{-# LANGUAGE CPP, ScopedTypeVariables #-}

{-| The parser doesn't know about operators and parses everything as normal
    function application. This module contains the functions that parses the
    operators properly. For a stand-alone implementation of this see
    @src\/prototyping\/mixfix\/old@.

    It also contains the function that puts parenthesis back given the
    precedence of the context.
-}
module Agda.Syntax.Concrete.Operators
    ( parseApplication
    , parseLHS
    , parsePattern
    , parsePatternSyn
    , paren
    , mparen
    -- exports for Copatterns
    , validConPattern
    , patternAppView
    , fullParen
    , buildParser
    , parsePat
    , getDefinedNames
    , UseBoundNames(..)
    , qualifierModules
    , patternQNames
    ) where

import Control.Applicative
import Control.Monad
import Control.Monad.Trans
import Data.Typeable
import Data.Traversable (traverse)
import qualified Data.Traversable as Trav
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.Set (Set)
import Data.List
import Data.Function

import Agda.Syntax.Concrete.Pretty ()
import Agda.Syntax.Common
import Agda.Syntax.Concrete hiding (appView)
import Agda.Syntax.Concrete.Operators.Parser
import qualified Agda.Syntax.Abstract.Name as A
import Agda.Syntax.Position
import Agda.Syntax.Fixity
import Agda.Syntax.Notation
import Agda.Syntax.Scope.Base
import Agda.Syntax.Scope.Monad

import Agda.TypeChecking.Monad.Base (typeError, TypeError(..), LHSOrPatSyn(..))
import Agda.TypeChecking.Monad.State (getScope)
import Agda.TypeChecking.Monad.Options
import Agda.TypeChecking.Monad.Statistics

import Agda.Utils.Either
import Agda.Utils.ReadP
import Agda.Utils.Monad
import Agda.Utils.Tuple
import Agda.Utils.List

import Debug.Trace

#include "../../undefined.h"
import Agda.Utils.Impossible

---------------------------------------------------------------------------
-- * Building the parser
---------------------------------------------------------------------------

partsInScope :: FlatScope -> ScopeM (Set QName)
partsInScope flat = do
    (names, ops) <- localNames flat
    let xs = concatMap parts names ++ concatMap notationNames ops
    return $ Set.fromList xs
    where
        qual xs x = foldr Qual (QName x) xs
        parts q = parts' (init $ qnameParts q) (unqualify q)
        parts' ms (NoName _ _)   = []
        parts' ms x@(Name _ [_]) = [qual ms x]
                                   -- The first part should be qualified, but not the rest
        parts' ms x@(Name _ xs)  = qual ms x : qual ms (Name noRange [first]) : [ QName $ Name noRange [i] | i <- iparts ]
          where
            first:iparts = [ i | i@(Id {}) <- xs ]

type FlatScope = Map.Map QName [AbstractName]

-- | Compute all unqualified defined names in scope and their fixities.
getDefinedNames :: [KindOfName] -> FlatScope -> [(QName, Fixity')]
getDefinedNames kinds names =
  [ (x, A.nameFixity $ A.qnameName $ anameName d)
  | (x, ds) <- Map.toList names
  , d       <- take 1 ds
  , anameKind d `elem` kinds
  ]

-- | Compute all names (first component) and operators (second component) in
--   scope.
localNames :: FlatScope -> ScopeM ([QName], [NewNotation])
localNames flat = do
  let defs = getDefinedNames allKindsOfNames flat
  locals <- scopeLocals <$> getScope
  return $ split $ uniqBy fst $ map localOp locals ++ defs
  where
    localOp (x, y) = (QName x, A.nameFixity y)
    split ops = ([ x | Left x <- zs], [ y | Right y <- zs ])
        where
            zs = concatMap opOrNot ops

    opOrNot (q, Fixity' fx syn) = Left q
                                :  case unqualify q of
                                      Name _ [_] -> []
                                      x -> [Right (q, fx, syntaxOf x)]
                                ++ case syn of
                                    [] -> []
                                    _ -> [Right (q, fx, syn)]

data UseBoundNames = UseBoundNames | DontUseBoundNames





{-| Builds parser for operator applications from all the operators and function
    symbols in scope. When parsing a pattern we use 'DontUseBoundNames'.

    The effect is that operator parts (that are not constructor parts)
    can be used as atomic names in the pattern (so they can be
    rebound). See test/succeed/OpBind.agda for an example.

