{-# LANGUAGE CPP, TypeSynonymInstances, FlexibleInstances, OverlappingInstances,
    DeriveDataTypeable, DeriveFunctor, StandaloneDeriving #-}
module Agda.TypeChecking.Substitute where

import Control.Monad.Identity
import Control.Monad.Reader
import Control.Arrow ((***))

import Data.Typeable (Typeable)
import Data.List hiding (sort)
import qualified Data.List as List
import Data.Function
import Data.Map (Map)
import qualified Data.Map as Map
import qualified Data.Set as Set

import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.Syntax.Position

import Agda.TypeChecking.Monad.Base as Base
import Agda.TypeChecking.Free as Free
import Agda.TypeChecking.CompiledClause

import Agda.Utils.Monad
import Agda.Utils.Size
import Agda.Utils.Permutation

#include "../undefined.h"
import Agda.Utils.Impossible

-- | Apply something to a bunch of arguments.
--   Preserves blocking tags (application can never resolve blocking).
class Apply t where
    apply :: t -> Args -> t

instance Apply Term where
    apply m [] = m
    apply m args@(a:args0) =
        case m of
            Var i args'   -> Var i (args' ++ args)
            Def c args'   -> Def c (args' ++ args)
            Con c args'   -> Con c (args' ++ args)
            Lam _ u       -> absApp u (unArg a) `apply` args0
            MetaV x args' -> MetaV x (args' ++ args)
            Shared p      -> Shared $ apply p args
            Lit{}         -> __IMPOSSIBLE__
            Level{}       -> __IMPOSSIBLE__
            Pi _ _        -> __IMPOSSIBLE__
            Sort _        -> __IMPOSSIBLE__
            DontCare mv   -> DontCare $ mv `apply` args  -- Andreas, 2011-10-02
              -- need to go under DontCare, since "with" might resurrect irrelevant term

instance Apply Type where
  apply = piApply

instance Apply Sort where
  apply s [] = s
  apply s _  = __IMPOSSIBLE__

instance Apply a => Apply (Ptr a) where
  apply p xs = fmap (`apply` xs) p

instance Subst a => Apply (Tele a) where
  apply tel               []       = tel
  apply EmptyTel          _        = __IMPOSSIBLE__
  apply (ExtendTel _ tel) (t : ts) = absApp tel (unArg t) `apply` ts

instance Apply Definition where
  apply (Defn rel x t pol occ df m c d) args = Defn rel x (piApply t args) (apply pol args) (apply occ args) df m c (apply d args)

instance Apply [Base.Occurrence] where
  apply occ args = drop (length args) occ

instance Apply [Polarity] where
  apply pol args = drop (length args) pol

instance Apply Defn where
  apply d [] = d
  apply d args = case d of
    Axiom{} -> d
    Function{ funClauses = cs, funCompiled = cc, funInv = inv
            , funProjection = Nothing {-, funArgOccurrences = occ -} } ->
      d { funClauses    = apply cs args
        , funCompiled   = apply cc args
        , funInv        = apply inv args
--        , funArgOccurrences = drop (length args) occ
        }
    Function{ funClauses = cs, funCompiled = cc, funInv = inv
            , funProjection = Just (r, n) {-, funArgOccurrences = occ -} }
      | m < n  -> d { funProjection = Just (r, n - m) }
      | otherwise ->
        d { funClauses        = apply cs args'
          , funCompiled       = apply cc args'
          , funInv            = apply inv args'
          , funProjection     = Just (r, 0)
--          , funArgOccurrences = drop 1 occ
          }
      where args' = [last args]
            m = size args
    Datatype{ dataPars = np, dataClause = cl
            {-, dataArgOccurrences = occ-} } ->
      d { dataPars = np - size args, dataClause = apply cl args
--        , dataArgOccurrences = drop (length args) occ
        }
    Record{ recPars = np, recConType = t, recClause = cl, recTel = tel
          {-, recArgOccurrences = occ-} } ->
      d { recPars = np - size args, recConType = apply t args
        , recClause = apply cl args, recTel = apply tel args
--        , recArgOccurrences = drop (length args) occ
        }
    Constructor{ conPars = np } ->
      d { conPars = np - size args }
    Primitive{ primClauses = cs } ->
      d { primClauses = apply cs args }

instance Apply PrimFun where
    apply (PrimFun x ar def) args   = PrimFun x (ar - size args) $ \vs -> def (args ++ vs)

