{-# LANGUAGE CPP, DeriveDataTypeable, GeneralizedNewtypeDeriving, DeriveFunctor, DeriveFoldable, DeriveTraversable, TemplateHaskell, MultiParamTypeClasses, FlexibleInstances, TypeSynonymInstances #-} module Agda.Syntax.Internal ( module Agda.Syntax.Internal , module Agda.Syntax.Abstract.Name , module Agda.Utils.Pointer ) where import Prelude hiding (foldr) import Control.Applicative import Control.Parallel import Data.Typeable (Typeable) import Data.Foldable import Data.Traversable import Data.Function import Data.Maybe import qualified Data.List as List import Agda.Syntax.Position import Agda.Syntax.Common import Agda.Syntax.Literal import Agda.Syntax.Abstract.Name import Agda.Utils.Geniplate import Agda.Utils.Monad import Agda.Utils.Size import Agda.Utils.Permutation import Agda.Utils.Pointer #include "../undefined.h" import Agda.Utils.Impossible -- | Raw values. -- -- @Def@ is used for both defined and undefined constants. -- Assume there is a type declaration and a definition for -- every constant, even if the definition is an empty -- list of clauses. -- data Term = Var {-# UNPACK #-} !Int Args -- ^ @x vs@ neutral | Lam Hiding (Abs Term) -- ^ terms are beta normal | Lit Literal | Def QName Args -- ^ @f vs@, possibly a redex | Con QName Args -- ^ @c vs@ | Pi (Dom Type) (Abs Type) -- ^ dependent or non-dependent function space | Sort Sort | Level Level | MetaV {-# UNPACK #-} !MetaId Args | DontCare Term -- ^ Irrelevant stuff in relevant position, but created -- in an irrelevant context. Basically, an internal -- version of the irrelevance axiom @.irrAx : .A -> A@. | Shared !(Ptr Term) -- ^ Explicit sharing deriving (Typeable, Show) -- | Type of argument lists. -- type Args = [Arg Term] -- | Eliminations, subsuming applications and projections. -- Used for a view which exposes the head of a neutral term. -- data Elim = Apply (Arg Term) | Proj QName -- ^ name of a record projection deriving (Show) -- | Binder. -- 'Abs': The bound variable might appear in the body. -- 'NoAbs' is pseudo-binder, it does not introduce a fresh variable, -- similar to the @const@ of Haskell. data Abs a = Abs { absName :: String, unAbs :: a } -- ^ The body has (at least) one free variable. -- Danger: 'unAbs' doesn't shift variables properly | NoAbs { absName :: String, unAbs :: a } deriving (Typeable, Functor, Foldable, Traversable) -- | Types are terms with a sort annotation. -- data Type = El { getSort :: Sort, unEl :: Term } deriving (Typeable, Show) -- | Sequence of types. An argument of the first type is bound in later types -- and so on. data Tele a = EmptyTel | ExtendTel a (Abs (Tele a)) -- ^ 'Abs' is never 'NoAbs'. deriving (Typeable, Show, Functor, Foldable, Traversable) type Telescope = Tele (Dom Type) -- | Sorts. -- data Sort = Type Level | Prop -- ignore me | Inf | DLub Sort (Abs Sort) -- ^ if the free variable occurs in the second sort -- the whole thing should reduce to Inf, otherwise -- it's the normal Lub deriving (Typeable, Show) -- | A level is a maximum expression of 0..n plus expressions -- each of which is a number or an atom plus a number. -- newtype Level = Max [PlusLevel] deriving (Show, Typeable) data PlusLevel = ClosedLevel Integer | Plus Integer LevelAtom deriving (Show, Typeable) data LevelAtom = MetaLevel MetaId Args | BlockedLevel MetaId Term | NeutralLevel Term | UnreducedLevel Term deriving (Show, Typeable) -- | A meta variable identifier is just a natural number. -- newtype MetaId = MetaId Nat deriving (Eq, Ord, Num, Real, Enum, Integral, Typeable) -- | Something where a meta variable may block reduction. data Blocked t = Blocked MetaId t | NotBlocked t deriving (Typeable, Eq, Ord, Functor, Foldable, Traversable) instance Applicative Blocked where pure = notBlocked Blocked x f <*> e = Blocked x $ f (ignoreBlocking e) NotBlocked f <*> e = f <$> e --------------------------------------------------------------------------- -- * Definitions --------------------------------------------------------------------------- -- | A clause is a list of patterns and the clause body should @Bind@. -- -- The telescope contains the types of the pattern variables and the -- permutation is how to get from the order the variables occur in -- the patterns to the order they occur in the telescope. The body -- binds the variables in the order they appear in the patterns. -- -- @clauseTel ~ permute clausePerm (patternVars clausPats)@ -- -- For the purpose of the permutation and the body dot patterns count -- as variables. TODO: Change this! data Clause = Clause { clauseRange :: Range , clauseTel :: Telescope , clausePerm :: Permutation , clausePats :: [Arg Pattern] , clauseBody :: ClauseBody } deriving (Typeable, Show) data ClauseBody = Body Term | Bind (Abs ClauseBody) | NoBody -- ^ for absurd clauses. deriving (Typeable, Show) instance HasRange Clause where getRange = clauseRange -- | Patterns are variables, constructors, or wildcards. -- @QName@ is used in @ConP@ rather than @Name@ since -- a constructor might come from a particular namespace. -- This also meshes well with the fact that values (i.e. -- the arguments we are matching with) use @QName@. -- data Pattern = VarP String -- name suggestion | DotP Term | ConP QName (Maybe (Arg Type)) [Arg Pattern] -- ^ The type is @'Just' t@' iff the pattern is a -- record pattern. The scope used for the type is given -- by any outer scope plus the clause's telescope -- ('clauseTel'). | LitP Literal deriving (Typeable, Show) -- | Extract pattern variables in left-to-right order. -- A 'DotP' is also treated as variable (see docu for 'Clause'). patternVars :: Arg Pattern -> [Arg (Either String Term)] patternVars (Arg h r (VarP x) ) = [Arg h r $ Left x] patternVars (Arg h r (DotP t) ) = [Arg h r $ Right t] patternVars (Arg h r (ConP _ _ ps)) = List.concat $ map patternVars ps patternVars (Arg h r (LitP l) ) = [] -- | Does the pattern perform a match that could fail? properlyMatching :: Pattern -> Bool properlyMatching VarP{} = False properlyMatching DotP{} = False properlyMatching LitP{} = True properlyMatching (ConP _ mt ps) = List.or $ isNothing mt -- not a record cons : map (properlyMatching . unArg) ps -- or one of subpatterns is a proper m --------------------------------------------------------------------------- -- * Smart constructors --------------------------------------------------------------------------- ignoreSharing :: Term -> Term -- ignoreSharing (Shared p) = ignoreSharing $ derefPtr p ignoreSharing v = v ignoreSharingType :: Type -> Type -- ignoreSharingType (El s v) = El s (ignoreSharing v) ignoreSharingType v = v shared :: Term -> Term -- shared v@Shared{} = v -- shared v@(Var _ []) = v -- shared v = Shared (newPtr v) shared v = v sharedType :: Type -> Type -- sharedType (El s v) = El s (shared v) sharedType v = v -- | Typically m would be TCM and f would be Blocked. updateSharedFM :: (Monad m, Applicative m, Traversable f) => (Term -> m (f Term)) -> Term -> m (f Term) updateSharedFM f v0@(Shared p) = do fv <- f (derefPtr p) flip traverse fv $ \v -> case derefPtr (setPtr v p) of Var _ [] -> return v _ -> compressPointerChain v0 `pseq` return v0 updateSharedFM f v = f v updateSharedM :: Monad m => (Term -> m Term) -> Term -> m Term updateSharedM f v0@(Shared p) = do v <- f (derefPtr p) case derefPtr (setPtr v p) of Var _ [] -> return v _ -> compressPointerChain v0 `pseq` return v0 updateSharedM f v = f v updateShared :: (Term -> Term) -> Term -> Term updateShared f v0@(Shared p) = case derefPtr (setPtr (f $ derefPtr p) p) of v@(Var _ []) -> v _ -> compressPointerChain v0 `pseq` v0 updateShared f v = f v pointerChain :: Term -> [Ptr Term] pointerChain (Shared p) = p : pointerChain (derefPtr p) pointerChain _ = [] -- Redirect all top-level pointers to point to the last pointer. So, after -- compression there are at most two top-level indirections. compressPointerChain :: Term -> Term compressPointerChain v = case reverse $ pointerChain v of p:_:ps@(_:_) -> setPointers (Shared p) ps _ -> v where setPointers _ [] = v setPointers u (p : ps) = setPtr u p `seq` setPointers u ps -- | An unapplied variable. var :: Nat -> Term var i = Var i [] -- | A dummy type. typeDontCare :: Type typeDontCare = El Prop (Sort Prop) -- | Top sort (Set\omega). topSort :: Type topSort = El Inf (Sort Inf) set0 = set 0 set n = sort $ mkType n prop = sort Prop sort s = El (sSuc s) $ Sort s varSort n = Type $ Max [Plus 0 $ NeutralLevel $ Var n []] -- | Get the next higher sort. sSuc :: Sort -> Sort sSuc Prop = mkType 1 sSuc Inf = Inf sSuc (DLub a b) = DLub (sSuc a) (fmap sSuc b) sSuc (Type l) = Type $ levelSuc l levelSuc (Max []) = Max [ClosedLevel 1] levelSuc (Max as) = Max $ map inc as where inc (ClosedLevel n) = ClosedLevel (n + 1) inc (Plus n l) = Plus (n + 1) l mkType n = Type $ Max [ClosedLevel n | n > 0] impossibleTerm :: String -> Int -> Term impossibleTerm file line = Lit $ LitString noRange $ unlines [ "An internal error has occurred. Please report this as a bug." , "Location of the error: " ++ file ++ ":" ++ show line ] --------------------------------------------------------------------------- -- * Handling blocked terms. --------------------------------------------------------------------------- blockingMeta :: Blocked t -> Maybe MetaId blockingMeta (Blocked m _) = Just m blockingMeta (NotBlocked _) = Nothing blocked :: MetaId -> a -> Blocked a