{-# LANGUAGE CPP #-} module Agda.TypeChecking.Rules.Def where import Prelude hiding (mapM) import Control.Arrow ((***), (&&&)) import Control.Applicative import Control.Monad.State hiding (mapM) import Control.Monad.Reader hiding (mapM) import Control.Monad.Error hiding (mapM) import Control.Monad hiding (mapM) import Data.Function import Data.List hiding (sort) import Data.Traversable import Data.Set (Set) import qualified Data.Set as Set import Agda.Syntax.Common import Agda.Syntax.Position import qualified Agda.Syntax.Abstract as A import Agda.Syntax.Internal import qualified Agda.Syntax.Info as Info import qualified Agda.Syntax.Abstract.Pretty as A import Agda.Syntax.Fixity import Agda.Syntax.Translation.InternalToAbstract import Agda.Syntax.Info import Agda.Syntax.Scope.Base (emptyScopeInfo) import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin (primRefl, primEquality) import Agda.TypeChecking.Reduce import Agda.TypeChecking.Pretty import Agda.TypeChecking.Substitute import Agda.TypeChecking.Free import Agda.TypeChecking.Constraints import Agda.TypeChecking.Conversion import Agda.TypeChecking.Empty import Agda.TypeChecking.MetaVars import Agda.TypeChecking.Rebind import Agda.TypeChecking.Primitive hiding (Nat) import Agda.TypeChecking.With import Agda.TypeChecking.Telescope import Agda.TypeChecking.Coverage import Agda.TypeChecking.Injectivity import Agda.TypeChecking.Polarity import Agda.TypeChecking.Irrelevance import Agda.TypeChecking.Implicit import Agda.TypeChecking.SizedTypes import Agda.TypeChecking.CompiledClause (CompiledClauses(..)) import Agda.TypeChecking.CompiledClause.Compile import Agda.TypeChecking.Rules.Term ( checkExpr, inferExpr, inferExprForWith, inferOrCheck, checkTelescope_, isType_ ) import Agda.TypeChecking.Rules.LHS ( checkLeftHandSide ) import Agda.TypeChecking.Rules.LHS.Implicit ( insertImplicitPatterns ) import {-# SOURCE #-} Agda.TypeChecking.Rules.Decl ( checkDecls ) import Agda.TypeChecking.Rules.Data ( isCoinductive ) import Agda.Interaction.Options import Agda.Utils.Tuple import Agda.Utils.Size import Agda.Utils.Function import Agda.Utils.List import Agda.Utils.Permutation import Agda.Utils.Monad #include "../../undefined.h" import Agda.Utils.Impossible --------------------------------------------------------------------------- -- * Definitions by pattern matching --------------------------------------------------------------------------- checkFunDef :: Delayed -> Info.DefInfo -> QName -> [A.Clause] -> TCM () checkFunDef delayed i name cs = do -- Get the type and relevance of the function t <- typeOfConst name rel <- relOfConst name case trivialClause cs of -- if we have just one clause without pattern matching and -- without a type signature, then infer, to allow -- "aliases" for things starting with hidden abstractions Just e | isMeta (ignoreSharing $ unEl t) -> traceCall (CheckFunDef (getRange i) (qnameName name) cs) $ checkAlias t rel delayed i name e _ -> checkFunDef' t rel delayed i name cs where isMeta MetaV{} = True isMeta _ = False trivialClause [A.Clause (A.LHS i (A.LHSHead f []) []) (A.RHS e) []] = Just e trivialClause _ = Nothing -- | Check a trivial definition of the form @f = e@ checkAlias :: Type -> Relevance -> Delayed -> Info.DefInfo -> QName -> A.Expr -> TCM () checkAlias t' rel delayed i name e = do reportSDoc "tc.def.alias" 10 $ text "checkAlias" <+> vcat [ text (show name) <+> colon <+> prettyTCM t' , text (show name) <+> equals <+> prettyTCM e ] -- Infer the type of the rhs (v, t) <- applyRelevanceToContext rel $ inferOrCheck e (Just t') -- v <- coerce v t t' reportSDoc "tc.def.alias" 20 $ text "checkAlias: finished checking" solveSizeConstraints v <- instantiateFull v -- if we omit this, we loop (stdlib: Relation.Binary.Sum) -- or the termination checker might stumble over levels in sorts -- that cannot be converted to expressions without the level built-ins -- (test/succeed/Issue655.agda) -- Add the definition addConstant name $ Defn rel name t [] [] (defaultDisplayForm name) 0 noCompiledRep $ Function { funClauses = [Clause (getRange i) EmptyTel (idP 0) [] $ Body v] -- trivial clause @name = v@ , funCompiled = Done [] v , funDelayed = delayed , funInv = NotInjective , funAbstr = Info.defAbstract i {- , funPolarity = [] , funArgOccurrences = [] -} , funMutual = [] , funProjection = Nothing , funStatic = False , funCopy = False , funTerminates = Nothing } reportSDoc "tc.def.alias" 20 $ text "checkAlias: leaving" -- | Type check a definition by pattern matching. The third argument -- specifies whether the clauses are delayed or not. checkFunDef' :: Type -> Relevance -> Delayed -> Info.DefInfo -> QName -> [A.Clause] -> TCM () checkFunDef' t rel delayed i name cs = traceCall (CheckFunDef (getRange i) (qnameName name) cs) $ do -- TODO!! (qnameName) reportSDoc "tc.def.fun" 10 $ sep [ text "checking body of" <+> prettyTCM name , nest 2 $ text ":" <+> prettyTCM t , nest 2 $ text "full type:" <+> (prettyTCM . defType =<< getConstInfo name) ] -- Ensure that all clauses have the same number of trailing hidden patterns -- This is necessary since trailing implicits are no longer eagerly inserted. cs <- trailingImplicits t cs -- Check the clauses let check c = do c <- applyRelevanceToContext rel $ checkClause t c solveSizeConstraints return c cs <- traceCall NoHighlighting $ -- To avoid flicker. mapM check cs -- Check that all clauses have the same number of arguments unless (allEqual $ map npats cs) $ typeError DifferentArities reportSDoc "tc.cc" 15 $ do sep [ text "clauses before rebindClause" , nest 2 $ prettyTCM (map (QNamed name) cs) ] -- Annotate the clauses with which arguments are actually used. cs <- instantiateFull =<< mapM rebindClause cs -- Andreas, 2010-11-12 -- rebindClause is the identity, and instantiateFull eta-contracts -- removing this eta-contraction fixes issue 361 -- however, Data.Star.Decoration.gmapAll no longer type-checks -- possibly due to missing eta-contraction!? -- Check if the function is injective inv <- checkInjectivity name cs reportSDoc "tc.cc" 15 $ do sep [ text "clauses before compilation" , nest 2 $ prettyTCM (map (QNamed name) cs) ] -- Coverage check and compile the clauses cc <- compileClauses (Just (name, t)) cs reportSDoc "tc.cc" 10 $ do sep [ text "compiled clauses of" <+> prettyTCM name , nest 2 $ text (show cc) ] -- Add the definition addConstant name $ Defn rel name t [] [] (defaultDisplayForm name) 0 noCompiledRep $ Function { funClauses = cs , funCompiled = cc , funDelayed = delayed , funInv = inv , funAbstr = Info.defAbstract i {- , funPolarity = [] , funArgOccurrences = [] -} , funMutual = [] , funProjection = Nothing , funStatic = False , funCopy = False , funTerminates = Nothing } -- Andreas 2012-02-13: postpone polarity computation until