module Identity where data _==_ {A : Set}(x : A) : A -> Set where refl : x == x elim== : {A : Set}(x : A)(C : (y : A) -> x == y -> Set) -> C x refl -> (y : A) -> (p : x == y) -> C y p elim== x C Cx .x refl = Cx elim==₁ : {A : Set}(x : A)(C : (y : A) -> x == y -> Set1) -> C x refl -> (y : A) -> (p : x == y) -> C y p elim==₁ x C Cx .x refl = Cx sym : {A : Set}{x y : A} -> x == y -> y == x sym {A}{x}{y} eq = elim== x (\z _ -> z == x) refl y eq cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong {A} f {x}{y} eq = elim== x (\z _ -> f x == f z) refl y eq subst : {A : Set}{x y : A}(P : A -> Set) -> x == y -> P x -> P y subst P xy px = elim== _ (\z _ -> P z) px _ xy subst₁ : {A : Set}{x y : A}(P : A -> Set1) -> x == y -> P x -> P y subst₁ P xy px = elim==₁ _ (\z _ -> P z) px _ xy symRef : (A : Set)(x : A) -> sym (refl{A}{x}) == refl symRef A x = refl symSym : {A : Set}{x y : A}(p : x == y) -> sym (sym p) == p symSym {A}{x}{y} p = elim== x (\y q -> sym (sym q) == q) refl y p -- Proving the symmetric elimination rule is not trivial. elimS : {A : Set}(x : A)(C : (y : A) -> y == x -> Set) -> C x refl -> (y : A) -> (p : y == x) -> C y p elimS x C r y p = subst (C y) (symSym p) h where h : C y (sym (sym p)) h = elim== x (\y p -> C y (sym p)) r y (sym p) data _==¹_ {A : Set1}(x : A) : {B : Set1} -> B -> Set where refl¹ : x ==¹ x subst¹ : {A : Set1}{x y : A}(P : A -> Set) -> x ==¹ y -> P x -> P y subst¹ {A} P refl¹ px = px