blocked x = Blocked x notBlocked :: a -> Blocked a notBlocked = NotBlocked ignoreBlocking :: Blocked a -> a ignoreBlocking (Blocked _ x) = x ignoreBlocking (NotBlocked x) = x --------------------------------------------------------------------------- -- * Simple operations on terms and types. --------------------------------------------------------------------------- -- | Removing a topmost 'DontCare' constructor. stripDontCare :: Term -> Term stripDontCare v = case ignoreSharing v of DontCare v -> v _ -> v -- | Doesn't do any reduction. arity :: Type -> Nat arity t = case ignoreSharing $ unEl t of Pi _ b -> 1 + arity (unAbs b) _ -> 0 -- | Suggest a name for the first argument of a function of the given type. argName :: Type -> String argName = argN . ignoreSharing . unEl where argN (Pi _ b) = "." ++ absName b argN _ = __IMPOSSIBLE__ --------------------------------------------------------------------------- -- * Show instances. --------------------------------------------------------------------------- instance Show a => Show (Abs a) where showsPrec p (Abs x a) = showParen (p > 0) $ showString "Abs " . shows x . showString " " . showsPrec 10 a showsPrec p (NoAbs x a) = showParen (p > 0) $ showString "NoAbs " . shows x . showString " " . showsPrec 10 a instance Show MetaId where show (MetaId n) = "_" ++ show n instance Show t => Show (Blocked t) where showsPrec p (Blocked m x) = showParen (p > 0) $ showString "Blocked " . shows m . showString " " . showsPrec 10 x showsPrec p (NotBlocked x) = showsPrec p x --------------------------------------------------------------------------- -- * Sized instances. --------------------------------------------------------------------------- instance Sized Term where size v = case v of Var _ vs -> 1 + Prelude.sum (map size vs) Def _ vs -> 1 + Prelude.sum (map size vs) Con _ vs -> 1 + Prelude.sum (map size vs) MetaV _ vs -> 1 + Prelude.sum (map size vs) Level l -> size l Lam _ f -> 1 + size f Lit _ -> 1 Pi a b -> 1 + size a + size b Sort s -> 1 DontCare mv -> size mv Shared p -> size (derefPtr p) instance Sized Type where size = size . unEl instance Sized Level where size (Max as) = 1 + Prelude.sum (map size as) instance Sized PlusLevel where size (ClosedLevel _) = 1 size (Plus _ a) = size a instance Sized LevelAtom where size (MetaLevel _ vs) = 1 + Prelude.sum (map size vs) size (BlockedLevel _ v) = size v size (NeutralLevel v) = size v size (UnreducedLevel v) = size v instance Sized (Tele a) where size EmptyTel = 0 size (ExtendTel _ tel) = 1 + size tel instance Sized a => Sized (Abs a) where size = size . unAbs --------------------------------------------------------------------------- -- * KillRange instances. --------------------------------------------------------------------------- instance KillRange Term where killRange v = case v of Var i vs -> killRange1 (Var i) vs Def c vs -> killRange2 Def c vs Con c vs -> killRange2 Con c vs MetaV m vs -> killRange1 (MetaV m) vs Lam h f -> killRange2 Lam h f Lit l -> killRange1 Lit l Level l -> killRange1 Level l Pi a b -> killRange2 Pi a b Sort s -> killRange1 Sort s DontCare mv -> killRange1 DontCare mv Shared p -> Shared $ updatePtr killRange p instance KillRange Level where killRange (Max as) = killRange1 Max as instance KillRange PlusLevel where killRange l@ClosedLevel{} = l killRange (Plus n l) = killRange1 (Plus n) l instance KillRange LevelAtom where killRange (MetaLevel n as) = killRange1 (MetaLevel n) as killRange (BlockedLevel m v) = killRange1 (BlockedLevel m) v killRange (NeutralLevel v) = killRange1 NeutralLevel v killRange (UnreducedLevel v) = killRange1 UnreducedLevel v instance KillRange Type where killRange (El s v) = killRange2 El s v instance KillRange Sort where killRange s = case s of Prop -> Prop Inf -> Inf Type a -> killRange1 Type a DLub s1 s2 -> killRange2 DLub s1 s2 instance KillRange a => KillRange (Tele a) where killRange = fmap killRange {- -- instance KillRange Telescope where killRange EmptyTel = EmptyTel killRange (ExtendTel a tel) = ExtendTel (killRange a) (killRange tel) -- killRange2 ExtendTel a tel -} instance KillRange a => KillRange (Blocked a) where killRange = fmap killRange instance KillRange a => KillRange (Abs a) where killRange = fmap killRange --------------------------------------------------------------------------- -- * UniverseBi instances. --------------------------------------------------------------------------- instanceUniverseBiT' [] [t| (([Type], [Clause]), Pattern) |] instanceUniverseBiT' [] [t| (Args, Pattern) |] instanceUniverseBiT' [] [t| (([Type], [Clause]), Term) |] instanceUniverseBiT' [] [t| (Args, Term) |] instanceUniverseBiT' [] [t| ([Term], Term) |]