after positivity check -- computePolarity name reportSDoc "tc.def.fun" 10 $ do sep [ text "added " <+> prettyTCM name <+> text ":" , nest 2 $ prettyTCM . defType =<< getConstInfo name ] where npats = size . clausePats {- | Ensure that all clauses have the same number of trailing implicits. Example: @ test : Bool → {A B : Set} → Set test true {A} = A test false {B = B} = B @ @trailingImplicits@ patches these clauses to @ test : Bool → {A B : Set} → Set test true {A} {_} = A test false {_} {B = B} = B @ such that the arity of the clauses of @test@ is uniform. -} trailingImplicits :: Type -> [A.Clause] -> TCM [A.Clause] trailingImplicits t [] = __IMPOSSIBLE__ trailingImplicits t cs@(c:_) = do pps@((ps,ips):_) <- mapM splitTrailingImplicits cs -- compute the trailing implicits from type t TelV tel t0 <- telView t let -- number of non-hidden patterns nh = genericLength $ filter ((NotHidden ==) . argHiding) ps -- drop nh non-hidden domains from t l = dropNonHidden nh $ telToList tel -- take the hidden domains immediately after the dropped stuff is = takeWhile ((NotHidden /=) . domHiding) l itel = telFromList is -- get the trailing implicit patterns ipss = map snd pps -- complete the implicit pattern lists ipss <- mapM (\ ps -> insertImplicitPatterns DontExpandLast ps itel) ipss let longest = head $ sortBy (compare `on` ((0-) . length)) ipss pps' = zip (map fst pps) ipss return $ zipWith (patchUpTrailingImplicits longest) pps' cs -- | @dropNonHidden n tel@ drops @n@ non-hidden domains from @tel@, -- including all hidden domains that come before the @n@th non-hidden one. dropNonHidden :: Nat -> [Dom (String, Type)] -> [Dom (String, Type)] dropNonHidden 0 l = l dropNonHidden n l = case dropWhile ((NotHidden /=) . domHiding) l of [] -> [] -- or raise a type checking error "too many arguments in lhs" (_:l) -> dropNonHidden (n-1) l -- | @splitTrailingImplicits c@ returns the patterns of clause @c@ -- as pair @(ps, ips)@ where @ips@ are the trailing implicit patterns -- and @ps@ is the rest. splitTrailingImplicits :: A.Clause -> TCM (A.Patterns, A.Patterns) splitTrailingImplicits (A.Clause (A.LHS _ A.LHSProj{} []) _ _) = typeError $ NotImplemented "type checking definitions by copatterns" splitTrailingImplicits (A.Clause (A.LHS _ _ ps@(_ : _)) _ _) = typeError $ UnexpectedWithPatterns ps splitTrailingImplicits (A.Clause (A.LHS _ (A.LHSHead _ aps) []) _ _) = do let (ips, ps) = span ((Hidden==) . argHiding) $ reverse aps return (reverse ps, reverse ips) {- UNUSED -- | Compute the difference between two list of hidden patterns. -- The first pattern list must be longer. -- Both pattern lists must be complete, i.e., not skip any hidden patterns. patternDiff :: A.Patterns -> A.Patterns -> A.Patterns patternDiff ps1 ps2 = drop (length ps2) ps1 -} -- | @patchUpTrailingImplicits should (ps, is) c@ takes a clause @c@ whose -- patterns are split into @(ps, is)@ where @is@ are the trailing -- implicit patterns and @ps@ the rest. @is@ has already been patched -- with omitted implicit patterns (which can occur if named implicit patterns -- are there originally). @should@ is an extension of @is@. -- The returned clause contains an extension of @is@ by new wildcards -- to match @should@. patchUpTrailingImplicits :: A.Patterns -> (A.Patterns, A.Patterns) -> A.Clause -> A.Clause patchUpTrailingImplicits should (ps, is) c | length is >= length should = c