instance Apply Clause where
    apply (Clause r tel perm ps b) args =
      Clause r (apply tel args) (apply perm args)
             (drop (size args) ps) (apply b args)

instance Apply CompiledClauses where
  apply cc args = case cc of
    Fail     -> Fail
    Done hs t
      | length hs >= len -> Done (drop len hs)
                                 (applySubst
                                    (parallelS $
                                       [ var i | i <- [0..length hs - len - 1]] ++
                                       map unArg args)
                                    t)
      | otherwise -> __IMPOSSIBLE__
    Case n bs
      | n >= len  -> Case (n - len) (apply bs args)
      | otherwise -> __IMPOSSIBLE__
    where
      len = length args

instance Apply a => Apply (WithArity a) where
  apply (WithArity n a) args = WithArity n $ apply a args

instance Apply a => Apply (Case a) where
  apply (Branches cs ls m) args =
    Branches (apply cs args) (apply ls args) (apply m args)

instance Apply FunctionInverse where
  apply NotInjective  args = NotInjective
  apply (Inverse inv) args = Inverse $ apply inv args

instance Apply ClauseBody where
    apply  b                 []       = b
    apply (Bind (Abs   _ b)) (a:args) = subst (unArg a) b `apply` args
    apply (Bind (NoAbs _ b)) (_:args) = b `apply` args
    apply (Body v)           args     = Body $ v `apply` args
    apply  NoBody             _       = NoBody

instance Apply DisplayTerm where
  apply (DTerm v)          args = DTerm $ apply v args
  apply (DDot v)           args = DDot  $ apply v args
  apply (DCon c vs)        args = DCon c $ vs ++ map (fmap DTerm) args
  apply (DDef c vs)        args = DDef c $ vs ++ map (fmap DTerm) args
  apply (DWithApp v args') args = DWithApp v $ args' ++ args

instance Apply t => Apply [t] where
    apply ts args = map (`apply` args) ts

instance Apply t => Apply (Blocked t) where
    apply b args = fmap (`apply` args) b

instance Apply t => Apply (Maybe t) where
  apply x args = fmap (`apply` args) x

instance Apply v => Apply (Map k v) where
  apply x args = fmap (`apply` args) x

instance (Apply a, Apply b) => Apply (a,b) where
    apply (x,y) args = (apply x args, apply y args)

instance (Apply a, Apply b, Apply c) => Apply (a,b,c) where
    apply (x,y,z) args = (apply x args, apply y args, apply z args)

instance Apply Permutation where
  -- The permutation must start with [0..m - 1]
  apply (Perm n xs) args = Perm (n - m) $ map (flip (-) m) $ genericDrop m xs
    where
      m = size args

instance Abstract Permutation where
  abstract tel (Perm n xs) = Perm (n + m) $ [0..m - 1] ++ map (+ m) xs
    where
      m = size tel

-- | The type must contain the right number of pis without have to perform any
-- reduction.
piApply :: Type -> Args -> Type
piApply t []                      = t
piApply (El _ (Pi  _ b)) (a:args) = absApp b (unArg a) `piApply` args
piApply (El s (Shared p)) args    = piApply (El s $ derefPtr p) args
piApply _ _                       = __IMPOSSIBLE__

-- | @(abstract args v) args --> v[args]@.
class Abstract t where
    abstract :: Telescope -> t -> t

instance Abstract Term where
    abstract = teleLam

instance Abstract Type where
    abstract = telePi_

instance Abstract Sort where
    abstract EmptyTel s = s
    abstract _        s = __IMPOSSIBLE__

instance Abstract Telescope where
  abstract  EmptyTel            tel = tel
  abstract (ExtendTel arg tel') tel = ExtendTel arg $ fmap (`abstract` tel) tel'

instance Abstract Definition where
  abstract tel (Defn rel x t pol occ df m c d) =
    Defn rel x (abstract tel t) (abstract tel pol) (abstract tel occ) df m c (abstract tel d)

instance Abstract [Base.Occurrence] where
  abstract tel []  = []
  abstract tel occ = replicate (size tel) Mixed ++ occ -- TODO: check occurrence

instance Abstract [Polarity] where
  abstract tel []  = []
  abstract tel pol = replicate (size tel) Invariant ++ pol -- TODO: check polarity

