{-# LANGUAGE CPP, PatternGuards, TupleSections, FlexibleInstances, GeneralizedNewtypeDeriving #-} -- | Code which replaces pattern matching on record constructors with -- uses of projection functions. module Agda.TypeChecking.RecordPatterns ( translateRecordPatterns , translateCompiledClauses , translateSplitTree , recordPatternToProjections ) where import Control.Applicative import Control.Arrow ((***)) import Control.Monad.Fix import Control.Monad.Reader import Control.Monad.State import Data.List import Data.Map (Map) import qualified Data.Map as Map import qualified Data.Traversable as Trav import Agda.Syntax.Common import Agda.Syntax.Internal import Agda.TypeChecking.CompiledClause import Agda.TypeChecking.Coverage.SplitTree import Agda.TypeChecking.Datatypes import Agda.TypeChecking.Errors import Agda.TypeChecking.Monad import Agda.TypeChecking.Pretty import Agda.TypeChecking.Records import Agda.TypeChecking.Reduce import Agda.TypeChecking.Substitute import Agda.TypeChecking.Telescope import Agda.Utils.Either import Agda.Utils.List import qualified Agda.Utils.Map as Map import Agda.Utils.Maybe import Agda.Utils.Permutation import Agda.Utils.Size #include "../undefined.h" import Agda.Utils.Impossible --------------------------------------------------------------------------- -- * Record pattern translation for let bindings --------------------------------------------------------------------------- -- | Take a record pattern @p@ and yield a list of projections -- corresponding to the pattern variables, from left to right. -- -- E.g. for @(x , (y , z))@ we return @[ fst, fst . snd, snd . snd ]@. -- -- If it is not a record pattern, error 'ShouldBeRecordPattern' is raised. recordPatternToProjections :: Pattern -> TCM [Term -> Term] recordPatternToProjections p = case p of VarP{} -> return [ \ x -> x ] LitP{} -> typeError $ ShouldBeRecordPattern p DotP{} -> typeError $ ShouldBeRecordPattern p ConP c Nothing ps -> typeError $ ShouldBeRecordPattern p ConP c (Just t) ps -> do t <- reduce t fields <- getRecordTypeFields (unArg t) concat <$> zipWithM comb (map proj fields) (map unArg ps) where proj p = \ x -> Def (unArg p) [defaultArg x] comb :: (Term -> Term) -> Pattern -> TCM [Term -> Term] comb prj p = map (prj .) <$> recordPatternToProjections p --------------------------------------------------------------------------- -- * Record pattern translation for compiled clauses --------------------------------------------------------------------------- -- | Take a matrix of booleans (at least one row!) and summarize the columns -- using conjunction. conjColumns :: [[Bool]] -> [Bool] conjColumns = foldl1 (zipWith (&&)) -- | @insertColumn i a m@ inserts a column before the @i@th column in -- matrix @m@ and fills it with value @a@. insertColumn :: Int -> a -> [[a]] -> [[a]] insertColumn i a rows = map ins rows where ins row = let (init, last) = splitAt i row in init ++ a : last {- UNUSED -- | @cutColumn i m@ removes the @i@th column from matrix @m@. cutColumn :: Int -> [[a]] -> [[a]] cutColumn i rows = map cut rows where cut row = let (init, _:last) = splitAt i row in init ++ last -- | @cutColumns i n xss = (yss, xss')@ cuts out a submatrix @yss@ -- of width @n@ from @xss@, starting at column @i@. cutColumns :: Int -> Int -> [[a]] -> ([[a]], [[a]]) cutColumns i n rows = unzip (map (cutSublist i n) rows) -} -- | @cutSublist i n xs = (xs', ys, xs'')@ cuts out a sublist @ys@ -- of width @n@ from @xs@, starting at column @i@. cutSublist :: Int -> Int -> [a] -> ([a], [a], [a]) cutSublist i n row = let (init, rest) = splitAt i row (mid , last) = splitAt n rest in (init, mid, last) translateCompiledClauses :: CompiledClauses -> TCM CompiledClauses translateCompiledClauses cc = snd <$> loop cc where loop :: CompiledClauses -> TCM ([Bool], CompiledClauses) loop cc = case cc of Fail -> return (repeat True, cc) Done xs t -> return (map (const True) xs, cc) Case i cs -> loops i cs loops :: Int -- split variable -> Case CompiledClauses -- original split tree -> TCM ([Bool], CompiledClauses) loops i cs@(Branches { conBranches = conMap , litBranches = litMap , catchAllBranch = catchAll }) = do -- recurse on and compute variable status of catch-all clause (xssa, catchAll) <- unzipMaybe <$> Trav.mapM loop catchAll let xsa = maybe (repeat True) id xssa -- recurse on compute variable status of literal clauses (xssl, litMap) <- Map.unzip <$> Trav.mapM loop litMap let xsl = conjColumns (xsa : insertColumn i False (Map.elems xssl)) -- recurse on constructor clauses (ccs, xssc, conMap) <- Map.unzip3 <$> do Trav.forM (Map.mapWithKey (,) conMap) $ \ (c, WithArity ar cc) -> do (xs, cc) <- loop cc dataOrRecCon <- getConstructorArity c let (isRC, n) = either (False,) ((True,) . size) dataOrRecCon (xs0, rest) = genericSplitAt i xs (xs1, xs2 ) = genericSplitAt n rest -- if all dropped variables are virgins and we are record cons. -- then new variable x is also virgin -- and we can translate away the split x = isRC && and xs1 -- xs' = updated variables xs' = xs0 ++ x : xs2 -- get the record fields fs = either __IMPOSSIBLE__ id dataOrRecCon -- if x we can translate mcc = if x then [replaceByProjections i (map unArg fs) cc] else [] when (n /= ar) __IMPOSSIBLE__ return (mcc, xs', WithArity ar cc) -- compute result let xs = conjColumns (xsl : Map.elems xssc) case concat $ Map.elems ccs of -- case: no record pattern was translated [] -> return (xs, Case i $ Branches { conBranches = conMap , litBranches = litMap , catchAllBranch = catchAll }) -- case: translated away one record pattern [cc] -> return (xs, cc) -- case: more than one record patterns (impossible) _ -> __IMPOSSIBLE__ -- | @replaceByProjections i projs cc@ replaces variables @i..i+n-1@ -- (counted from left) by projections @projs_1 i .. projs_n i@. -- -- If @n==0@, we matched on a zero-field record, which means that -- we are actually introduce a new variable, increasing split -- positions greater or equal to @i@ by one. -- Otherwise, we have to lower -- replaceByProjections :: Int -> [QName] -> CompiledClauses -> CompiledClauses replaceByProjections i projs cc = let n = length projs loop :: Int -> CompiledClauses -> CompiledClauses loop i cc = case cc of Case j cs -- if j < i, we leave j untouched, but we increase i by the number -- of variables replacing j in the branches | j < i -> Case j $ loops i cs -- if j >= i then we shrink j by (n-1) | otherwise -> Case (j - (n-1)) $ fmap (loop i) cs Done xs v -> -- we have to delete (n-1) variables from xs -- and instantiate v suitably with the projections let (xs0,xs1,xs2) = cutSublist i n xs names | null xs1 = ["r"] | otherwise = map unArg xs1 x = defaultArg $ foldr1 (++) names xs' = xs0 ++ x : xs2 us = map (\ p -> Def p [defaultArg $ var 0]) (reverse projs) -- go from level (i + n - 1) to index (subtract from |xs|-1) index = length xs - (i + n) in Done xs' $ applySubst (liftS (length xs2) $ us ++# raiseS 1) v -- The body is NOT guarded by lambdas! -- WRONG: underLambdas i (flip apply) (map defaultArg us) v Fail -> Fail loops :: Int -> Case CompiledClauses -> Case CompiledClauses loops i Branches{ conBranches = conMap , litBranches = litMap , catchAllBranch = catchAll } = Branches{ conBranches = fmap (\ (WithArity n c) -> WithArity n $ loop (i + n - 1) c) conMap , litBranches = fmap (loop (i - 1)) litMap , catchAllBranch = fmap (loop i) catchAll } in loop i cc -- | Check if a split is on a record constructor, and return the projections -- if yes. isRecordCase :: Case c -> TCM (Maybe ([QName], c)) isRecordCase (Branches { conBranches = conMap , litBranches = litMap , catchAllBranch = Nothing }) | Map.null litMap , [(con, WithArity _ br)] <- Map.toList conMap = do isRC <- isRecordConstructor con case isRC of Just (r, Record { recFields = fs }) -> return $ Just (map unArg fs, br) Just (r, _) -> __IMPOSSIBLE__ Nothing -> return Nothing isRecordCase _ = return Nothing --------------------------------------------------------------------------- -- * Record pattern translation for split trees --------------------------------------------------------------------------- -- | Split