    To avoid problems with operators of the same precedence but different
    associativity we decide (completely arbitrary) to fix the precedences of
    operators with the same given precedence in the following order (from
    loosest to hardest):

    - non-associative

    - left associative

    - right associative

    - prefix

    - postfix

    This has the effect that if you mix operators with the same precedence but
    different associativity the parser won't complain. One could argue that
    this is a Bad Thing, but since it's not trivial to implement the check it
    will stay this way until people start complaining about it.

-}

data NotationStyle = InfixS | Prefix | Postfix | Nonfix | None
   deriving (Eq)

fixStyle :: Notation -> NotationStyle
fixStyle [] = None
fixStyle syn = case (isAHole (head syn), isAHole (last syn)) of
  (True,True) -> InfixS
  (True,False) -> Postfix
  (False,True) -> Prefix
  (False,False) -> Nonfix


notationNames :: NewNotation -> [QName]
notationNames (q, _, ps) = zipWith ($) (requal : repeat QName) [Name noRange [Id x] | IdPart x <- ps ]
  where
    ms       = init (qnameParts q)
    requal x = foldr Qual (QName x) ms

buildParser :: forall e. IsExpr e => Range -> FlatScope -> UseBoundNames -> ScopeM (ReadP e e)
buildParser r flat use = do
    (names, ops) <- localNames flat
    let cons = getDefinedNames [ConName, PatternSynName] flat
    reportSLn "scope.operators" 50 $ unlines
      [ "names = " ++ show names
      , "ops   = " ++ show ops
      , "cons  = " ++ show cons ]
    let conparts   = Set.fromList $ concatMap notationNames $ map oldToNewNotation cons
        opsparts   = Set.fromList $ concatMap notationNames $ ops
        allParts   = Set.union conparts opsparts
        connames   = Set.fromList $ map fst cons
        (non, fix) = partition nonfix ops
        set        = Set.fromList names
        isAtom   x = case use of
                       UseBoundNames     -> not (Set.member x allParts) || Set.member x set
                       DontUseBoundNames -> not (Set.member x conparts) || Set.member x connames
        -- If string is a part of notation, it cannot be used as an identifier,
        -- unless it is also used as an identifier. See issue 307.
    return $ -- traceShow ops $
           recursive $ \p -> -- p is a parser for an arbitrary expression
        concatMap (mkP p) (order fix) -- for infix operators (with outer "holes")
        ++ [ appP p ] -- parser for simple applications
        ++ map (nonfixP . opP p) non -- for things with no outer "holes"
        ++ [ const $ atomP isAtom ]
    where
        level :: NewNotation -> Integer
        level (_name, fixity, _syn) = fixityLevel fixity

        isinfixl, isinfixr, isinfix, nonfix, isprefix, ispostfix :: NewNotation -> Bool

        isinfixl (_, LeftAssoc _ _, syn)  = isInfix syn
        isinfixl _                    = False

        isinfixr (_, RightAssoc _ _, syn) = isInfix syn
        isinfixr _                    = False

        isinfix (_, NonAssoc _ _,syn)    = isInfix syn
        isinfix _                     = False

        nonfix (_,_,syn) = fixStyle syn == Nonfix
        isprefix (_,_,syn) = fixStyle syn == Prefix
        ispostfix (_,_,syn) = fixStyle syn == Postfix
        isInfix :: Notation -> Bool
        isInfix syn = fixStyle syn == InfixS

        -- | Group operators by precedence level
        order :: [NewNotation] -> [[NewNotation]]
        order = groupBy ((==) `on` level) . sortBy (compare `on` level)

        -- | Each element of the returned list takes the parser for an
        -- expression of higher precedence as parameter.
        mkP :: ReadP e e -> [NewNotation] -> [ReadP e e -> ReadP e e]
        mkP p0 ops = case concat [infx, inlfx, inrfx, prefx, postfx] of
            []      -> [id]
            fs      -> fs
            where
                inlfx   = fixP infixlP  isinfixl
                inrfx   = fixP infixrP  isinfixr
                infx    = fixP infixP   isinfix
                prefx   = fixP prefixP  isprefix
                postfx  = fixP postfixP ispostfix

                fixP :: (ReadP e (NewNotation,Range,[e]) -> ReadP e e -> ReadP e e) -> (NewNotation -> Bool) -> [ReadP e e -> ReadP e e]
                fixP f g =
                    case filter g ops of
                        []  -> []
                        ops -> [ f $ choice $ map (opP p0) ops ]