instance Abstract Defn where
  abstract tel d = case d of
    Axiom{} -> d
    Function{ funClauses = cs, funCompiled = cc, funInv = inv
            , funProjection = Nothing {-, funArgOccurrences = occ-} } ->
      d { funClauses = abstract tel cs, funCompiled = abstract tel cc
        , funInv = abstract tel inv
--        , funArgOccurrences = replicate (size tel) Mixed ++ occ -- TODO: check occurrence
        }
    Function{ funClauses = cs, funCompiled = cc, funInv = inv
            , funProjection = Just (r, n) {-, funArgOccurrences = occ-} } ->
      d { funProjection = Just (r, n + size tel) }
    Datatype{ dataPars = np, dataClause = cl {-, dataArgOccurrences = occ-} } ->
      d { dataPars = np + size tel, dataClause = abstract tel cl
--        , dataArgOccurrences = replicate (size tel) Mixed ++ occ -- TODO: check occurrence
        }
    Record{ recPars = np, recConType = t, recClause = cl, recTel = tel'
          {-, recArgOccurrences = occ-} } ->
      d { recPars = np + size tel, recConType = abstract tel t
        , recClause = abstract tel cl, recTel = abstract tel tel'
--        , recArgOccurrences = replicate (size tel) Mixed ++ occ -- TODO: check occurrence
        }
    Constructor{ conPars = np } ->
      d { conPars = np + size tel }
    Primitive{ primClauses = cs } ->
      d { primClauses = abstract tel cs }

instance Abstract PrimFun where
    abstract tel (PrimFun x ar def) = PrimFun x (ar + n) $ \ts -> def $ genericDrop n ts
        where n = size tel

instance Abstract Clause where
  abstract tel (Clause r tel' perm ps b) =
    Clause r (abstract tel tel') (abstract tel perm)
           (telVars tel ++ ps) (abstract tel b)

instance Abstract CompiledClauses where
  abstract tel Fail = Fail
  abstract tel (Done xs t) = Done (map (argFromDom . fmap fst) (telToList tel) ++ xs) t
  abstract tel (Case n bs) =
    Case (n + fromIntegral (size tel)) (abstract tel bs)

instance Abstract a => Abstract (WithArity a) where
  abstract tel (WithArity n a) = WithArity n $ abstract tel a

instance Abstract a => Abstract (Case a) where
  abstract tel (Branches cs ls m) =
    Branches (abstract tel cs) (abstract tel ls) (abstract tel m)

telVars :: Telescope -> [Arg Pattern]
telVars EmptyTel                    = []
telVars (ExtendTel (Dom h r a) tel) = Arg h r (VarP $ absName tel) : telVars (unAbs tel)

instance Abstract FunctionInverse where
  abstract tel NotInjective  = NotInjective
  abstract tel (Inverse inv) = Inverse $ abstract tel inv

instance Abstract ClauseBody where
  abstract EmptyTel          b = b
  abstract (ExtendTel _ tel) b = Bind $ fmap (`abstract` b) tel

instance Abstract t => Abstract [t] where
  abstract tel = map (abstract tel)

instance Abstract t => Abstract (Maybe t) where
  abstract tel x = fmap (abstract tel) x

instance Abstract v => Abstract (Map k v) where
  abstract tel m = fmap (abstract tel) m

abstractArgs :: Abstract a => Args -> a -> a
abstractArgs args x = abstract tel x
    where
        tel   = foldr (\(Arg h r x) -> ExtendTel (Dom h r $ sort Prop) . Abs x) EmptyTel
              $ zipWith (fmap . const) names args
        names = cycle $ map (:[]) ['a'..'z']

-- | Substitutions.

infixr 4 :#
data Substitution

  = IdS                     -- Γ ⊢ IdS : Γ

  | EmptyS                  -- Γ ⊢ EmptyS : ()

                            --      Γ ⊢ ρ : Δ
  | Wk !Int Substitution    -- -------------------
                            -- Γ, Ψ ⊢ Wk |Ψ| ρ : Δ

                            -- Γ ⊢ u : Aρ  Γ ⊢ ρ : Δ
  | Term :# Substitution    -- ---------------------
                            --   Γ ⊢ u :# ρ : Δ, A

