{-# LANGUAGE CPP, MultiParamTypeClasses, FlexibleInstances, TupleSections, GeneralizedNewtypeDeriving, DeriveDataTypeable, DeriveFunctor, DeriveFoldable, DeriveTraversable #-} module Agda.TypeChecking.Rules.LHS.Unify where import Control.Arrow ((***), (&&&)) import Control.Applicative hiding (empty) import Control.Monad.State import Control.Monad.Reader import Control.Monad.Error import Control.Monad.Writer (WriterT(..), MonadWriter(..), Monoid(..)) import Data.Map (Map) import qualified Data.Map as Map import Data.List hiding (sort) import Data.Typeable (Typeable) import Data.Foldable (Foldable) import Data.Traversable (Traversable,traverse) import Agda.Syntax.Common import Agda.Syntax.Internal import Agda.Syntax.Literal import Agda.Syntax.Position import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Exception import Agda.TypeChecking.Conversion -- equalTerm import Agda.TypeChecking.Constraints import Agda.TypeChecking.Level (reallyUnLevelView) import Agda.TypeChecking.Reduce import Agda.TypeChecking.Pretty import Agda.TypeChecking.Substitute hiding (Substitution) import qualified Agda.TypeChecking.Substitute as S import Agda.TypeChecking.Telescope import Agda.TypeChecking.Free import Agda.TypeChecking.Records import Agda.TypeChecking.Primitive (constructorForm) import Agda.TypeChecking.MetaVars (assignV, newArgsMetaCtx) import Agda.TypeChecking.EtaContract import Agda.Interaction.Options (optInjectiveTypeConstructors) import Agda.TypeChecking.Rules.LHS.Problem #include "../../../undefined.h" import Agda.Utils.Impossible import Agda.Utils.Size newtype Unify a = U { unUnify :: ReaderT UnifyEnv (WriterT UnifyOutput (ExceptionT UnifyException (StateT UnifyState TCM))) a } deriving (Monad, MonadIO, Functor, Applicative, MonadException UnifyException, MonadWriter UnifyOutput) instance MonadReader TCEnv Unify where ask = U $ ReaderT $ \ _ -> ask local cont (U (ReaderT f)) = U $ ReaderT $ \ a -> local cont (f a) data UnifyMayPostpone = MayPostpone | MayNotPostpone type UnifyEnv = UnifyMayPostpone emptyUEnv = MayPostpone noPostponing :: Unify a -> Unify a noPostponing (U (ReaderT f)) = U . ReaderT . const $ f MayNotPostpone askPostpone :: Unify UnifyMayPostpone askPostpone = U . ReaderT $ return -- | Output the result of unification (success or maybe). type UnifyOutput = Unifiable emptyUOutput :: UnifyOutput emptyUOutput = mempty -- | Were two terms unifiable or did we have to postpone some equation such that we are not sure? data Unifiable = Definitely -- ^ Unification succeeded. | Possibly -- ^ Unification did not fail, but we had to postpone a part. -- | Conjunctive monoid. instance Monoid Unifiable where mempty = Definitely mappend Definitely Definitely = Definitely mappend _ _ = Possibly -- | Tell that something could not be unified right now, -- so the unification succeeds only 'Possibly'. reportPostponing :: Unify () reportPostponing = tell Possibly -- | Check whether unification proceeded without postponement. ifClean :: Unify () -> Unify a -> Unify a -> Unify a ifClean m t e = do ok <- snd <$> listen m case ok of Definitely -> t Possibly -> e data Equality = Equal TypeHH Term Term type Sub = Map Nat Term data UnifyException = ConstructorMismatch Type Term Term | StronglyRigidOccurrence Type Term Term | GenericUnifyException String instance Error UnifyException where noMsg = strMsg "" strMsg = GenericUnifyException data UnifyState = USt { uniSub :: Sub , uniConstr :: [Equality] } emptyUState = USt Map.empty [] constructorMismatch :: Type -> Term -> Term -> Unify a constructorMismatch a u v = throwException $ ConstructorMismatch a u v constructorMismatchHH :: TypeHH -> Term -> Term -> Unify a constructorMismatchHH aHH = constructorMismatch (leftHH aHH) -- do not report heterogenity instance MonadState TCState Unify where get = U . lift . lift . lift . lift $ get put = U . lift . lift . lift . lift . put instance MonadTCM Unify where liftTCM = U . lift . lift . lift . lift instance Subst Equality where applySubst rho (Equal a s t) = Equal (applySubst rho a) (applySubst rho s) (applySubst rho t) onSub :: (Sub -> a) -> Unify a onSub f = U $ gets $ f . uniSub modSub :: (Sub -> Sub) -> Unify () modSub f = U $ modify $ \s -> s { uniSub = f $ uniSub s } checkEqualities :: [Equality] -> TCM () checkEqualities eqs = noConstraints $ mapM_ checkEq eqs where checkEq (Equal (Hom a) s t) = equalTerm a s t checkEq (Equal (Het a1 a2) s t) = typeError $ HeterogeneousEquality s a1 t a2 -- | Force equality now instead of postponing it using 'addEquality'. checkEquality :: Type -> Term -> Term -> TCM () checkEquality a u v = noConstraints $ equalTerm a u v -- | Try equality. If constraints remain, postpone (enter unsafe mode). -- Heterogeneous equalities cannot be tried nor reawakened, -- so we can throw them away and flag "dirty". checkEqualityHH :: TypeHH -> Term -> Term -> Unify () checkEqualityHH (Hom a) u v = do ok <- liftTCM $ noConstraints (True <$ equalTerm a u v) -- no constraints left `catchError` \ err -> return False if ok then return () else addEquality a u v checkEqualityHH aHH@(Het a1 a2) u v = -- reportPostponing -- enter "dirty" mode addEqualityHH aHH u v -- postpone, enter "dirty" mode -- | Check whether heterogeneous situation is really homogeneous. -- If not, give up. forceHom :: TypeHH -> TCM Type forceHom (Hom a) = return a forceHom (Het a1 a2) = do noConstraints $ equalType a1 a2 return a1 addEquality :: Type -> Term -> Term -> Unify () addEquality a = addEqualityHH (Hom a) addEqualityHH :: TypeHH -> Term -> Term -> Unify () addEqualityHH aHH u v = do reportPostponing U $ modify $ \s -> s { uniConstr = Equal aHH u v : uniConstr s } takeEqualities :: Unify [Equality] takeEqualities = U $ do s <- get put $ s { uniConstr = [] } return $ uniConstr s -- | Includes flexible occurrences, metas need to be solved. TODO: relax? -- TODO: later solutions may remove flexible occurences occursCheck :: Nat -> Term -> Type -> Unify () occursCheck i u a = do let fv = freeVars u v = var i case occurrence i fv of -- Andreas, 2011-04-14 -- a strongly rigid recursive occurrences signals unsolvability StronglyRigid -> do liftTCM $ reportSDoc "tc.lhs.unify" 20 $ prettyTCM v <+> text "occurs strongly rigidly in" <+> prettyTCM u throwException $ StronglyRigidOccurrence a v u NoOccurrence -> return () -- this includes irrelevant occurrences! -- any other recursive occurrence leads to unclear situation _ -> do liftTCM $ reportSDoc "tc.lhs.unify" 20 $ prettyTCM v <+> text "occurs in" <+> prettyTCM u typeError $ UnequalTerms CmpEq v u a -- | Assignment with preceding occurs check. (|->) :: Nat -> (Term, Type) -> Unify () i |-> (u, a) = do occursCheck i u a liftTCM $ reportSDoc "tc.lhs.unify" 15 $ prettyTCM (var i) <+> text ":=" <+> prettyTCM u modSub $ Map.insert i (killRange u) -- Apply substitution to itself (issue 552) rho <- onSub id rho' <- traverse ureduce rho modSub $ const rho' makeSubstitution :: Sub -> S.Substitution makeSubstitution sub | Map.null sub = idS | otherwise = map val [0 .. highestIndex] ++# raiseS (highestIndex + 1) where highestIndex = fst $ Map.findMax sub val i = maybe (var i) id $ Map.lookup i sub -- | Apply the current substitution on a term and reduce to weak head normal form. class UReduce t where ureduce :: t -> Unify t instance UReduce Term where ureduce u = doEtaContractImplicit $ do rho <- onSub makeSubstitution liftTCM $ etaContract =<< normalise (applySubst rho u) -- Andreas, 2011-06-22, fix related to issue 423 -- To make eta contraction work better, I switched reduce to normalise. -- I hope the performance penalty is not big (since we are dealing with -- l.h.s. terms only). -- A systematic solution would make unification type-directed and -- eta-insensitive... -- liftTCM $ etaContract =<< reduce (applySubst rho u) instance UReduce Type where ureduce (El s t) = El s <$> ureduce t instance UReduce t => UReduce (HomHet t) where ureduce (Hom t) = Hom <$> ureduce t ureduce (Het t1 t2) = Het <$> ureduce t1 <*> ureduce t2 instance UReduce t => UReduce (Maybe t) where ureduce Nothing = return Nothing ureduce (Just t) = Just <$> ureduce t -- | Take a substitution σ and ensure that no variables from the domain appear -- in the targets. The context of the targets is not changed. -- TODO: can this be expressed using makeSubstitution and applySubst? flattenSubstitution :: Substitution -> Substitution flattenSubstitution s = foldr instantiate s is where -- instantiated variables is = [ i | (i, Just _) <- zip [0..] s ] instantiate :: Nat -> Substitution -> Substitution instantiate i s = map (fmap $ inst i u) s where Just u = s !! i inst :: Nat -> Term -> Term -> Term inst i u v = applySubst us v where us = [var j | j <- [0..i - 1] ] ++# u :# raiseS (i + 1) data UnificationResult = Unifies Substitution | NoUnify Type Term Term | DontKnow TCErr -- | Are we in a homogeneous (one type) or heterogeneous (two types) situation? data HomHet a = Hom a -- ^ homogeneous | Het a a -- ^ heterogeneous deriving (Typeable, Show, Eq, Ord, Functor, Foldable, Traversable) isHom :: HomHet a -> Bool isHom Hom{} = True isHom Het{} = False fromHom :: HomHet a -> a fromHom (Hom a) = a fromHom (Het{}) = __IMPOSSIBLE__ leftHH :: HomHet a -> a leftHH (Hom a) = a leftHH (Het a1 a2) = a1 rightHH :: HomHet a -> a rightHH (Hom a) = a rightHH (Het a1 a2) = a2 instance (Subst a) => Subst (HomHet a) where applySubst rho u = fmap (applySubst rho) u instance (PrettyTCM a) => PrettyTCM (HomHet a) where prettyTCM (Hom a) = prettyTCM a prettyTCM (Het a1 a2) = prettyTCM a1 <+> text "||" <+> prettyTCM a2 type TermHH = HomHet Term type TypeHH = HomHet Type --type FunViewHH = FunV TypeHH type TelHH = Tele (Dom TypeHH) type TelViewHH = TelV TypeHH absAppHH :: SubstHH t tHH => Abs t -> TermHH -> tHH absAppHH (Abs _ t) u = substHH u t absAppHH (NoAbs _ t) u = trivialHH t class ApplyHH t where applyHH :: t -> HomHet Args -> HomHet t instance ApplyHH Term where applyHH t = fmap (apply t) instance ApplyHH Type where applyHH t = fmap (apply t) substHH :: SubstHH t tHH => TermHH -> t -> tHH substHH = substUnderHH 0 -- | @substHH u t@ substitutes @u@ for the 0th variable in @t@. class SubstHH t tHH where substUnderHH :: Nat -> TermHH -> t -> tHH trivialHH :: t -> tHH instance (Free a, Subst a) => SubstHH (HomHet a) (HomHet a) where substUnderHH n (Hom u) t = fmap (substUnder n u) t substUnderHH n (Het u1 u2) (Hom t) = if n `relevantIn` t then Het (substUnder n u1 t) (substUnder n u2 t) else Hom (substUnder n u1 t) substUnderHH n (Het u1 u2) (Het t1 t2) = Het (substUnder n u1 t1) (substUnder n u2 