patchUpTrailingImplicits should (ps, is) (A.Clause (A.LHS i (A.LHSHead x aps) []) rhs0 wh) = let imp = Arg Hidden Relevant $ Named Nothing $ A.ImplicitP $ Info.PatRange noRange imps = replicate (length should - length is) imp in A.Clause (A.LHS i (A.LHSHead x (ps ++ is ++ imps)) []) rhs0 wh patchUpTrailingImplicits _ _ _ = __IMPOSSIBLE__ {- OLD -- | Ensure that all clauses have the same number of trailing implicits. trailingImplicits :: [A.Clause] -> TCM [A.Clause] trailingImplicits [] = __IMPOSSIBLE__ trailingImplicits cs = do ns <- mapM numberOfTrailingImplicits cs let n = maximum ns return $ zipWith (patchUpTrailingImplicits n) ns cs numberOfTrailingImplicits :: A.Clause -> TCM Int numberOfTrailingImplicits (A.Clause (A.LHS _ A.LHSProj{} []) _ _) = typeError $ NotImplemented "type checking definitions by copatterns" numberOfTrailingImplicits (A.Clause (A.LHS _ _ ps@(_ : _)) _ _) = typeError $ UnexpectedWithPatterns ps numberOfTrailingImplicits (A.Clause (A.LHS _ (A.LHSHead _ aps) []) _ _) = return $ length $ takeWhile ((Hidden==) . argHiding) $ reverse aps patchUpTrailingImplicits :: Int -> Int -> A.Clause -> A.Clause patchUpTrailingImplicits should is c | is >= should = c patchUpTrailingImplicits should is (A.Clause (A.LHS i (A.LHSHead x aps) []) rhs0 wh) = let imp = Arg Hidden Relevant $ Named Nothing $ A.ImplicitP $ Info.PatRange noRange imps = replicate (should - is) imp in A.Clause (A.LHS i (A.LHSHead x (aps ++ imps)) []) rhs0 wh patchUpTrailingImplicits _ _ _ = __IMPOSSIBLE__ -} -- | Insert some patterns in the in with-clauses LHS of the given RHS insertPatterns :: [A.Pattern] -> A.RHS -> A.RHS insertPatterns pats (A.WithRHS aux es cs) = A.WithRHS aux es (map insertToClause cs) where insertToClause (A.Clause (A.LHS i lhscore ps) rhs ds) -- = A.Clause (A.LHS i x (aps ++ map (Arg NotHidden . unnamed) pats) (ps)) (insertPatterns pats rhs) ds = A.Clause (A.LHS i lhscore (pats ++ ps)) (insertPatterns pats rhs) ds insertPatterns pats (A.RewriteRHS qs eqs rhs wh) = A.RewriteRHS qs eqs (insertPatterns pats rhs) wh insertPatterns pats rhs = rhs data WithFunctionProblem = NoWithFunction | WithFunction QName -- parent function name QName -- with function name Telescope -- arguments to parent function Telescope -- arguments to the with function before the with expressions Telescope -- arguments to the with function after the with expressions [Term] -- with expressions [Type] -- types of the with expressions Type -- type of the right hand side [Arg Pattern] -- parent patterns Permutation -- permutation reordering the variables in the parent pattern Permutation -- final permutation (including permutation for the parent clause) [A.Clause] -- the given clauses for the with function -- | Type check a function clause. checkClause :: Type -> A.Clause -> TCM Clause checkClause t c@(A.Clause (A.LHS i (A.LHSProj{}) []) rhs0 wh) = typeError $ NotImplemented "type checking definitions by copatterns" checkClause t c@(A.Clause (A.LHS i (A.LHSHead x aps) []) rhs0 wh) = traceCall (CheckClause t c) $ checkLeftHandSide (CheckPatternShadowing c) aps t $ \ mgamma delta sub xs ps t' perm -> do let mkBody v = foldr (\x t -> Bind $ Abs x t) (Body $ applySubst sub v) xs -- introduce trailing implicits for checking the where decls TelV htel t0 <- telViewUpTo' (-1) ((Hidden==) . domHiding) t' let n = size htel (body, with) <- addCtxTel htel $ checkWhere (size delta + n) wh $ escapeContext (size htel) $ let -- for the body, we remove the implicits again handleRHS rhs = case rhs of A.RHS e | any (containsAbsurdPattern . namedArg) aps -> typeError $ AbsurdPatternRequiresNoRHS aps | otherwise -> do v <- checkExpr e t' return (mkBody v, NoWithFunction) A.AbsurdRHS | any (containsAbsurdPattern . namedArg) aps -> return (NoBody, NoWithFunction) | otherwise -> typeError $ NoRHSRequiresAbsurdPattern aps A.RewriteRHS [] (_:_) _ _ -> __IMPOSSIBLE__ A.RewriteRHS (_:_) [] _ _ -> __IMPOSSIBLE__ A.RewriteRHS [] [] rhs [] -> handleRHS rhs A.RewriteRHS [] [] _ (_:_) -> __IMPOSSIBLE__ A.RewriteRHS (qname:names) (eq:eqs) rhs wh -> do (proof,t) <- inferExpr eq t' <- reduce =<< instantiateFull t equality <- primEquality >>= \eq -> let lamV (Lam h b) = ((h:) *** id) $ lamV (unAbs b) lamV (Shared p) = lamV (derefPtr p) lamV v = ([], v) in return $ case lamV eq of ([Hidden, Hidden], Def equality _) -> equality ([Hidden], Def equality _) -> equality ([], Def equality _) -> equality _ -> __IMPOSSIBLE__ reflCon <- primRefl >>= \refl -> return $ case ignoreSharing refl of Con reflCon [] -> reflCon _ -> __IMPOSSIBLE__ (rewriteType,rewriteFrom,rewriteTo) <- case ignoreSharing $ unEl t' of Def equality' [_level, Arg Hidden Relevant rewriteType, Arg NotHidden Relevant rewriteFrom, Arg NotHidden Relevant rewriteTo] | equality' == equality -> return (rewriteType, rewriteFrom, rewriteTo) _ -> do err <- text "Cannot rewrite by equation of type" <+> prettyTCM t' typeError $ GenericError $ show err let info = PatRange noRange metaInfo = Info.emptyMetaInfo underscore = A.Underscore metaInfo [rewriteFromExpr,rewriteToExpr,rewriteTypeExpr, proofExpr] <- disableDisplayForms $ withShowAllArguments $ reify [rewriteFrom, rewriteTo, rewriteType , proof] let (inner, outer) -- the where clauses should go on the inner-most with | null eqs = ([], wh) | otherwise = (wh, []) newRhs = A.WithRHS qname [rewriteFromExpr, proofExpr] [A.Clause (A.LHS i (A.LHSHead x aps) pats) (A.RewriteRHS names eqs (insertPatterns pats rhs) inner) outer] pats = [A.DotP info underscore, -- rewriteToExpr, A.ConP info (AmbQ [reflCon]) []] reportSDoc "tc.rewrite.top" 25 $ vcat [ text "from = " <+> prettyTCM rewriteFromExpr, text "to = " <+> prettyTCM rewriteToExpr, text "typ = " <+> prettyTCM rewriteType, text "proof = " <+> prettyTCM proofExpr, text "equ = " <+> prettyTCM t' ] handleRHS newRhs A.WithRHS aux es cs -> do reportSDoc "tc.with.top" 5 $ text "TC.Rules.Def.checkclause reached A.WithRHS" reportSDoc "tc.with.top" 30 $ prettyA c -- Infer the types of the with expressions vas <- mapM inferExprForWith es (vs0, as) <- instantiateFull (unzip vas) (vs, as) <- normalise (vs0, as) -- Invent a clever name for the with function m <- currentModule reportSDoc "tc.with.top" 20 $ text "with function module:" <+> prettyList (map prettyTCM $ mnameToList m) -- Split the telescope into the part needed to type the with arguments -- and all the other stuff let fv = allVars $ freeVars (vs, as) SplitTel delta1 delta2 perm' = splitTelescope fv delta finalPerm = composeP perm' perm -- Andreas, 2012-09-17: for printing delta, -- we should remove it from the context first reportSDoc "tc.with.top" 25 $ escapeContext (size delta) $ vcat [ text "delta =" <+> prettyTCM delta , text "delta1 =" <+> prettyTCM delta1 , text "delta2 =" <+> addCtxTel delta1 (prettyTCM