                            --        Γ ⊢ ρ : Δ
  | Lift !Int Substitution  -- -------------------------
                            -- Γ, Ψρ ⊢ Lift |Ψ| ρ : Δ, Ψ
  deriving (Eq, Ord, Show)

idS :: Substitution
idS = IdS

wkS :: Int -> Substitution -> Substitution
wkS 0 rho        = rho
wkS n (Wk m rho) = Wk (n + m) rho
wkS n EmptyS     = EmptyS
wkS n rho        = Wk n rho

raiseS :: Int -> Substitution
raiseS n = wkS n idS

singletonS :: Term -> Substitution
singletonS u = u :# idS

liftS :: Int -> Substitution -> Substitution
liftS 0 rho          = rho
liftS k IdS          = IdS
liftS k (Lift n rho) = Lift (n + k) rho
liftS k rho          = Lift k rho

dropS :: Int -> Substitution -> Substitution
dropS 0 rho          = rho
dropS n IdS          = raiseS n
dropS n (Wk m rho)   = wkS m (dropS n rho)
dropS n (u :# rho)   = dropS (n - 1) rho
dropS n (Lift 0 rho) = __IMPOSSIBLE__
dropS n (Lift m rho) = wkS 1 $ dropS (n - 1) $ liftS (m - 1) rho
dropS n EmptyS       = __IMPOSSIBLE__

-- | @applySubst (ρ `composeS` σ) v == applySubst ρ (applySubst σ v)@
composeS :: Substitution -> Substitution -> Substitution
composeS rho IdS = rho
composeS IdS sgm = sgm
composeS rho EmptyS = EmptyS
composeS rho (Wk n sgm) = composeS (dropS n rho) sgm
composeS rho (u :# sgm) = applySubst rho u :# composeS rho sgm
composeS rho (Lift 0 sgm) = __IMPOSSIBLE__
composeS (u :# rho) (Lift n sgm) = u :# composeS rho (liftS (n - 1) sgm)
composeS rho (Lift n sgm) = lookupS rho 0 :# composeS rho (wkS 1 (liftS (n - 1) sgm))

-- If Γ ⊢ ρ : Δ, Θ then splitS |Θ| ρ = (σ, δ), with
--   Γ ⊢ σ : Δ
--   Γ ⊢ δ : Θσ
splitS :: Int -> Substitution -> (Substitution, Substitution)
splitS 0 rho          = (rho, EmptyS)
splitS n (u :# rho)   = id *** (u :#) $ splitS (n - 1) rho
splitS n (Lift 0 _)   = __IMPOSSIBLE__
splitS n (Wk m rho)   = wkS m *** wkS m $ splitS n rho
splitS n IdS          = (raiseS n, liftS n EmptyS)
splitS n (Lift m rho) = wkS 1 *** liftS 1 $ splitS (n - 1) (liftS (m - 1) rho)
splitS n EmptyS       = __IMPOSSIBLE__

infixr 4 ++#

(++#) :: [Term] -> Substitution -> Substitution
us ++# rho = foldr (:#) rho us

parallelS :: [Term] -> Substitution
parallelS us = us ++# idS

lookupS :: Substitution -> Nat -> Term
lookupS rho i = case rho of
  IdS                    -> var i
  Wk n IdS               -> let j = i + n in
                            if  j < 0 then __IMPOSSIBLE__ else var j
  Wk n rho               -> applySubst (raiseS n) (lookupS rho i)
  u :# rho   | i == 0    -> u
             | i < 0     -> __IMPOSSIBLE__
             | otherwise -> lookupS rho (i - 1)
  Lift n rho | i < n     -> var i
             | otherwise -> raise n $ lookupS rho (i - n)
  EmptyS                 -> __IMPOSSIBLE__

-- | Apply a substitution.

-- For terms:
--
--  Γ ⊢ ρ : Δ
--  Δ ⊢ t : σ
-- -----------
-- Γ ⊢ tρ : σρ

class Subst t where
  applySubst :: Substitution -> t -> t

raise :: Subst t => Nat -> t -> t
raise = raiseFrom 0

raiseFrom :: Subst t => Nat -> Nat -> t -> t
raiseFrom n k = applySubst (liftS n $ raiseS k)

subst :: Subst t => Term -> t -> t
subst u t = substUnder 0 u t

substUnder :: Subst t => Nat -> Term -> t -> t
substUnder n u = applySubst (liftS n (singletonS u))