t2) trivialHH = id instance SubstHH Term (HomHet Term) where substUnderHH n uHH t = fmap (\ u -> substUnder n u t) uHH trivialHH = Hom instance SubstHH Type (HomHet Type) where substUnderHH n uHH (El s t) = fmap (\ u -> El s $ substUnder n u t) uHH -- fmap $ fmap (\ (El s v) -> El s $ substUnderHH n u v) -- we ignore sorts in substitution, since they do not contain -- terms we can match on trivialHH = Hom instance SubstHH a b => SubstHH (Arg a) (Arg b) where substUnderHH n u = fmap $ substUnderHH n u trivialHH = fmap trivialHH instance SubstHH a b => SubstHH (Dom a) (Dom b) where substUnderHH n u = fmap $ substUnderHH n u trivialHH = fmap trivialHH instance SubstHH a b => SubstHH (Abs a) (Abs b) where substUnderHH n u (Abs x v) = Abs x $ substUnderHH (n + 1) u v substUnderHH n u (NoAbs x v) = NoAbs x $ substUnderHH n u v trivialHH = fmap trivialHH instance (SubstHH a a', SubstHH b b') => SubstHH (a,b) (a',b') where substUnderHH n u (x,y) = (substUnderHH n u x, substUnderHH n u y) trivialHH = trivialHH *** trivialHH instance SubstHH a b => SubstHH (Tele a) (Tele b) where substUnderHH n u EmptyTel = EmptyTel substUnderHH n u (ExtendTel t tel) = uncurry ExtendTel $ substUnderHH n u (t, tel) trivialHH = fmap trivialHH -- | Unify indices. unifyIndices_ :: MonadTCM tcm => FlexibleVars -> Type -> [Arg Term] -> [Arg Term] -> tcm Substitution unifyIndices_ flex a us vs = liftTCM $ do r <- unifyIndices flex a us vs case r of Unifies sub -> return sub DontKnow err -> throwError err NoUnify a u v -> typeError $ UnequalTerms CmpEq u v a unifyIndices :: MonadTCM tcm => FlexibleVars -> Type -> [Arg Term] -> [Arg Term] -> tcm UnificationResult unifyIndices flex a us vs = liftTCM $ do a <- reduce a reportSDoc "tc.lhs.unify" 10 $ sep [ text "unifyIndices" , nest 2 $ text (show flex) , nest 2 $ parens (prettyTCM a) , nest 2 $ prettyList $ map prettyTCM us , nest 2 $ prettyList $ map prettyTCM vs , nest 2 $ text "context: " <+> (prettyTCM =<< getContextTelescope) ] (r, USt s eqs) <- flip runStateT emptyUState . runExceptionT . runWriterT . flip runReaderT emptyUEnv . unUnify $ do ifClean (unifyConstructorArgs (Hom a) us vs) -- clean: continue unifying recheckConstraints -- dirty: just check equalities to trigger error message recheckEqualities case r of Left (ConstructorMismatch a u v) -> return $ NoUnify a u v -- Andreas 2011-04-14: Left (StronglyRigidOccurrence a u v) -> return $ NoUnify a u v Left (GenericUnifyException err) -> fail err Right _ -> do checkEqualities $ applySubst (makeSubstitution s) eqs let n = maximum $ (-1) : flex return $ Unifies $ flattenSubstitution [ Map.lookup i s | i <- [0..n] ] `catchError` \err -> return $ DontKnow err where flexible i = i `elem` flex flexibleTerm (Var i []) = flexible i flexibleTerm (Shared p) = flexibleTerm (derefPtr p) flexibleTerm _ = False {- Andreas, 2011-09-12 We unify constructors in heterogeneous situations, as long as the two types have the same shape (construct the same datatype). -} unifyConstructorArgs :: TypeHH -- ^ The ureduced type of the constructor, instantiated to the parameters. -- Possibly heterogeneous, since pars of lhs and rhs might differ. -> [Arg Term] -- ^ the arguments of the constructor (lhs) -> [Arg Term] -- ^ the arguments of the constructor (rhs) -> Unify () unifyConstructorArgs a12 [] [] = return () unifyConstructorArgs a12 vs1 vs2 = do liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyConstructorArgs" -- , nest 2 $ parens (prettyTCM tel0) , nest 2 $ prettyList $ map prettyTCM vs1 , nest 