tree annotation. data RecordSplitNode = RecordSplitNode { splitCon :: QName -- ^ Constructor name for this branch. , splitArity :: Int -- ^ Arity of the constructor. , splitRecordPattern :: Bool -- ^ Should we translate this split away? } -- | Split tree annotated for record pattern translation. type RecordSplitTree = SplitTree' RecordSplitNode type RecordSplitTrees = SplitTrees' RecordSplitNode -- | Bottom-up procedure to annotate split tree. recordSplitTree :: SplitTree -> TCM RecordSplitTree recordSplitTree t = snd <$> loop t where loop :: SplitTree -> TCM ([Bool], RecordSplitTree) loop t = case t of SplittingDone n -> return (replicate n True, SplittingDone n) SplitAt i ts -> do (xs, ts) <- loops i ts return (xs, SplitAt i ts) loops :: Int -> SplitTrees -> TCM ([Bool], RecordSplitTrees) loops i ts = do (xss, ts) <- unzip <$> do forM ts $ \ (c, t) -> do (xs, t) <- loop t (isRC, n) <- either (False,) ((True,) . size) <$> getConstructorArity c let (xs0, rest) = genericSplitAt i xs (xs1, xs2) = genericSplitAt n rest x = isRC && and xs1 xs' = xs0 ++ x : xs2 return (xs, (RecordSplitNode c n x, t)) return (foldl1 (zipWith (&&)) xss, ts) -- | Bottom-up procedure to record-pattern-translate split tree. translateSplitTree :: SplitTree -> TCM SplitTree translateSplitTree t = snd <$> loop t where -- @loop t = return (xs, t')@ returns the translated split tree @t'@ -- plus the status @xs@ of the clause variables -- True = variable will never be split on in @t'@ (virgin variable) -- False = variable will be spilt on in @t'@ loop :: SplitTree -> TCM ([Bool], SplitTree) loop t = case t of SplittingDone n -> -- start with n virgin variables return (replicate n True, SplittingDone n) SplitAt i ts -> do (x, xs, ts) <- loops i ts -- if we case on record constructor, drop case let t' = if x then case ts of [(c,t)] -> t _ -> __IMPOSSIBLE__ -- else retain case else SplitAt i ts return (xs, t') -- @loops i ts = return (x, xs, ts')@ cf. @loop@ -- @x@ says wether at arg @i@ we have a record pattern split -- that can be removed loops :: Int -> SplitTrees -> TCM (Bool, [Bool], SplitTrees) loops i ts = do -- note: ts not empty (rs, xss, ts) <- unzip3 <$> do forM ts $ \ (c, t) -> do (xs, t) <- loop t (isRC, n) <- either (False,) ((True,) . size) <$> getConstructorArity c -- now drop variables from i to i+n-1 let (xs0, rest) = genericSplitAt i xs (xs1, xs2) = genericSplitAt n rest -- if all dropped variables are virgins and we are record cons. -- then new variable x is also virgin -- and we can translate away the split x = isRC && and xs1 -- xs' = updated variables xs' = xs0 ++ x : xs2 -- delete splits from t if record match t' = if x then dropFrom i (n - 1) t else t return (x, xs', (c, t')) -- x = did we split on a record constructor? let x = and rs -- invariant: if record constructor, then exactly one constructor if x then unless (rs == [True]) __IMPOSSIBLE__ -- else no record constructor else unless (or rs == False) __IMPOSSIBLE__ return (x, conjColumns xss, ts) -- | @dropFrom i n@ drops arguments @j@ with @j < i + n@ and @j >= i@. -- NOTE: @n@ can be negative, in which case arguments are inserted. class DropFrom a where dropFrom :: Int -> Int -> a -> a instance DropFrom (SplitTree' c) where dropFrom i n t = case t of SplittingDone m -> SplittingDone (m - n) SplitAt j ts | j >= i + n -> SplitAt (j - n) $ dropFrom i n ts | j < i -> SplitAt j $ dropFrom i n ts | otherwise -> __IMPOSSIBLE__ instance DropFrom (c, SplitTree' c) where dropFrom i n (c, t) = (c, dropFrom i n t) instance DropFrom a => DropFrom [a] where dropFrom i n ts = map (dropFrom i n) ts {- -- | Check if a split is on a record constructor, and return the projections -- if yes. isRecordSplit :: SplitTrees -> TCM (Maybe ([QName], c)) isRecordSplit (Branches { conBranches = conMap , litBranches = litMap , catchAllBranch = Nothing }) | Map.null litBranches , [(con,br)] <- Map.toList conMap = do isRC <- isRecordConstructor con case isRC of Just (r, Record { recFields = fs }) -> return $ Just (map