instance Subst Substitution where
  applySubst rho sgm = composeS rho sgm

instance Subst Term where
  applySubst IdS t = t
  applySubst rho t    = case t of
    Var i vs    -> lookupS rho i `apply` applySubst rho vs
    Lam h m     -> Lam h $ applySubst rho m
    Def c vs    -> Def c $ applySubst rho vs
    Con c vs    -> Con c $ applySubst rho vs
    MetaV x vs  -> MetaV x $ applySubst rho vs
    Lit l       -> Lit l
    Level l     -> levelTm $ applySubst rho l
    Pi a b      -> uncurry Pi $ applySubst rho (a,b)
    Sort s      -> sortTm $ applySubst rho s
    Shared p    -> Shared $ applySubst rho p
    DontCare mv -> DontCare $ applySubst rho mv

instance Subst a => Subst (Ptr a) where
  applySubst rho = fmap (applySubst rho)

instance Subst Type where
  applySubst rho (El s t) = applySubst rho s `El` applySubst rho t

instance Subst Sort where
  applySubst rho s = case s of
    Type n     -> levelSort $ sub n
    Prop       -> Prop
    Inf        -> Inf
    DLub s1 s2 -> DLub (sub s1) (sub s2)
    where sub x = applySubst rho x

instance Subst Level where
  applySubst rho (Max as) = Max $ applySubst rho as

instance Subst PlusLevel where
  applySubst rho l@ClosedLevel{} = l
  applySubst rho (Plus n l) = Plus n $ applySubst rho l

instance Subst LevelAtom where
  applySubst rho      (MetaLevel m vs)   = MetaLevel m    $ applySubst rho vs
  applySubst rho      (BlockedLevel m v) = BlockedLevel m $ applySubst rho v
  applySubst rho      (NeutralLevel v)   = UnreducedLevel $ applySubst rho v
  applySubst rho      (UnreducedLevel v) = UnreducedLevel $ applySubst rho v

instance Subst Pattern where
  applySubst rho p = case p of
    VarP s       -> VarP s
    LitP l       -> LitP l
    ConP c mt ps -> ConP c (applySubst rho mt) $ applySubst rho ps
    DotP t       -> DotP $ applySubst rho t

instance Subst t => Subst (Blocked t) where
  applySubst rho b      = fmap (applySubst rho) b

instance Subst DisplayForm where
  applySubst rho (Display n ps v) =
    Display n (applySubst (liftS 1 rho) ps)
              (applySubst (liftS n rho) v)

instance Subst DisplayTerm where
  applySubst rho      (DTerm v)        = DTerm $ applySubst rho v
  applySubst rho      (DDot v)         = DDot  $ applySubst rho v
  applySubst rho      (DCon c vs)      = DCon c $ applySubst rho vs
  applySubst rho      (DDef c vs)      = DDef c $ applySubst rho vs
  applySubst rho      (DWithApp vs ws) = uncurry DWithApp $ applySubst rho (vs, ws)

instance Subst a => Subst (Tele a) where
  applySubst rho  EmptyTel              = EmptyTel
  applySubst rho (ExtendTel t tel)      = uncurry ExtendTel $ applySubst rho (t, tel)

instance Subst Constraint where
  applySubst rho c = case c of
    ValueCmp cmp a u v       -> ValueCmp cmp (rf a) (rf u) (rf v)
    ElimCmp ps a v e1 e2     -> ElimCmp ps (rf a) (rf v) (rf e1) (rf e2)
    TypeCmp cmp a b          -> TypeCmp cmp (rf a) (rf b)
    TelCmp a b cmp tel1 tel2 -> TelCmp (rf a) (rf b) cmp (rf tel1) (rf tel2)
    SortCmp cmp s1 s2        -> SortCmp cmp (rf s1) (rf s2)
    LevelCmp cmp l1 l2       -> LevelCmp cmp (rf l1) (rf l2)
    Guarded c cs             -> Guarded (rf c) cs
    IsEmpty r a              -> IsEmpty r (rf a)
    FindInScope m cands      -> FindInScope m (rf cands)
    UnBlock{}                -> c
    where
      rf x = applySubst rho x

instance Subst Elim where
  applySubst rho e = case e of
    Apply v -> Apply (applySubst rho v)
    Proj{}  -> e

instance Subst a => Subst (Abs a) where
  applySubst rho (Abs x a)   = Abs x $ applySubst (liftS 1 rho) a
  applySubst rho (NoAbs x a) = NoAbs x $ applySubst rho a

instance Subst a => Subst (Arg a) where
  applySubst rho = fmap (applySubst rho)

instance Subst a => Subst (Dom a) where
  applySubst rho = fmap (applySubst rho)