2 $ prettyList $ map prettyTCM vs2 , nest 2 $ text "constructor type:" <+> prettyTCM a12 ] let n = genericLength vs1 -- since c vs1 and c vs2 have same-shaped type -- vs1 and vs2 must have same length when (n /= genericLength vs2) $ __IMPOSSIBLE__ TelV tel12 _ <- telViewUpToHH n a12 -- if the length of tel12 is not n, then something is wrong -- e.g. a12 is not a same-shaped pair of types when (n /= size tel12) $ __IMPOSSIBLE__ unifyConArgs tel12 vs1 vs2 unifyConArgs :: TelHH -- ^ The telescope(s) of the constructor args [length = n]. -> [Arg Term] -- ^ the arguments of the constructor (lhs) [length = n]. -> [Arg Term] -- ^ the arguments of the constructor (rhs) [length = n]. -> Unify () unifyConArgs _ (_ : _) [] = __IMPOSSIBLE__ unifyConArgs _ [] (_ : _) = __IMPOSSIBLE__ unifyConArgs _ [] [] = return () unifyConArgs EmptyTel _ _ = __IMPOSSIBLE__ unifyConArgs tel0@(ExtendTel a@(Dom _ rel bHH) tel) us0@(arg@(Arg _ _ u) : us) vs0@(Arg _ _ v : vs) = do liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyConArgs" -- , nest 2 $ parens (prettyTCM tel0) , nest 2 $ prettyList $ map prettyTCM us0 , nest 2 $ prettyList $ map prettyTCM vs0 , nest 2 $ text "at telescope" <+> prettyTCM bHH <+> text "..." ] liftTCM $ reportSDoc "tc.lhs.unify" 25 $ (text $ "tel0 = " ++ show tel0) -- Andreas, Ulf, 2011-09-08 (AIM XIV) -- in case of dependent function type, we cannot postpone -- unification of u and v, otherwise us or vs might be ill-typed -- skip irrelevant parts uHH <- if (rel == Irrelevant) then return $ Hom u else ifClean (unifyHH bHH u v) (return $ Hom u) (return $ Het u v) liftTCM $ reportSDoc "tc.lhs.unify" 25 $ (text "uHH (before ureduce) =" <+> prettyTCM uHH) uHH <- traverse ureduce uHH liftTCM $ reportSDoc "tc.lhs.unify" 25 $ (text "uHH (after ureduce) =" <+> prettyTCM uHH) unifyConArgs (tel `absAppHH` uHH) us vs -- | Used for arguments of a 'Def', not 'Con'. unifyArgs :: Type -> [Arg Term] -> [Arg Term] -> Unify () unifyArgs _ (_ : _) [] = __IMPOSSIBLE__ unifyArgs _ [] (_ : _) = __IMPOSSIBLE__ unifyArgs _ [] [] = return () unifyArgs a us0@(arg@(Arg _ _ u) : us) vs0@(Arg _ _ v : vs) = do liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyArgs" , nest 2 $ parens (prettyTCM a) , nest 2 $ prettyList $ map prettyTCM us0 , nest 2 $ prettyList $ map prettyTCM vs0 ] a <- ureduce a -- Q: reduce sufficient? case ignoreSharing $ unEl a of Pi b _ -> do -- Andreas, Ulf, 2011-09-08 (AIM XVI) -- in case of dependent function type, we cannot postpone -- unification of u and v, otherwise us or vs might be ill-typed let dep = dependent $ unEl a -- skip irrelevant parts unless (domRelevance b == Irrelevant) $ (if dep then noPostponing else id) $ unify (unDom b) u v arg <- traverse ureduce arg unifyArgs (a `piApply` [arg]) us vs _ -> __IMPOSSIBLE__ where dependent (Pi _ NoAbs{}) = False dependent (Pi b c) = 0 `relevantIn` absBody c dependent (Shared p) = dependent (derefPtr p) dependent _ = False -- | Check using conversion check. recheckEqualities :: Unify () recheckEqualities = do eqs <- takeEqualities liftTCM $ checkEqualities eqs -- | Check using unifier. recheckConstraints :: Unify () recheckConstraints = mapM_ unifyEquality =<< takeEqualities unifyEquality :: Equality -> Unify () unifyEquality (Equal aHH u v) = unifyHH aHH u v i |->> x = do i |-> x recheckConstraints unifySizes :: Term -> Term -> Unify () unifySizes u v = do sz <- liftTCM sizeType su <- liftTCM $ sizeView u sv <- liftTCM $ sizeView v case (su, sv) of (SizeSuc u, SizeSuc v) -> unify sz u v (SizeSuc