation supports is in the maximal extension

-> (fb, fb)

enclosure of argument 1

-> (fb, fb)

enclosure of argument 2

-> (fb, fb)

alleged enclosure of result

-> Bool 

enclAtKeyPointsPointwiseUnaryInnerInOuterSource

Arguments

:: (ERUnitFnBaseEncl boxb boxra varid b ra fb, Show boxra, Show testId) 
=> String

report file name

-> testId

item to identify the random input given to the test

-> (ra -> ra)

this real approx operation has to return an inner approximation of the exact result set, ie each number that the approximation supports is in the maximal extension

-> (fb, fb)

enclosure of argument

-> (fb, fb)

alleged enclosure of result

-> Bool 

enclAtKeyPointsConsistentSource

Arguments

:: (ERUnitFnBaseEncl boxb boxra varid b ra fb, Show boxra, Show testId) 
=> String

report file name

-> testId

item to identify the random input given to the test

-> (boxra -> ra)

this operation has to return an inner approximation of the exact result set, ie each number that the approximation supports is a solution in the maximal extension

-> [varid]

variables to test over

-> (fb, fb)

alleged enclosure of result

-> Bool