---------------------------------------------------------------------------
-- * Expression instances
---------------------------------------------------------------------------

instance IsExpr Expr where
    exprView e = case e of
        Ident x         -> LocalV x
        App _ e1 e2     -> AppV e1 e2
        OpApp r d es    -> OpAppV d es
        HiddenArg _ e   -> HiddenArgV e
        InstanceArg _ e -> InstanceArgV e
        Paren _ e       -> ParenV e
        Lam _ bs    e   -> LamV bs e
        Underscore{}    -> WildV e
        _               -> OtherV e
    unExprView e = case e of
        LocalV x      -> Ident x
        AppV e1 e2    -> App (fuseRange e1 e2) e1 e2
        OpAppV d es   -> OpApp (fuseRange d es) d es
        HiddenArgV e  -> HiddenArg (getRange e) e
        InstanceArgV e -> InstanceArg (getRange e) e
        ParenV e      -> Paren (getRange e) e
        LamV bs e     -> Lam (fuseRange bs e) bs e
        WildV e       -> e
        OtherV e      -> e


instance IsExpr Pattern where
    exprView e = case e of
        IdentP x      -> LocalV x
        AppP e1 e2    -> AppV e1 e2
        OpAppP r d es -> OpAppV d (map Ordinary es)
        HiddenP _ e   -> HiddenArgV e
        InstanceP _ e -> InstanceArgV e
        ParenP _ e    -> ParenV e
        WildP{}       -> WildV e
        _             -> OtherV e
    unExprView e = case e of
        LocalV x       -> IdentP x
        AppV e1 e2     -> AppP e1 e2
        OpAppV d es    -> let ess :: [Pattern]
                              ess = (map (fromOrdinary __IMPOSSIBLE__) es)
                          in OpAppP (fuseRange d es) d ess
        HiddenArgV e   -> HiddenP (getRange e) e
        InstanceArgV e -> InstanceP (getRange e) e
        ParenV e       -> ParenP (getRange e) e
        LamV _ _       -> __IMPOSSIBLE__
        WildV e        -> e
        OtherV e       -> e

{- TRASH
instance IsExpr LHSCore where
    exprView e = case e of
        LHSHead f ps -> foldl AppV (LocalV f) $ map exprView ps
        LHSProj d ps1 e ps2 -> foldl AppV (LocalV d) $
          map exprView ps1 ++ exprView e : map exprView ps2
    unExprView e = LHSHead f ps
      where p :: Pattern
            p = unExprView
            (f, ps) = lhsArgs p
-}

---------------------------------------------------------------------------
-- * Helpers for pattern and lhs parsing
---------------------------------------------------------------------------

-- Andreas, 2011-11-24 moved here from ConcreteToAbstract
lhsArgs :: Pattern -> (Name, [NamedArg Pattern])
lhsArgs p = case lhsArgs' p of
              Just (x, args) -> (x, args)
              Nothing        -> __IMPOSSIBLE__

-- | @lhsArgs' p@ splits a lhs @f ps@, given as a pattern @p@,
--   into @(f, ps)@.
lhsArgs' :: Pattern -> Maybe (Name, [NamedArg Pattern])
lhsArgs' p = case patternAppView p of
    Arg _ _ (Named _ (IdentP (QName x))) : ps -> Just (x, ps)
    _                                         -> Nothing

-- | View a pattern @p@ as a list @p0 .. pn@ where @p0@ is the identifier
--   (in most cases a constructor).
--
--  Pattern needs to be parsed already (operators resolved).
patternAppView :: Pattern -> [NamedArg Pattern]
patternAppView p = case p of
    AppP p arg    -> patternAppView p ++ [arg]
    OpAppP _ x ps -> mkHead (IdentP x) : map notHidden ps
    ParenP _ p    -> patternAppView p
    RawAppP _ _   -> __IMPOSSIBLE__
    _             -> [ mkHead p ]
  where mkHead    = Arg NotHidden Relevant . unnamed
        notHidden = Arg NotHidden Relevant . unnamed


---------------------------------------------------------------------------
-- * Parse functions
---------------------------------------------------------------------------