u, SizeInf) -> unify sz u v (SizeInf, SizeSuc v) -> unify sz u v _ -> unifyAtom sz u v -- | Possibly heterogeneous unification (but at same-shaped types). -- In het. situations, we only search for a mismatch! -- -- TODO: eta for records! unifyHH :: TypeHH -- ^ one or two types, need not be in (u)reduced form -> Term -> Term -> Unify () unifyHH aHH u v = do u <- liftTCM . constructorForm =<< ureduce u v <- liftTCM . constructorForm =<< ureduce v aHH <- ureduce aHH liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyHH" , nest 2 $ (parens $ prettyTCM u) <+> text "=?=" , nest 2 $ parens $ prettyTCM v , nest 2 $ text ":" <+> prettyTCM aHH ] -- obtain the (== Size) function isSizeName <- liftTCM isSizeNameTest -- check whether types have the same shape (aHH, sh) <- shapeViewHH aHH case sh of ElseSh -> checkEqualityHH aHH u v -- not a type or not same types DefSh d -> if isSizeName d then unifySizes u v else unifyAtomHH aHH u v _ -> unifyAtomHH aHH u v unifyAtomHH :: TypeHH -- ^ in ureduced form -> Term -> Term -> Unify () unifyAtomHH aHH0 u v = do let (aHH, homogeneous, a) = case aHH0 of Hom a -> (aHH0, True, a) Het a1 a2 | a1 == a2 -> (Hom a1, True, a1) -- BRITTLE: just checking syn.eq. _ -> (aHH0, False, __IMPOSSIBLE__) -- use @a@ only if 'homogeneous' holds! fallback = checkEqualityHH aHH u v liftTCM $ reportSDoc "tc.lhs.unify" 15 $ sep [ text "unifyAtom" , nest 2 $ prettyTCM u <> if flexibleTerm u then text " (flexible)" else empty , nest 2 $ text "=?=" , nest 2 $ prettyTCM v <> if flexibleTerm v then text " (flexible)" else empty , nest 2 $ text ":" <+> prettyTCM aHH ] case (ignoreSharing u, ignoreSharing v) of -- Ulf, 2011-06-19 -- We don't want to worry about levels here. (Level l, _) -> do u <- liftTCM $ reallyUnLevelView l unifyAtomHH aHH u v (_, Level l) -> do v <- liftTCM $ reallyUnLevelView l unifyAtomHH aHH u v (Var i us, Var j vs) | i == j -> checkEqualityHH aHH u v (Var i [], _) | homogeneous && flexible i -> i |->> (v, a) (_, Var j []) | homogeneous && flexible j -> j |->> (u, a) (Con c us, Con c' vs) | c == c' -> do r <- ureduce =<< liftTCM (dataOrRecordTypeHH c aHH) case r of Just a'HH -> unifyConstructorArgs a'HH us vs Nothing -> checkEqualityHH aHH u v | otherwise -> constructorMismatchHH aHH u v -- Definitions are ok as long as they can't reduce (i.e. datatypes/axioms) (Def d us, Def d' vs) | d == d' -> do -- d must be a data, record or axiom def <- getConstInfo d let ok = case theDef def of Datatype{} -> True Record{} -> True Axiom{} -> True _ -> False inj <- liftTCM $ optInjectiveTypeConstructors <$> pragmaOptions if inj && ok then unifyArgs (defType def) us vs else checkEqualityHH aHH u v -- Andreas, 2011-05-30: if heads disagree, abort -- but do not raise "mismatch" because otherwise type constructors -- would be distinct | otherwise -> checkEqualityHH aHH u v -- typeError $ UnequalTerms CmpEq u v a (Lit l1, Lit l2) | l1 == l2 -> return () | otherwise -> constructorMismatchHH aHH u v -- We can instantiate metas if the other term is inert (constructor application) -- Andreas, 2011-09-13: test/succeed/IndexInference needs this feature. (MetaV m us, _) | homogeneous -> do ok <- liftTCM $ instMeta a m us v liftTCM $ reportSDoc "tc.lhs.unify" 40 $ vcat [ fsep [ text "inst meta", text $ if ok then "(ok)" else "(not ok)" ] , nest 2 $ sep [ prettyTCM u, text ":=", prettyTCM =<< normalise u ] ] if ok then unify a u v else addEquality a u v (_, MetaV m vs) | homogeneous -> do ok <- liftTCM $ instMeta a m vs u liftTCM $ reportSDoc "tc.lhs.unify" 