unArg fs, br) Just (r, _) -> __IMPOSSIBLE__ Nothing -> return Nothing isRecordSplit _ = return Nothing -} --------------------------------------------------------------------------- -- * Record pattern translation for function definitions --------------------------------------------------------------------------- -- | Replaces pattern matching on record constructors with uses of -- projection functions. Does not remove record constructor patterns -- which have sub-patterns containing non-record constructor or -- literal patterns. -- -- If the input clause contains dot patterns inside record patterns, -- then the translation may yield clauses which are not type-correct. -- However, we believe that it is safe to use the output as input to -- 'Agda.TypeChecking.CompiledClause.Compile.compileClauses'. Perhaps -- it would be better to perform record pattern translation on the -- compiled clauses instead, but the code below has already been -- implemented and seems to work. translateRecordPatterns :: Clause -> TCM Clause translateRecordPatterns clause = do -- ps: New patterns, in left-to-right order, in the context of the -- old RHS. -- s: Partial substitution taking the old pattern variables -- (including dot patterns; listed from left to right) to terms in -- the context of the new RHS. -- cs: List of changes, with types in the context of the old -- telescope. (ps, s, cs) <- runRecPatM $ translatePatterns $ clausePats clause let -- Number of variables + dot patterns in new clause. noNewPatternVars = size cs s' = reverse s mkSub s = s ++# raiseS noNewPatternVars -- Substitution used to convert terms in the old RHS's -- context to terms in the new RHS's context. rhsSubst = mkSub s' -- Substitution used to convert terms in the old telescope's -- context to terms in the new RHS's context. rhsSubst' = mkSub $ permute (reverseP $ clausePerm clause) s' -- TODO: Is it OK to replace the definition above with the -- following one? -- -- rhsSubst' = mkSub $ permute (clausePerm clause) s -- The old telescope, flattened and in textual left-to-right -- order (i.e. the type signature for the variable which occurs -- first in the list of patterns comes first). flattenedOldTel = permute (invertP $ compactP $ clausePerm clause) $ zip (teleNames $ clauseTel clause) $ flattenTel $ clauseTel clause -- The new telescope, still flattened, with types in the context -- of the new RHS, in textual left-to-right order, and with -- Nothing in place of dot patterns. newTel' = map (fmap (id *** applySubst rhsSubst')) $ translateTel cs $ flattenedOldTel -- Permutation taking the new variable and dot patterns to the -- new telescope. newPerm = adjustForDotPatterns $ reorderTel_ $ map (maybe dummy snd) newTel' where -- It is important that dummy does not mention any variable -- (see the definition of reorderTel). dummy = dummyDom -- defaultArg (El Prop (Sort Prop)) isDotP n = case genericIndex cs n of Left DotP{} -> True _ -> False adjustForDotPatterns (Perm n is) = Perm n (filter (not . isDotP) is) -- Substitution used to convert terms in the new RHS's context -- to terms in the new telescope's context. lhsSubst' = permToSubst (reverseP newPerm) -- Substitution used to convert terms in the old telescope's -- context to terms in the new telescope's context. lhsSubst = applySubst lhsSubst' rhsSubst' -- The new telescope. newTel = uncurry unflattenTel . unzip $ map (maybe __IMPOSSIBLE__ id) $ permute newPerm $ map (fmap (id *** applySubst lhsSubst')) $ newTel' -- New clause. c = clause { clauseTel = newTel , clausePerm = newPerm , clausePats = applySubst lhsSubst ps , clauseBody = translateBody cs rhsSubst $ clauseBody clause } reportSDoc "tc.lhs.recpat" 10 $ escapeContext (size $ clauseTel clause) $ vcat [ text "Translated clause:" , nest 2 $ vcat [ text "delta =" <+> prettyTCM (clauseTel c) , text "perm =" <+> text (show $ clausePerm c) , text "ps =" <+> text (show $ clausePats c) , text "body =" <+> text (show $ clauseBody c) , text "body =" <+> prettyTCM (clauseBody c) ] ] return c ------------------------------------------------------------------------ -- Record pattern monad -- | A monad used to translate record patterns. -- -- The state records the number of variables produced so far, the -- reader records the total number of variables produced by the entire -- computation. Functions using this monad need to be sufficiently -- lazy in the reader component. newtype RecPatM a = RecPatM (TCMT (ReaderT Nat (StateT Nat IO)) a) deriving (Functor, Applicative, Monad, MonadIO, MonadTCM, MonadReader TCEnv, MonadState TCState) -- | Runs a computation in the 'RecPatM' monad. runRecPatM :: RecPatM a -> TCM a runRecPatM (RecPatM m) = mapTCMT (\m -> do (x, noVars) <- mfix $ \ ~(_, noVars) -> runStateT (runReaderT m noVars) 0 return x) m -- | Returns the next pattern variable, and the corresponding term. nextVar :: RecPatM (Pattern, Term) nextVar = RecPatM $ do n <- lift get lift $ put $ succ n noVars <- lift ask return (VarP "r", Var (noVars - n - 1) []) ------------------------------------------------------------------------ -- Types used to record changes to a clause -- | @VarPat@ stands for variable patterns, and @DotPat@ for dot -- patterns. data Kind = VarPat | DotPat deriving Eq -- | @'Left' p@ means that a variable (corresponding to the pattern -- @p@, a variable or dot pattern) should be kept unchanged. @'Right' -- (n, x, t)@ means that @n 'VarPat'@ variables, and @n 'DotPat'@ dot -- patterns, should be removed, and a new variable, with the name @x@, -- inserted instead. The type of the new variable is @t@. type Changes = [Either Pattern (Kind -> Nat, String, Dom Type)] -- | Record pattern trees. data RecordTree = Leaf Pattern -- ^ Corresponds to variable and dot patterns; contains the -- original pattern. | RecCon (Arg Type) [(Term -> Term, RecordTree)] -- ^ @RecCon t args@ stands for a record constructor application: -- @t@ is the type of the application, and the list contains a -- projection function and a tree for every argument. ------------------------------------------------------------------------ -- Record pattern trees -- | @projections t@ returns a projection for every non-dot leaf -- pattern in @t@. The term is the composition of the projection -- functions from the leaf to the root. -- -- Every term is tagged with its origin: a variable pattern or a dot -- pattern. projections :: RecordTree -> [(Term -> Term, Kind)] projections (Leaf (DotP{})) = [(id, DotPat)] projections (Leaf (VarP{})) = [(id, VarPat)] projections (Leaf _) = __IMPOSSIBLE__ projections (RecCon _ args) = concatMap (\(p, t) -> map (\(p', k) -> (p' . p, k)) (projections t)) args -- | Converts a record tree to a single pattern along with information -- about the deleted pattern variables. removeTree :: RecordTree -> RecPatM (Pattern, [Term], Changes) removeTree tree = do (pat, x) <- nextVar let ps = projections tree s = map (\(p, _) -> p x) ps count k = genericLength $ filter ((== k) . snd) ps return $ case tree of Leaf p -> (p, s, [Left p]) RecCon t _ -> (pat, s, [Right (count, "r", domFromArg t)]) ------------------------------------------------------------------------ -- Translation of patterns -- | Removes record constructors from patterns. -- -- Returns the following things: -- -- * The new pattern. -- -- * A substitution which maps the /old/ pattern variables (in the -- order they occurred in the pattern; not including dot patterns) -- to terms (either the new name of the variable, or a projection -- applied to a new pattern variable). -- -- * A list explaining the changes to the variables bound in the -- pattern. -- -- Record patterns containing non-record constructor patterns are not -- translated (though their sub-patterns may be). -- -- Example: The pattern @rec1 (con1 a) (rec2 b c) (rec3 d)@ should -- yield the pattern @rec1 (con1 x) y z@, along with a substitution -- similar to @[x, proj2-1 y, proj2-2 y, proj3-1 z]@. -- -- This function assumes that literals are never of record type. translatePattern :: Pattern -> RecPatM (Pattern, [Term], Changes) translatePattern (ConP c Nothing ps) = do (ps, s, cs) <- translatePatterns ps return (ConP c Nothing ps, s, cs) translatePattern p@(ConP _ (Just _) _) = do r <- recordTree p case r of Left r -> r Right t -> removeTree t translatePattern p@VarP{} = removeTree (Leaf p) translatePattern p@DotP{} = removeTree (Leaf p) translatePattern p@LitP{} = return (p, [], []) -- | 'translatePattern' lifted to lists of arguments. translatePatterns :: [Arg Pattern] -> RecPatM ([Arg Pattern], [Term], Changes) translatePatterns ps = do (ps', ss, cs) <- unzip3 <$> mapM (translatePattern . unArg) ps return (ps' `withArgsFrom` ps, concat ss, concat cs) -- | Traverses a pattern and returns one of two things: -- -- * If there is no non-record constructor in the pattern, then -- @'Right' ps@ is returned, where @ps@ contains one projection for -- every variable in the input pattern (in the order they are -- encountered). -- -- * Otherwise the output is a computation returning the same kind of -- result as that coming from 'translatePattern'. (Computations are -- returned rather than values to ensure that variable numbers are -- allocated in the right order.) -- -- Assumes that literals are never of record type. recordTree :: Pattern -> RecPatM (Either (RecPatM (Pattern, [Term], Changes)) RecordTree) recordTree p@(ConP _ Nothing _) = return $ Left $ translatePattern p recordTree (ConP c (Just t) ps) = do rs <- mapM (recordTree . unArg) ps case allRight rs of Left rs -> return $ Left $ do (ps', ss, cs) <- unzip3 <$> mapM (either id removeTree) rs return (ConP c (Just t) (ps' `withArgsFrom` ps), concat ss, concat cs) Right ts -> liftTCM $ do t <- reduce t fields <- getRecordTypeFields (unArg t) let proj p = \x -> Def (unArg p) [defaultArg x] return $ Right $ RecCon t $ zip (map proj fields) ts recordTree p@VarP{} = return (Right (Leaf p)) recordTree p@DotP{} = return (Right (Leaf p)) recordTree p@LitP{} = return $ Left $ translatePattern p ------------------------------------------------------------------------ -- Translation of the clause telescope and body -- | Translates the telescope. translateTel :: Changes -- ^ Explanation of how the telescope should be changed. Types -- should be in the context of the old telescope. -> [(String, Dom Type)] -- ^ Old telescope, flattened, in textual left-to-right -- order. -> [Maybe (String, Dom Type)] -- ^ New telescope, flattened, in textual left-to-right order. -- 'Nothing' is used to indicate the locations of dot patterns. translateTel (Left (DotP{}) : rest) tel = Nothing : translateTel rest tel translateTel (Right (n, x, t) : rest) tel = Just (x, t) : translateTel rest (genericDrop (n VarPat) tel) translateTel (Left _ : rest) (t : tel) = Just t : translateTel rest tel translateTel [] [] = [] translateTel (Left _ : _) [] = __IMPOSSIBLE__ translateTel [] (_ : _) = __IMPOSSIBLE__ -- | Translates the clause body. The substitution should take things -- in the context of the old RHS to the new RHS's context. translateBody :: Changes -> Substitution -> ClauseBody -> ClauseBody translateBody _ s NoBody = NoBody translateBody (Right (n, x, _) : rest) s b = Bind $ Abs x $ translateBody rest s $ dropBinds n' b where n' = sum $ map n [VarPat, DotPat] translateBody (Left _ : rest) s (Bind b) = Bind $ fmap (translateBody rest s) b translateBody [] s (Body t) = Body $ applySubst s t translateBody _ _ _ = __IMPOSSIBLE__ ------------------------------------------------------------------------ -- Helper functions -- | Turns a permutation into a substitution. permToSubst :: Permutation -> Substitution permToSubst (Perm n is) = [ makeVar i | i <- [0..n - 1] ] ++# raiseS (size is) where makeVar i = case genericElemIndex i is of Nothing -> __IMPOSSIBLE__ Just k -> var k -- | @dropBinds n b@ drops the initial @n@ occurrences of 'Bind' from @b@. -- -- Precondition: @b@ has to start with @n@ occurrences of 'Bind'. dropBinds :: Nat -> ClauseBody -> ClauseBody dropBinds n b | n == 0 = b dropBinds n (Bind b) | n > 0 = dropBinds (pred n) (absBody b) dropBinds _ _ = __IMPOSSIBLE__