-- | Returns the list of possible parses.
parsePat :: ReadP Pattern Pattern -> Pattern -> [Pattern]
parsePat prs p = case p of
    AppP p (Arg h r q) -> fullParen' <$> (AppP <$> parsePat prs p <*> (Arg h r <$> traverse (parsePat prs) q))
    RawAppP _ ps     -> fullParen' <$> (parsePat prs =<< parse prs ps)
    OpAppP r d ps    -> fullParen' . OpAppP r d <$> mapM (parsePat prs) ps
    HiddenP _ _      -> fail "bad hidden argument"
    InstanceP _ _    -> fail "bad instance argument"
    AsP r x p        -> AsP r x <$> parsePat prs p
    DotP r e         -> return $ DotP r e
    ParenP r p       -> fullParen' <$> parsePat prs p
    WildP _          -> return p
    AbsurdP _        -> return p
    LitP _           -> return p
    IdentP _         -> return p


{- Implement parsing of copattern left hand sides, e.g.

  record Tree (A : Set) : Set where
    field
      label : A
      child : Bool -> Tree A

  -- corecursive function defined by copattern matching
  alternate : {A : Set}(a b : A) -> Tree A
  -- shallow copatterns
         label (alternate a b)              = a
         child (alternate a b) True         = alternate b a
  -- deep copatterns:
  label (child (alternate a b) False)       = b
  child (child (alternate a b) False) True  = alternate a b
  child (child (alternate a b) False) False = alternate a b

  Delivers an infinite tree

                   a
              b        b
            a   a    a   a
           b b b b  b b b b
                 ...

  Each lhs is a pattern tree with a distinct path of destructors
  ("child", "label") from the root to the defined symbol ("alternate").
  All branches besides this distinct path are patterns.

  Syntax.Concrete.LHSCore represents a lhs
   - the destructor path
   - the side patterns
   - the defined function symbol
   - the applied patterns
-}

type ParseLHS = Either Pattern (Name, LHSCore)

parseLHS' :: LHSOrPatSyn -> Maybe Name -> Pattern -> ScopeM ParseLHS
parseLHS' lhsOrPatSyn top p = do
    let ms = qualifierModules $ patternQNames p
    flat <- flattenScope ms <$> getScope
    patP <- buildParser (getRange p) flat DontUseBoundNames
    let cons = getNames [ConName, PatternSynName] flat
    let flds = getNames [FldName] flat
    case [ res | p' <- parsePat patP p
               , res <- validPattern (PatternCheckConfig top cons flds) p' ] of
        [(p,lhs)] -> return lhs
        []        -> typeError $ NoParseForLHS lhsOrPatSyn p
        rs        -> typeError $ AmbiguousParseForLHS lhsOrPatSyn p $
                       map (fullParen . fst) rs
    where
        getNames kinds flat = map fst $ getDefinedNames kinds flat

        -- validPattern returns an empty or singleton list (morally a Maybe)
        validPattern :: PatternCheckConfig -> Pattern -> [(Pattern, ParseLHS)]
        validPattern conf p = case (classifyPattern conf p, top) of
            (Just r@(Left _), Nothing) -> [(p, r)] -- expect pattern
            (Just r@(Right _), Just{}) -> [(p, r)] -- expect lhs
            _ -> []

-- | Name sets for classifying a pattern.
data PatternCheckConfig = PatternCheckConfig
  { topName  :: Maybe Name  -- ^ name of defined symbol
  , conNames :: [QName]     -- ^ valid constructor names
  , fldNames :: [QName]     -- ^ valid field names
  }

-- | Returns zero or one classified patterns.
classifyPattern :: PatternCheckConfig -> Pattern -> Maybe ParseLHS
classifyPattern conf p =
  case patternAppView p of

    -- case @f ps@
    Arg _ _ (Named _ (IdentP x@(QName f))) : ps | Just f == topName conf -> do
      guard $ all validPat ps
      return $ Right (f, LHSHead f ps)

    -- case @d ps@
    Arg _ _ (Named _ (IdentP x)) : ps | x `elem` fldNames conf -> do
      -- ps0 :: [NamedArg ParseLHS]
      ps0 <- mapM classPat ps
      let (ps1, rest) = span (isLeft . namedArg) ps0
      (p2, ps3) <- uncons rest -- when (null rest): no field pattern or def pattern found
      guard $ all (isLeft . namedArg) ps3
      let (f, lhs)      = fromR p2
          (ps', _:ps'') = splitAt (length ps1) ps
      return $ Right (f, LHSProj x ps' lhs ps'')