instance Subst a => Subst (Maybe a) where
  applySubst rho = fmap (applySubst rho)

instance Subst a => Subst [a] where
  applySubst rho = map (applySubst rho)

instance Subst () where
  applySubst _ _ = ()

instance (Subst a, Subst b) => Subst (a,b) where
  applySubst rho (x,y) = (applySubst rho x, applySubst rho y)

instance Subst ClauseBody where
  applySubst rho (Body t) = Body $ applySubst rho t
  applySubst rho (Bind b) = Bind $ applySubst rho b
  applySubst _   NoBody   = NoBody

data TelV a = TelV (Tele (Dom a)) a
  deriving (Typeable, Show, Eq, Ord, Functor)

type TelView = TelV Type

telFromList :: [Dom (String, Type)] -> Telescope
telFromList = foldr (\(Dom h r (x, a)) -> ExtendTel (Dom h r a) . Abs x) EmptyTel

telToList :: Telescope -> [Dom (String, Type)]
telToList EmptyTel = []
telToList (ExtendTel arg tel) = fmap ((,) $ absName tel) arg : telToList (absBody tel)

telView' :: Type -> TelView
telView' t = case ignoreSharing $ unEl t of
  Pi a b  -> absV a (absName b) $ telView' (absBody b)
  _       -> TelV EmptyTel t
  where
    absV a x (TelV tel t) = TelV (ExtendTel a (Abs x tel)) t

-- | @mkPi dom t = telePi (telFromList [dom]) t@
mkPi :: Dom (String, Type) -> Type -> Type
mkPi (Dom h r (x, a)) b = el $ Pi (Dom h r a) (mkAbs x b)
  where
    el = El $ dLub (getSort a) (Abs x (getSort b)) -- dLub checks x freeIn

telePi :: Telescope -> Type -> Type
telePi  EmptyTel         t = t
telePi (ExtendTel u tel) t = el $ Pi u (reAbs b)
  where
    el = El (dLub s1 s2)
    b = fmap (flip telePi t) tel
    s1 = getSort $ unDom u
    s2 = fmap getSort b

-- | Everything will be a pi.
telePi_ :: Telescope -> Type -> Type
telePi_  EmptyTel        t = t
telePi_ (ExtendTel u tel) t = el $ Pi u b
  where
    el = El (dLub s1 s2)
    b  = fmap (flip telePi_ t) tel
    s1 = getSort $ unDom u
    s2 = fmap getSort b

teleLam :: Telescope -> Term -> Term
teleLam  EmptyTel	  t = t
teleLam (ExtendTel u tel) t = Lam (domHiding u) $ flip teleLam t <$> tel

-- | Dependent least upper bound, to assign a level to expressions
--   like @forall i -> Set i@.
--
--   @dLub s1 \i.s2 = \omega@ if @i@ appears in the rigid variables of @s2@.
dLub :: Sort -> Abs Sort -> Sort
dLub s1 (NoAbs _ s2) = sLub s1 s2
dLub s1 b@(Abs _ s2) = case occurrence 0 $ freeVars s2 of
  Flexible      -> DLub s1 b
  Irrelevantly  -> DLub s1 b
  NoOccurrence  -> sLub s1 (absApp b __IMPOSSIBLE__)
  Free.Unused   -> sLub s1 (absApp b __IMPOSSIBLE__)
  StronglyRigid -> Inf
  WeaklyRigid   -> Inf

-- Functions on abstractions ----------------------------------------------
--   and things we couldn't do before we could define 'absBody'

-- | Instantiate an abstraction
absApp :: Subst t => Abs t -> Term -> t
absApp (Abs   _ v) u = subst u v
absApp (NoAbs _ v) _ = v

absBody :: Subst t => Abs t -> t
absBody (Abs   _ v) = v
absBody (NoAbs _ v) = raise 1 v

mkAbs :: (Subst a, Free a) => String -> a -> Abs a
mkAbs x v | 0 `freeIn` v = Abs x v
          | otherwise    = NoAbs x (raise (-1) v)

reAbs :: (Subst a, Free a) => Abs a -> Abs a
reAbs (NoAbs x v) = NoAbs x v
reAbs (Abs x v)   = mkAbs x v