delta2) ] reportSDoc "tc.with.top" 25 $ vcat [ text "vs =" <+> prettyTCM vs , text "as =" <+> prettyTCM as , text "perm' =" <+> text (show perm') , text "perm =" <+> text (show perm) , text "fPerm =" <+> text (show finalPerm) ] -- Create the body of the original function {- OLD ctx <- getContextTelescope let n = size ctx m = size delta -- All the context variables us = [ Arg h r (var i) | (i, Arg h r _) <- zip [n - 1,n - 2..0] $ telToList ctx ] -} -- All the context variables us <- getContextArgs let n = size us m = size delta -- First the variables bound outside this definition (us0, us1') = genericSplitAt (n - m) us -- Then permute the rest and grab those needed to for the with arguments (us1, us2) = genericSplitAt (size delta1) $ permute perm' us1' -- Now stuff the with arguments in between and finish with the remaining variables v = Def aux $ us0 ++ us1 ++ (map defaultArg vs0) ++ us2 -- We need Δ₁Δ₂ ⊢ t' t' <- return $ renameP (reverseP perm') t' -- and Δ₁ ⊢ vs : as (vs, as) <- do let -- We know that as does not depend on Δ₂ rho = parallelS (replicate (size delta2) __IMPOSSIBLE__) return $ applySubst rho $ renameP (reverseP perm') (vs, as) reportSDoc "tc.with.top" 20 $ vcat [ text " with arguments" <+> do escapeContext (size delta2) $ prettyList (map prettyTCM vs) , text " types" <+> do escapeContext (size delta2) $ prettyList (map prettyTCM as) , text "with function call" <+> prettyTCM v , text " context" <+> (prettyTCM =<< getContextTelescope) , text " delta" <+> do escapeContext (size delta) $ prettyTCM delta , text " fv" <+> text (show fv) , text " body" <+> (addCtxTel delta $ prettyTCM $ mkBody v) ] gamma <- maybe (typeError $ NotImplemented "with clauses for functions with unfolding arity") return mgamma return (mkBody v, WithFunction x aux gamma delta1 delta2 vs as t' ps perm' finalPerm cs) in handleRHS rhs0 escapeContext (size delta) $ checkWithFunction with reportSDoc "tc.lhs.top" 10 $ escapeContext (size delta) $ vcat [ text "Clause before translation:" , nest 2 $ vcat [ text "delta =" <+> prettyTCM delta , text "perm =" <+> text (show perm) , text "ps =" <+> text (show ps) , text "body =" <+> text (show body) , text "body =" <+> prettyTCM body ] ] return $ Clause { clauseRange = getRange i , clauseTel = killRange delta , clausePerm = perm , clausePats = ps , clauseBody = body } checkClause t (A.Clause (A.LHS _ _ ps@(_ : _)) _ _) = typeError $ UnexpectedWithPatterns ps checkWithFunction :: WithFunctionProblem -> TCM () checkWithFunction NoWithFunction = return () checkWithFunction (WithFunction f aux gamma delta1 delta2 vs as b qs perm' perm cs) = do reportSDoc "tc.with.top" 10 $ vcat [ text "checkWithFunction" , nest 2 $ vcat [ text "delta1 =" <+> prettyTCM delta1 , text "delta2 =" <+> addCtxTel delta1 (prettyTCM delta2) , text "gamma =" <+> prettyTCM gamma , text "as =" <+> addCtxTel delta1 (prettyTCM as) , text "vs =" <+> addCtxTel delta1 (prettyTCM vs) , text "b =" <+> do addCtxTel delta1 $ addCtxTel delta2 $ prettyTCM b , text "qs =" <+> text (show qs) , text "perm' =" <+> text (show perm') , text "perm =" <+> text (show perm) ] ] -- Add the type of the auxiliary function to the signature -- With display forms are closed df <- makeClosed <$> withDisplayForm f aux delta1 delta2 (size as) qs perm' reportSLn "tc.with.top" 20 "created with display form" -- Generate the type of the with function candidateType <- withFunctionType delta1 vs as delta2 b reportSDoc "tc.with.type" 10 $ sep [ text "candidate type:", nest 2 $ prettyTCM candidateType ] reportSDoc "tc.with.type" 50 $ sep [ text "candidate type:", nest 2 $ text $ show candidateType ] absAuxType <- withShowAllArguments $ disableDisplayForms $ dontReifyInteractionPoints $ reify candidateType reportSDoc "tc.with.type" 15 $ vcat [ text "type of with function:" , nest 2 $ prettyTCM absAuxType ] reportSDoc "tc.with.type" 50 $ vcat [ text "type of with function:" , nest 2 $ text $ show absAuxType ] -- The ranges in the generated type are completely bogus, so we kill them. auxType <- setCurrentRange (getRange cs) (traceCall NoHighlighting $ -- To avoid flicker. isType_ $ killRange absAuxType) `catchError` \err -> case err of TypeError s e -> put s >> enterClosure e (traceCall (CheckWithFunctionType absAuxType) . typeError) _ -> throwError err case df of OpenThing _ (Display n ts dt) -> reportSDoc "tc.with.top" 20 $ text "Display" <+> fsep [ text (show n) , prettyList $ map prettyTCM ts , prettyTCM dt ] addConstant aux (Defn Relevant aux auxType [] [] [df] 0 noCompiledRep Axiom) solveSizeConstraints reportSDoc "tc.with.top" 10 $ sep [ text "added with function" <+> (prettyTCM aux) <+> text "of type" , nest 2 $ prettyTCM auxType , nest 2 $ text "-|" <+> (prettyTCM =<< getContextTelescope) ] -- Construct the body for the with function cs <- buildWithFunction aux gamma qs perm (size delta1) (size as) cs -- Check the with function checkFunDef NotDelayed info aux cs where info = Info.mkDefInfo (nameConcrete $ qnameName aux) defaultFixity' PublicAccess ConcreteDef (getRange cs) -- | Type check a where clause. The first argument is the number of variables -- bound in the left hand side. checkWhere :: Nat -> [A.Declaration] -> TCM a -> TCM a checkWhere _ [] ret = ret checkWhere n [A.ScopedDecl scope ds] ret = withScope_ scope $ checkWhere n ds ret checkWhere n [A.Section _ m tel ds] ret = do checkTelescope_ tel $ \tel' -> do reportSDoc "tc.def.where" 10 $ text "adding section:" <+> prettyTCM m <+> text (show (size tel')) <+> text (show n) addSection m (size tel' + n) -- the variables bound in the lhs -- are also parameters verboseS "tc.def.where" 10 $ do dx <- prettyTCM m dtel <- mapM prettyA tel dtel' <- prettyTCM =<< lookupSection m reportSLn "" 0 $ "checking where section " ++ show dx ++ " " ++ show dtel reportSLn "" 0 $ " actual tele: " ++ show dtel' withCurrentModule m $ checkDecls ds >> ret checkWhere _ _ _ = __IMPOSSIBLE__ -- | Check if a pattern contains an absurd pattern. For instance, @suc ()@ containsAbsurdPattern :: A.Pattern -> Bool containsAbsurdPattern p = case p of A.AbsurdP _ -> True A.VarP _ -> False A.WildP _ -> False A.ImplicitP _ -> False A.DotP _ _ -> False A.LitP _ -> False A.AsP _ _ p -> containsAbsurdPattern p A.ConP _ _ ps -> any (containsAbsurdPattern . namedArg) ps A.DefP _ _ _ -> __IMPOSSIBLE__ A.PatternSynP _ _ _ -> __IMPOSSIBLE__ -- False actualConstructor :: QName -> TCM QName actualConstructor c = do v <- constructorForm =<< normalise (Con c []) case ignoreSharing v of Con c _ -> return c _ -> actualConstructor =<< stripLambdas v where stripLambdas v = case ignoreSharing v of Con c _ -> return c Lam h b -> do x <- freshName_ $ absName b addCtx x (Dom h Relevant $ sort Prop) $ stripLambdas (absBody b) _ -> typeError $ GenericError $ "Not a constructor: " ++ show c