    -- case: ordinary pattern
    _ -> do
      guard $ validConPattern (conNames conf) p
      return $ Left p

  where -- allNames = conNames conf ++ fldNames conf
        validPat = validConPattern (conNames conf) . namedArg
        classPat :: NamedArg Pattern -> Maybe (NamedArg ParseLHS)
        classPat = Trav.mapM (Trav.mapM (classifyPattern conf))
        fromR :: NamedArg (Either a (b, c)) -> (b, NamedArg c)
        fromR (Arg h r (Named n (Right (b, c)))) = (b, Arg h r (Named n c))
        fromR (Arg h r (Named n (Left  a     ))) = __IMPOSSIBLE__



-- | Parses a left-hand side, and makes sure that it defined the expected name.
--   TODO: check the arities of constructors. There is a possible ambiguity with
--   postfix constructors:
--      Assume _ * is a constructor. Then 'true *' can be parsed as either the
--      intended _* applied to true, or as true applied to a variable *. If we
--      check arities this problem won't appear.
parseLHS :: Name -> Pattern -> ScopeM LHSCore
parseLHS top p = do
  res <- parseLHS' IsLHS (Just top) p
  case res of
    Right (f, lhs) -> return lhs
    _ -> typeError $ NoParseForLHS IsLHS p

-- | Parses a pattern.
--   TODO: check the arities of constructors. There is a possible ambiguity with
--   postfix constructors:
--      Assume _ * is a constructor. Then 'true *' can be parsed as either the
--      intended _* applied to true, or as true applied to a variable *. If we
--      check arities this problem won't appear.
parsePattern :: Pattern -> ScopeM Pattern
parsePattern = parsePatternOrSyn IsLHS

parsePatternSyn :: Pattern -> ScopeM Pattern
parsePatternSyn = parsePatternOrSyn IsPatSyn

parsePatternOrSyn :: LHSOrPatSyn -> Pattern -> ScopeM Pattern
parsePatternOrSyn lhsOrPatSyn p = do
  res <- parseLHS' lhsOrPatSyn Nothing p
  case res of
    Left p -> return p
    _      -> typeError $ NoParseForLHS lhsOrPatSyn p

-- | Helper function for 'parseLHS' and 'parsePattern'.
validConPattern :: [QName] -> Pattern -> Bool
validConPattern cons p = case appView p of
    [_]           -> True
    IdentP x : ps -> elem x cons && all (validConPattern cons) ps
    _             -> False
-- Andreas, 2012-06-04: I do not know why the following line was
-- the catch-all case.  It seems that the new catch-all works also
-- and is more logical.
--    ps            -> all (validConPattern cons) ps

-- | Helper function for 'parseLHS' and 'parsePattern'.
appView :: Pattern -> [Pattern]
appView p = case p of
    AppP p a         -> appView p ++ [namedThing (unArg a)]
    OpAppP _ op ps   -> IdentP op : ps
    ParenP _ p       -> appView p
    RawAppP _ _      -> __IMPOSSIBLE__
    HiddenP _ _      -> __IMPOSSIBLE__
    InstanceP _ _    -> __IMPOSSIBLE__
    _                -> [p]

-- | Collect all names in a pattern into a list of qualified names.
patternQNames :: Pattern -> [QName]
patternQNames p = case p of
  RawAppP _ ps     -> concatMap patternQNames ps
  IdentP q         -> [q]
  ParenP _ p       -> patternQNames p
  HiddenP _ p      -> patternQNames (namedThing p)
  InstanceP _ p    -> patternQNames (namedThing p)
  OpAppP r d ps    -> __IMPOSSIBLE__
  AppP{}           -> __IMPOSSIBLE__
  AsP{}            -> __IMPOSSIBLE__
  AbsurdP{}        -> []
  WildP{}          -> []
  DotP{}           -> []
  LitP{}           -> []

-- | Return all qualifiers occuring in a list of 'QName's.
--   Each qualifier is returned as a list of names, e.g.
--   for @Data.Nat._+_@ we return the list @[Data,Nat]@.
qualifierModules :: [QName] -> [[Name]]
qualifierModules qs =
  nub $ filter (not . null) $ map (init . qnameParts) qs