-- | @underAbs k a b@ applies @k@ to @a@ and the content of
--   abstraction @b@ and puts the abstraction back.
--   @a@ is raised if abstraction was proper such that
--   at point of application of @k@ and the content of @b@
--   are at the same context.
--   Precondition: @a@ and @b@ are at the same context at call time.
underAbs :: Subst a => (a -> b -> b) -> a -> Abs b -> Abs b
underAbs cont a b = case b of
  Abs   x t -> Abs   x $ cont (raise 1 a) t
  NoAbs x t -> NoAbs x $ cont a t

-- | @underLambdas n k a b@ drops @n@ initial 'Lam's from @b@,
--   performs operation @k@ on @a@ and the body of @b@,
--   and puts the 'Lam's back.  @a@ is raised correctly
--   according to the number of abstractions.
underLambdas :: Subst a => Int -> (a -> Term -> Term) -> a -> Term -> Term
underLambdas n cont a v = loop n a v where
  loop 0 a v = cont a v
  loop n a v = case ignoreSharing v of
    Lam h b -> Lam h $ underAbs (loop $ n-1) a b
    _       -> __IMPOSSIBLE__

deriving instance (Subst a, Eq a) => Eq (Tele a)
deriving instance (Subst a, Ord a) => Ord (Tele a)

deriving instance Eq Sort
deriving instance Ord Sort
deriving instance Eq Type
deriving instance Ord Type
deriving instance Eq Level
deriving instance Ord Level
deriving instance Eq PlusLevel
deriving instance Ord LevelAtom
deriving instance Eq Elim
deriving instance Ord Elim

deriving instance Eq Constraint

instance Ord PlusLevel where
  compare ClosedLevel{} Plus{}            = LT
  compare Plus{} ClosedLevel{}            = GT
  compare (ClosedLevel n) (ClosedLevel m) = compare n m
  -- Compare on the atom first. Makes most sense for levelMax.
  compare (Plus n a) (Plus m b)           = compare (a,n) (b,m)

instance Eq LevelAtom where
  (==) = (==) `on` unLevelAtom

-- | Syntactic equality, ignores stuff below @DontCare@.
instance Eq Term where
  Var x vs   == Var x' vs'   = x == x' && vs == vs'
  Lam h v    == Lam h' v'    = h == h' && v  == v'
  Lit l      == Lit l'       = l == l'
  Def x vs   == Def x' vs'   = x == x' && vs == vs'
  Con x vs   == Con x' vs'   = x == x' && vs == vs'
  Pi a b     == Pi a' b'     = a == a' && b == b'
  Sort s     == Sort s'      = s == s'
  Level l    == Level l'     = l == l'
  MetaV m vs == MetaV m' vs' = m == m' && vs == vs'
  DontCare _ == DontCare _   = True
  Shared p   == Shared q     = p == q || derefPtr p == derefPtr q
  Shared p   == b            = derefPtr p == b
  a          == Shared q     = a == derefPtr q
  _          == _            = False

instance Ord Term where
  Shared a   `compare` Shared x | a == x = EQ
  Shared a   `compare` x          = compare (derefPtr a) x
  a          `compare` Shared x   = compare a (derefPtr x)
  Var a b    `compare` Var x y    = compare (a, b) (x, y)
  Var{}      `compare` _          = LT
  _          `compare` Var{}      = GT
  Def a b    `compare` Def x y    = compare (a, b) (x, y)
  Def{}      `compare` _          = LT
  _          `compare` Def{}      = GT
  Con a b    `compare` Con x y    = compare (a, b) (x, y)
  Con{}      `compare` _          = LT
  _          `compare` Con{}      = GT
  Lit a      `compare` Lit x      = compare a x
  Lit{}      `compare` _          = LT
  _          `compare` Lit{}      = GT
  Lam a b    `compare` Lam x y    = compare (a, b) (x, y)
  Lam{}      `compare` _          = LT
  _          `compare` Lam{}      = GT
  Pi a b     `compare` Pi x y     = compare (a, b) (x, y)
  Pi{}       `compare` _          = LT
  _          `compare` Pi{}       = GT
  Sort a     `compare` Sort x     = compare a x
  Sort{}     `compare` _          = LT
  _          `compare` Sort{}     = GT
  Level a    `compare` Level x    = compare a x
  Level{}    `compare` _          = LT
  _          `compare` Level{}    = GT
  MetaV a b  `compare` MetaV x y  = compare (a, b) (x, y)
  MetaV{}    `compare` _          = LT
  _          `compare` MetaV{}    = GT
  DontCare{} `compare` DontCare{} = EQ

instance (Subst a, Eq a) => Eq (Abs a) where
  NoAbs _ a == NoAbs _ b = a == b
  Abs   _ a == Abs   _ b = a == b
  a         == b         = absBody a == absBody b

instance (Subst a, Ord a) => Ord (Abs a) where
  NoAbs _ a `compare` NoAbs _ b = a `compare` b
  Abs   _ a `compare` Abs   _ b = a `compare` b
  a         `compare` b         = absBody a `compare` absBody b

