{-# LANGUAGE CPP #-} module Agda.TypeChecking.Rules.Decl where import Control.Monad import Control.Monad.Trans import qualified Data.Map as Map import Data.Map (Map) import qualified Agda.Utils.IO.Locale as LocIO import qualified Agda.Syntax.Abstract as A import Agda.Syntax.Internal import qualified Agda.Syntax.Info as Info import Agda.Syntax.Position import Agda.Syntax.Common import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin import Agda.TypeChecking.Monad.Mutual import Agda.TypeChecking.Pretty import Agda.TypeChecking.Constraints import Agda.TypeChecking.Positivity import Agda.TypeChecking.Primitive hiding (Nat) import Agda.TypeChecking.Conversion import Agda.TypeChecking.Substitute import Agda.TypeChecking.Reduce import Agda.TypeChecking.SizedTypes import Agda.TypeChecking.Rules.Term import Agda.TypeChecking.Rules.Data ( checkDataDef ) import Agda.TypeChecking.Rules.Record ( checkRecDef ) import Agda.TypeChecking.Rules.Def ( checkFunDef ) import Agda.TypeChecking.Rules.Builtin ( bindBuiltin, bindBuiltinType1 ) import Agda.Compiler.HaskellTypes import Agda.Utils.Size import Agda.Utils.Monad #include "../../undefined.h" import Agda.Utils.Impossible -- | Type check a sequence of declarations. checkDecls :: [A.Declaration] -> TCM () checkDecls ds = mapM_ checkDecl ds -- | Type check a single declaration. checkDecl :: A.Declaration -> TCM () checkDecl d = do case d of A.Axiom i x e -> checkAxiom i x e A.Field _ _ _ _ -> typeError FieldOutsideRecord A.Primitive i x e -> checkPrimitive i x e A.Definition i ts ds -> checkMutual i ts ds A.Section i x tel ds -> checkSection i x tel ds A.Apply i x tel m args rd rm -> checkSectionApplication i x tel m args rd rm A.Import i x -> checkImport i x A.Pragma i p -> checkPragma i p A.ScopedDecl scope ds -> setScope scope >> checkDecls ds A.Open _ _ -> return () -- open is just an artifact from the concrete syntax -- retained for highlighting purposes solveSizeConstraints -- | Type check an axiom. checkAxiom :: Info.DefInfo -> QName -> A.Expr -> TCM () checkAxiom _ x e = do t <- isType_ e reportSDoc "tc.decl.ax" 10 $ sep [ text "checked axiom" , nest 2 $ prettyTCM x <+> text ":" <+> (prettyTCM =<< instantiateFull t) ] addConstant x (Defn x t (defaultDisplayForm x) 0 $ Axiom Nothing) solveSizeConstraints -- | Type check a primitive function declaration. checkPrimitive :: Info.DefInfo -> QName -> A.Expr -> TCM () checkPrimitive i x e = traceCall (CheckPrimitive (getRange i) (qnameName x) e) $ do -- TODO!! (qnameName) PrimImpl t' pf <- lookupPrimitiveFunction (nameString $ qnameName x) t <- isType_ e noConstraints $ equalType t t' let s = show $ nameConcrete $ qnameName x bindPrimitive s $ pf { primFunName = x } addConstant x (Defn x t (defaultDisplayForm x) 0 $ Primitive (Info.defAbstract i) s Nothing) where nameString (Name _ x _ _) = show x -- | Check a pragma. checkPragma :: Range -> A.Pragma -> TCM () checkPragma r p = traceCall (CheckPragma r p) $ case p of A.BuiltinPragma x e -> bindBuiltin x e A.CompiledTypePragma x hs -> do def <- getConstInfo x case theDef def of Axiom{} -> addHaskellType x hs _ -> typeError $ GenericError "COMPILED_TYPE directive only works on postulates." -- TODO: hack when (hs == builtinIO) $ bindBuiltinType1 builtinIO (A.Def x) A.CompiledDataPragma x hs hcs -> do def <- getConstInfo x -- Check that the pragma appears in the same module -- as the datatype. do m <- currentModule let m' = qnameModule $ defName def unless (m == m') $ typeError $ GenericError $ "COMPILED_DATA directives must appear in the same module " ++ "as their corresponding datatype definition," case theDef def of Datatype{dataCons = cs} | length cs /= length hcs -> do let n_forms_are = case length hcs of 1 -> "1 compiled form is" n -> show n ++ " compiled forms are" only | null hcs = "" | length hcs < length cs = "only " | otherwise = "" err <- fsep $ [prettyTCM x] ++ pwords ("has " ++ show (length cs) ++ " constructors, but " ++ only ++ n_forms_are ++ " given [" ++ unwords hcs ++ "]") typeError $ GenericError $ show err | otherwise -> do addHaskellType x hs let computeHaskellType c = do def <- getConstInfo c let Constructor{ conPars = np } = theDef def underPars 0 a = haskellType a underPars n a = do a <- reduce a case unEl a of Pi a b -> underAbstraction a b $ underPars (n - 1) Fun a b -> underPars (n - 1) b _ -> __IMPOSSIBLE__ ty <- underPars np $ defType def reportSLn "tc.pragma.compile" 10 $ "Haskell type for " ++ show c ++ ": " ++ ty return ty hts <- mapM computeHaskellType cs sequence_ $ zipWith3 addHaskellCode cs hts hcs _ -> typeError $ GenericError "COMPILED_DATA on non datatype" A.CompiledPragma x hs -> do def <- getConstInfo x case theDef def of Axiom{} -> do ty <- haskellType $ defType def reportSLn "tc.pragma.compile" 10 $ "Haskell type for " ++ show x ++ ": " ++ ty addHaskellCode x ty hs _ -> typeError $ GenericError "COMPILED directive only works on postulates." A.OptionsPragma _ -> __IMPOSSIBLE__ -- not allowed here -- | Type check a bunch of mutual inductive recursive definitions. checkMutual :: Info.DeclInfo -> [A.TypeSignature] -> [A.Definition] -> TCM () checkMutual i ts ds = inMutualBlock $ do mapM_ checkTypeSignature ts mapM_ checkDefinition ds checkStrictlyPositive =<< currentMutualBlock -- | Type check the type signature of an inductive or recursive definition. checkTypeSignature :: A.TypeSignature -> TCM () checkTypeSignature (A.ScopedDecl scope ds) = do setScope scope mapM_ checkTypeSignature ds checkTypeSignature (A.Axiom i x e) = case Info.defAccess i of PublicAccess -> inConcreteMode $ checkAxiom i x e PrivateAccess -> inAbstractMode $ checkAxiom i x e checkTypeSignature _ = __IMPOSSIBLE__ -- type signatures are always axioms -- | Check an inductive or recursive definition. Assumes the type has has been -- checked and added to the signature. checkDefinition :: A.Definition -> TCM () checkDefinition d = case d of A.FunDef i x cs -> abstract (Info.defAbstract i) $ checkFunDef NotDelayed i x cs A.DataDef i x ind ps cs -> abstract (Info.defAbstract i) $ checkDataDef i ind x ps cs A.RecDef i x c ps tel cs -> abstract (Info.defAbstract i) $ checkRecDef i x c ps tel cs A.ScopedDef scope d -> setScope scope >> checkDefinition d where -- Concrete definitions cannot use information about abstract things. abstract ConcreteDef = inConcreteMode abstract AbstractDef = inAbstractMode -- | Type check a module. checkSection :: Info.ModuleInfo -> ModuleName -> A.Telescope -> [A.Declaration] -> TCM () checkSection i x tel ds = checkTelescope tel $ \tel' -> do addSection x (size tel') verboseS "tc.section.check" 10 $ do dx <- prettyTCM x dtel <- mapM prettyA tel dtel' <- prettyTCM =<< lookupSection x liftIO $ LocIO.putStrLn $ "checking section " ++ show dx ++ " " ++ show dtel liftIO $ LocIO.putStrLn $ " actual tele: " ++ show dtel' withCurrentModule x $ checkDecls ds checkModuleArity :: ModuleName -> Telescope -> [NamedArg A.Expr] -> TCM Telescope checkModuleArity m tel args = check tel args where bad = typeError $ ModuleArityMismatch m tel args check eta [] = return eta check EmptyTel (_:_) = bad check (ExtendTel (Arg h _) (Abs y tel)) args0@(Arg h' (Named name _) : args) = case (h, h', name) of (Hidden, NotHidden, _) -> check tel args0 (Hidden, Hidden, Nothing) -> check tel args (Hidden, Hidden, Just x) | x == y -> check tel args | otherwise -> check tel args0 (NotHidden, NotHidden, _) -> check tel args (NotHidden, Hidden, _) -> bad -- | Check an application of a section. checkSectionApplication :: Info.ModuleInfo -> ModuleName -> A.Telescope -> ModuleName -> [NamedArg A.Expr] -> Map QName QName -> Map ModuleName ModuleName -> TCM () checkSectionApplication i m1 ptel m2 args rd rm = traceCall (CheckSectionApplication (getRange i) m1 ptel m2 args) $ checkTelescope ptel $ \ptel -> do tel <- lookupSection m2 vs <- freeVarsToApply $ qnameFromList $ mnameToList m2 let tel' = apply tel vs etaTel <- checkModuleArity m2 tel' args let tel'' = telFromList $ take (size tel' - size etaTel) $ telToList tel' addCtxTel etaTel $ addSection m1 (size ptel + size etaTel) reportSDoc "tc.section.apply" 15 $ vcat [ text "applying section" <+> prettyTCM m2 , nest 2 $ text "ptel =" <+> prettyTCM ptel , nest 2 $ text "tel =" <+> prettyTCM tel , nest 2 $ text "tel' =" <+> prettyTCM tel' , nest 2 $ text "tel''=" <+> prettyTCM tel'' , nest 2 $ text "eta =" <+> prettyTCM etaTel ] (ts, cs) <- checkArguments_ DontExpandLast (getRange i) args tel'' noConstraints $ return cs reportSDoc "tc.section.apply" 20 $ vcat [ sep [ text "applySection", prettyTCM m1, text "=", prettyTCM m2, fsep $ map prettyTCM (vs ++ ts) ] , nest 2 $ text " defs:" <+> text (show rd) , nest 2 $ text " mods:" <+> text (show rm) ] args <- instantiateFull $ vs ++ ts applySection m1 ptel m2 args rd rm -- | Type check an import declaration. Actually doesn't do anything, since all -- the work is done when scope checking. checkImport :: Info.ModuleInfo -> ModuleName -> TCM () checkImport i x = return ()