-- | Parse a list of expressions into an application.
parseApplication :: [Expr] -> ScopeM Expr
parseApplication [e] = return e
parseApplication es = do
    -- Build the parser
    let ms = qualifierModules [ q | Ident q <- es ]
    flat <- flattenScope ms <$> getScope
    p <- buildParser (getRange es) flat UseBoundNames

    -- Parse
    case parse p es of
        [e] -> return e
        []  -> do
          -- When the parser fails and a name is not in scope, it is more
          -- useful to say that to the user rather than just "failed".
          inScope <- partsInScope flat
          case [ x | Ident x <- es, not (Set.member x inScope) ] of
               []  -> typeError $ NoParseForApplication es
               xs  -> typeError $ NotInScope xs

        es' -> typeError $ AmbiguousParseForApplication es $ map fullParen es'

---------------------------------------------------------------------------
-- * Inserting parenthesis
---------------------------------------------------------------------------

fullParen :: IsExpr e => e -> e
fullParen e = case exprView $ fullParen' e of
    ParenV e    -> e
    e'          -> unExprView e'

fullParen' :: IsExpr e => e -> e
fullParen' e = case exprView e of
    LocalV _     -> e
    WildV _      -> e
    OtherV _     -> e
    HiddenArgV _ -> e
    InstanceArgV _ -> e
    ParenV _     -> e
    AppV e1 (Arg h r e2) -> par $ unExprView $ AppV (fullParen' e1) (Arg h r e2')
        where
            e2' = case h of
                Hidden    -> e2
                Instance  -> e2
                NotHidden -> fullParen' <$> e2
    OpAppV x es -> par $ unExprView $ OpAppV x $ map (fmap fullParen') es
    LamV bs e -> par $ unExprView $ LamV bs (fullParen e)
    where
        par = unExprView . ParenV

paren :: Monad m => (QName -> m Fixity) -> Expr -> m (Precedence -> Expr)
paren _   e@(App _ _ _)        = return $ \p -> mparen (appBrackets p) e
paren f   e@(OpApp _ op _)     = do fx <- f op; return $ \p -> mparen (opBrackets fx p) e
paren _   e@(Lam _ _ _)        = return $ \p -> mparen (lamBrackets p) e
paren _   e@(AbsurdLam _ _)    = return $ \p -> mparen (lamBrackets p) e
paren _   e@(ExtendedLam _ _)    = return $ \p -> mparen (lamBrackets p) e
paren _   e@(Fun _ _ _)        = return $ \p -> mparen (lamBrackets p) e
paren _   e@(Pi _ _)           = return $ \p -> mparen (lamBrackets p) e
paren _   e@(Let _ _ _)        = return $ \p -> mparen (lamBrackets p) e
paren _   e@(Rec _ _)          = return $ \p -> mparen (appBrackets p) e
paren _   e@(RecUpdate _ _ _)  = return $ \p -> mparen (appBrackets p) e
paren _   e@(WithApp _ _ _)    = return $ \p -> mparen (withAppBrackets p) e
paren _   e@(Ident _)          = return $ \p -> e
paren _   e@(Lit _)            = return $ \p -> e
paren _   e@(QuestionMark _ _) = return $ \p -> e
paren _   e@(Underscore _ _)   = return $ \p -> e
paren _   e@(Set _)            = return $ \p -> e
paren _   e@(SetN _ _)         = return $ \p -> e
paren _   e@(Prop _)           = return $ \p -> e
paren _   e@(Paren _ _)        = return $ \p -> e
paren _   e@(As _ _ _)         = return $ \p -> e
paren _   e@(Dot _ _)          = return $ \p -> e
paren _   e@(Absurd _)         = return $ \p -> e
paren _   e@(ETel _)           = return $ \p -> e
paren _   e@(RawApp _ _)       = __IMPOSSIBLE__
paren _   e@(HiddenArg _ _)    = __IMPOSSIBLE__
paren _   e@(InstanceArg _ _)  = __IMPOSSIBLE__
paren _   e@(QuoteGoal _ _ _)  = return $ \p -> mparen (lamBrackets p) e
paren _   e@(Quote _)          = return $ \p -> e
paren _   e@(QuoteTerm _)      = return $ \p -> e
paren _   e@(Unquote _)        = return $ \p -> e
paren _   e@(DontCare _)       = return $ \p -> e

mparen :: Bool -> Expr -> Expr
mparen True  e = Paren (getRange e) e
mparen False e = e