-- Level stuff ------------------------------------------------------------

sLub :: Sort -> Sort -> Sort
sLub s Prop = s
sLub Prop s = s
sLub Inf _ = Inf
sLub _ Inf = Inf
sLub (Type (Max as)) (Type (Max bs)) = Type $ levelMax (as ++ bs)
sLub (DLub a b) c = DLub (sLub a c) b
sLub a (DLub b c) = DLub (sLub a b) c

lvlView :: Term -> Level
lvlView v = case ignoreSharing v of
  Level l       -> l
  Sort (Type l) -> l
  _             -> Max [Plus 0 $ UnreducedLevel v]

levelMax :: [PlusLevel] -> Level
levelMax as0 = Max $ ns ++ List.sort bs
  where
    as = Prelude.concatMap expand as0
    ns = case [ n | ClosedLevel n <- as, n > 0 ] of
      []  -> []
      ns  -> [ ClosedLevel n | n <- [Prelude.maximum ns], n > greatestB ]
    bs = subsume [ b | b@Plus{} <- as ]
    greatestB | null bs   = 0
              | otherwise = Prelude.maximum [ n | Plus n _ <- bs ]

    expand l@ClosedLevel{} = [l]
    expand (Plus n l) = map (plus n) $ expand0 $ expandAtom l

    expand0 [] = [ClosedLevel 0]
    expand0 as = as

    expandAtom l = case l of
      BlockedLevel _ v -> expandTm v
      NeutralLevel v   -> expandTm v
      UnreducedLevel v -> expandTm v
      MetaLevel{}      -> [Plus 0 l]
      where
        expandTm v = case ignoreSharing v of
          Level (Max as)       -> as
          Sort (Type (Max as)) -> as
          _                    -> [Plus 0 l]

    plus n (ClosedLevel m) = ClosedLevel (n + m)
    plus n (Plus m l)      = Plus (n + m) l

    subsume (ClosedLevel{} : _) = __IMPOSSIBLE__
    subsume [] = []
    subsume (Plus n a : bs)
      | not $ null ns = subsume bs
      | otherwise     = Plus n a : subsume [ b | b@(Plus _ a') <- bs, a /= a' ]
      where
        ns = [ m | Plus m a'  <- bs, a == a', m > n ]

sortTm :: Sort -> Term
sortTm (Type l) = Sort $ levelSort l
sortTm s        = Sort s

levelSort :: Level -> Sort
levelSort (Max as)
  | List.any isInf as = Inf
  where
    isInf ClosedLevel{}        = False
    isInf (Plus _ l)           = infAtom l
    infAtom (NeutralLevel a)   = infTm a
    infAtom (UnreducedLevel a) = infTm a
    infAtom MetaLevel{}        = False
    infAtom BlockedLevel{}     = False
    infTm (Sort Inf)           = True
    infTm (Shared p)           = infTm $ derefPtr p
    infTm _                    = False
levelSort l =
  case ignoreSharing $ levelTm l of
    Sort s -> s
    _      -> Type l

levelTm :: Level -> Term
levelTm l =
  case l of
    Max [Plus 0 l] -> unLevelAtom l
    _              -> Level l

unLevelAtom (MetaLevel x vs)   = MetaV x vs
unLevelAtom (NeutralLevel v)   = v
unLevelAtom (UnreducedLevel v) = v
unLevelAtom (BlockedLevel _ v) = v

-- Boring instances ----------------------------------------------------

instance Sized Substitution where
  size IdS          = 1
  size EmptyS       = 1
  size (Wk _ rho)   = 1 + size rho
  size (t :# rho)   = 1 + size t + size rho
  size (Lift _ rho) = 1 + size rho

instance KillRange Substitution where
  killRange IdS          = IdS
  killRange EmptyS       = EmptyS
  killRange (Wk n rho)   = killRange1 (Wk n) rho
  killRange (t :# rho)   = killRange2 (:#) t rho
  killRange (Lift n rho) = killRange1 (Lift n) rho