40 $ vcat [ fsep [ text "inst meta", text $ if ok then "(ok)" else "(not ok)" ] , nest 2 $ sep [ prettyTCM v, text ":=", prettyTCM =<< normalise v ] ] if ok then unify a u v else addEquality a u v (Con c us, _) -> do md <- isEtaRecordTypeHH aHH case md of Just (d, parsHH) -> do (tel, vs) <- liftTCM $ etaExpandRecord d (rightHH parsHH) v b <- liftTCM $ getRecordConstructorType d bHH <- ureduce (b `applyHH` parsHH) unifyConstructorArgs bHH us vs Nothing -> fallback (_, Con c vs) -> do md <- isEtaRecordTypeHH aHH case md of Just (d, parsHH) -> do (tel, us) <- liftTCM $ etaExpandRecord d (leftHH parsHH) u b <- liftTCM $ getRecordConstructorType d bHH <- ureduce (b `applyHH` parsHH) unifyConstructorArgs bHH us vs Nothing -> fallback -- Andreas, 2011-05-30: If I put checkEquality below, then Issue81 fails -- because there are definitions blocked by flexibles that need postponement _ -> fallback unify :: Type -> Term -> Term -> Unify () unify a = unifyHH (Hom a) unifyAtom :: Type -> Term -> Term -> Unify () unifyAtom a = unifyAtomHH (Hom a) -- The contexts are transient when unifying, so we should just instantiate to -- constructor heads and generate fresh metas for the arguments. Beware of -- constructors that aren't fully applied. instMeta a m us v = do app <- inertApplication a v reportSDoc "tc.lhs.unify" 50 $ sep [ text "inert" <+> sep [ text (show m), text (show us), parens $ prettyTCM v ] , nest 2 $ text "==" <+> text (show app) ] case app of Nothing -> return False Just (v', b, vs) -> do margs <- do -- The new metas should have the same dependencies as the original meta mv <- lookupMeta m -- Only generate metas for the arguments v' is actually applied to -- (in case of partial application) TelV tel0 _ <- telView b let tel = telFromList $ take (length vs) $ telToList tel0 b' = telePi tel (sort Prop) withMetaInfo' mv $ do tel <- getContextTelescope -- important: create the meta in the same environment as the original meta newArgsMetaCtx b' tel us noConstraints $ assignV m us (v' `apply` margs) return True `catchError` \_ -> return False inertApplication :: Type -> Term -> TCM (Maybe (Term, Type, Args)) inertApplication a v = case ignoreSharing v of Con c vs -> fmap (\ b -> (Con c [], b, vs)) <$> dataOrRecordType c a Def d vs -> do def <- getConstInfo d let ans = Just (Def d [], defType def, vs) return $ case theDef def of Datatype{} -> ans Record{} -> ans Axiom{} -> ans _ -> Nothing _ -> return Nothing -- | Given the type of a constructor application the corresponding -- data or record type, applied to its parameters (extracted from the -- given type), is returned. -- -- Precondition: The type has to correspond to an application of the -- given constructor. dataOrRecordType :: QName -- ^ Constructor name. -> Type -- ^ Type of constructor application (must end in data/record). -> TCM (Maybe Type) -- ^ Type of constructor, applied to pars. dataOrRecordType c a = fmap (\ (d, b, args) -> b `apply` args) <$> dataOrRecordType' c a dataOrRecordType' :: QName -- ^ Constructor name. -> Type -- ^ Type of constructor application (must end in data/record). -> TCM (Maybe (QName, Type, Args)) -- ^ Name of data/record type, -- type of constructor to be applied, and -- data/record parameters dataOrRecordType' c a = do -- The telescope ends with a datatype or a record. (d, args) <- do TelV _ (El _ def) <- telView a let Def d args = ignoreSharing def return (d, args) def <- theDef <$> getConstInfo d r <- case def of Datatype{dataPars = n} -> Just . ((,) n) . defType <$> getConstInfo c Record {recPars = n} -> Just . ((,) n) <$> getRecordConstructorType d _ -> return Nothing return $ fmap (\ (n, a') -> (d, a', genericTake n args)) r -- | Heterogeneous situation. -- @a1@ and @a2@ need to end in same datatype/record. dataOrRecordTypeHH :: QName -- ^ Constructor name. -> TypeHH -- ^ Type(s) of constructor application (must end in same data/record). -> TCM (Maybe TypeHH) -- ^ Type of constructor, instantiated possibly heterogeneously to parameters. dataOrRecordTypeHH c (Hom a) = fmap Hom <$> dataOrRecordType c a dataOrRecordTypeHH c (Het a1 a2) = do r1 <- dataOrRecordType' c a1 r2 <- dataOrRecordType' c a2 -- b2 may have different parameters than b1! return $ case (r1, r2) of (Just (d1, b1, pars1), Just (d2, b2, pars2)) | d1 == d2 -> Just $ -- Andreas, 2011-09-15 if no parameters, we can stay homogeneous if null pars1 && null pars2 then Hom b1 -- if parameters, go heterogeneous -- TODO: make this smarter, because parameters could be equal! else Het (b1 `apply` pars1) (b2 `apply` pars2) _ -> Nothing -- | Return record type identifier if argument is a record type. isEtaRecordTypeHH :: MonadTCM tcm => TypeHH -> tcm (Maybe (QName, HomHet Args)) isEtaRecordTypeHH (Hom a) = fmap (\ (d, ps) -> (d, Hom ps)) <$> liftTCM (isEtaRecordType a) isEtaRecordTypeHH (Het a1 a2) = do m1 <- liftTCM $ isEtaRecordType a1 m2 <- liftTCM $ isEtaRecordType a2 case (m1, m2) of (Just (d1, as1), Just (d2, as2)) | d1 == d2 -> return $ Just (d1, Het as1 as2) _ -> return Nothing -- | Views an expression (pair) as type shape. Fails if not same shape. data ShapeView a = PiSh (Dom a) (Abs a) | FunSh (Dom a) a | DefSh QName -- ^ data/record | VarSh Nat -- ^ neutral type | LitSh Literal -- ^ built-in type | SortSh | MetaSh -- ^ some meta | ElseSh -- ^ not a type or not definitely same shape deriving (Typeable, Show, Eq, Ord, Functor) -- | Return the type and its shape. Expects input in (u)reduced form. shapeView :: Type -> Unify (Type, ShapeView Type) shapeView t = do return . (t,) $ case ignoreSharing $ unEl t of Pi a (NoAbs _ b) -> FunSh a b Pi a (Abs x b) -> PiSh a (Abs x b) Def d vs -> DefSh d Var x vs -> VarSh x Lit l -> LitSh l Sort s -> SortSh MetaV m vs -> MetaSh _ -> ElseSh -- | Return the reduced type(s) and the common shape. shapeViewHH :: TypeHH -> Unify (TypeHH, ShapeView TypeHH) shapeViewHH (Hom a) = do (a, sh) <- shapeView a return (Hom a, fmap Hom sh) shapeViewHH (Het a1 a2) = do (a1, sh1) <- shapeView a1 (a2, sh2) <- shapeView a2 return . (Het a1 a2,) $ case (sh1, sh2) of (PiSh (Dom h1 r1 a1) b1, PiSh (Dom h2 r2 a2) b2) | h1 == h2 -> PiSh (Dom h1 (min r1 r2) (Het a1 a2)) (Abs (absName b1) (Het (absBody b1) (absBody b2))) (FunSh (Dom h1 r1 a1) b1, FunSh (Dom h2 r2 a2) b2) | h1 == h2 -> FunSh (Dom h1 (min r1 r2) (Het a1 a2)) (Het b1 b2) (DefSh d1, DefSh d2) | d1 == d2 -> DefSh d1 (VarSh x1, VarSh x2) | x1 == x2 -> VarSh x1 (LitSh l1, LitSh l2) | l1 == l2 -> LitSh l1 (SortSh, SortSh) -> SortSh _ -> ElseSh -- not types, or metas, or not same shape -- | @telViewUpToHH n t@ takes off the first @n@ function types of @t@. -- Takes off all if $n < 0$. telViewUpToHH :: Int -> TypeHH -> Unify TelViewHH telViewUpToHH 0 t = return $ TelV EmptyTel t telViewUpToHH n t = do (t, sh) <- shapeViewHH =<< liftTCM (traverse reduce t) case sh of PiSh a b -> absV a (absName b) <$> telViewUpToHH (n-1) (absBody b) FunSh a b -> absV a "_" <$> telViewUpToHH (n-1) (raise 1 b) _ -> return $ TelV EmptyTel t where absV a x (TelV tel t) = TelV (ExtendTel a (Abs x tel)) t