{-# OPTIONS --type-in-type #-} module Primitive where infixr 2 _,_ record Σ (A : Set)(B : A → Set) : Set where constructor _,_ field fst : A snd : B fst open Σ data ⊤ : Set where tt : ⊤ ∃ : {A : Set}(B : A → Set) → Set ∃ B = Σ _ B infix 10 _≡_ data _≡_ {A : Set}(a : A) : {B : Set} → B → Set where refl : a ≡ a trans : ∀ {A B C}{a : A}{b : B}{c : C} → a ≡ b → b ≡ c → a ≡ c trans refl p = p sym : ∀ {A B}{a : A}{b : B} → a ≡ b → b ≡ a sym refl = refl resp : ∀ {A}{B : A → Set}{a a' : A} → (f : (a : A) → B a) → a ≡ a' → f a ≡ f a' resp f refl = refl Cat : Set Cat = ∃ λ (Obj : Set) → ∃ λ (Hom : Obj → Obj → Set) → ∃ λ (id : ∀ X → Hom X X) → ∃ λ (_○_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z) → ∃ λ (idl : ∀ {X Y}{f : Hom X Y} → id Y ○ f ≡ f) → ∃ λ (idr : ∀ {X Y}{f : Hom X Y} → f ○ id X ≡ f) → ∃ λ (assoc : ∀ {W X Y Z}{f : Hom W X}{g : Hom X Y}{h : Hom Y Z} → (h ○ g) ○ f ≡ h ○ (g ○ f)) → ⊤ Obj : (C : Cat) → Set Obj C = fst C Hom : (C : Cat) → Obj C → Obj C → Set Hom C = fst (snd C) id : (C : Cat) → ∀ X → Hom C X X id C = fst (snd (snd C)) comp : (C : Cat) → ∀ {X Y Z} → Hom C Y Z → Hom C X Y → Hom C X Z comp C = fst (snd (snd (snd C))) idl : (C : Cat) → ∀ {X Y}{f : Hom C X Y} → comp C (id C Y) f ≡ f idl C = fst (snd (snd (snd (snd C)))) idr : (C : Cat) → ∀ {X Y}{f : Hom C X Y} → comp C f (id C X) ≡ f idr C = fst (snd (snd (snd (snd (snd C))))) assoc : (C : Cat) → ∀ {W X Y Z}{f : Hom C W X}{g : Hom C X Y}{h : Hom C Y Z} → comp C (comp C h g) f ≡ comp C h (comp C g f) assoc C = fst (snd (snd (snd (snd (snd (snd C)))))) {- record Functor (C D : Cat) : Set where field Fun : Obj C → Obj D map : ∀ {X Y} → (Hom C X Y) → Hom D (Fun X) (Fun Y) mapid : ∀ {X} → map (id C X) ≡ id D (Fun X) map○ : ∀ {X Y Z}{f : Hom C X Y}{g : Hom C Y Z} → map (_○_ C g f) ≡ _○_ D (map g) (map f) open Functor idF : ∀ C → Functor C C idF C = record {Fun = \x → x; map = \x → x; mapid = refl; map○ = refl} _•_ : ∀ {C D E} → Functor D E → Functor C D → Functor C E F • G = record {Fun = \X → Fun F (Fun G X); map = \f → map F (map G f); mapid = trans (resp (\x → map F x) (mapid G)) (mapid F); map○ = trans (resp (\x → map F x) (map○ G)) (map○ F)} record Nat {C D : Cat} (F G : Functor C D) : Set where field η : (X : Obj C) → Hom D (Fun F X) (Fun G X) law : {X Y : Obj C}{f : Hom C X Y} → _○_ D (η Y) (map F f) ≡ _○_ D (map G f) (η X) open Nat _▪_ : ∀ {C D : Cat}{F G H : Functor C D} → Nat G H → Nat F G → Nat F H _▪_ {D = D} A B = record { η = \X → _○_ D (η A X) (η B X); law = \{X}{Y} → trans (assoc D) (trans (resp (\f → _○_ D (η A Y) f) (law B)) (trans (sym (assoc D)) (trans (resp (\g → _○_ D g (η B X)) (law A)) (assoc D)))) } -}