{-# LANGUAGE CPP, PatternGuards, TupleSections #-} module Agda.TypeChecking.Rules.Term where import Control.Applicative import Control.Arrow ((***), (&&&)) import Control.Monad.Trans import Control.Monad.Reader import Control.Monad.Error import Data.Maybe import Data.List hiding (sort) import qualified Data.Map as Map import qualified Data.Set as Set import Data.Traversable (traverse,sequenceA) import Agda.Interaction.Options import qualified Agda.Syntax.Abstract as A import qualified Agda.Syntax.Abstract.Views as A import qualified Agda.Syntax.Info as A import Agda.Syntax.Concrete.Pretty () -- only Pretty instances import qualified Agda.Syntax.Concrete.Name as C import Agda.Syntax.Common import Agda.Syntax.Translation.AbstractToConcrete import Agda.Syntax.Concrete.Pretty import Agda.Syntax.Fixity import Agda.Syntax.Internal import Agda.Syntax.Position import Agda.Syntax.Literal import Agda.Syntax.Abstract.Views import Agda.Syntax.Scope.Base (emptyScopeInfo) import Agda.Syntax.Translation.InternalToAbstract (reify) import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin import Agda.TypeChecking.Substitute import Agda.TypeChecking.Reduce import Agda.TypeChecking.MetaVars import Agda.TypeChecking.Pretty import Agda.TypeChecking.Records import Agda.TypeChecking.RecordPatterns import Agda.TypeChecking.Conversion import Agda.TypeChecking.Implicit (implicitArgs) import Agda.TypeChecking.InstanceArguments import Agda.TypeChecking.Primitive import Agda.TypeChecking.Constraints import Agda.TypeChecking.Free hiding (Occurrence(..)) import Agda.TypeChecking.Telescope import Agda.TypeChecking.Datatypes import Agda.TypeChecking.Irrelevance import Agda.TypeChecking.EtaContract import Agda.TypeChecking.Quote import Agda.TypeChecking.CompiledClause import Agda.TypeChecking.Level import {-# SOURCE #-} Agda.TypeChecking.Rules.Builtin.Coinduction import Agda.TypeChecking.Rules.LHS (checkLeftHandSide) import Agda.Utils.Fresh import Agda.Utils.Tuple import Agda.Utils.Permutation import Agda.Utils.List (zipWithTails) import {-# SOURCE #-} Agda.TypeChecking.Empty (isEmptyType) import {-# SOURCE #-} Agda.TypeChecking.Rules.Decl (checkSectionApplication) import {-# SOURCE #-} Agda.TypeChecking.Rules.Def (checkFunDef,checkFunDef') import Agda.Utils.Monad import Agda.Utils.Size #include "../../undefined.h" import Agda.Utils.Impossible --------------------------------------------------------------------------- -- * Types --------------------------------------------------------------------------- -- | Check that an expression is a type. isType :: A.Expr -> Sort -> TCM Type isType e s = traceCall (IsTypeCall e s) $ do v <- checkExpr e (sort s) return $ El s v -- | Check that an expression is a type without knowing the sort. isType_ :: A.Expr -> TCM Type isType_ e = traceCall (IsType_ e) $ sharedType <$> case unScope e of A.Fun i (Arg h r t) b -> do a <- Dom h r <$> isType_ t b <- isType_ b return $ El (sLub (getSort $ unDom a) (getSort b)) (Pi a (NoAbs "_" b)) A.Pi _ tel e -> do checkTelescope_ tel $ \tel -> do t <- instantiateFull =<< isType_ e tel <- instantiateFull tel return $ telePi tel t A.Set _ n -> do n <- ifM typeInType (return 0) (return n) return $ sort (mkType n) A.App i s (Arg NotHidden r l) | A.Set _ 0 <- unScope s -> ifM (not <$> hasUniversePolymorphism) (typeError $ GenericError "Use --universe-polymorphism to enable level arguments to Set") $ do lvl <- primLevel -- allow NonStrict variables when checking level -- Set : (NonStrict) Level -> Set\omega n <- levelView =<< applyRelevanceToContext NonStrict (checkExpr (namedThing l) (El (mkType 0) lvl)) return $ sort (Type n) _ -> do s <- workOnTypes $ newSortMeta isType e s -- | Check that an expression is a type which is equal to a given type. isTypeEqualTo :: A.Expr -> Type -> TCM Type isTypeEqualTo e t = case e of A.ScopedExpr _ e -> isTypeEqualTo e t A.Underscore i | A.metaNumber i == Nothing -> return t e -> workOnTypes $ do t' <- isType e (getSort t) t' <$ leqType t t' leqType_ :: Type -> Type -> TCM () leqType_ t t' = workOnTypes $ leqType t t' {- UNUSED -- | Force a type to be a Pi. Instantiates if necessary. The 'Hiding' is only -- used when instantiating a meta variable. forcePi :: Hiding -> String -> Type -> TCM (Type, Constraints) forcePi h name (El s t) = do t' <- reduce t case t' of Pi _ _ -> return (El s t', []) _ -> do sa <- newSortMeta sb <- newSortMeta let s' = sLub sa sb a <- newTypeMeta sa x <- freshName_ name let arg = Arg h Relevant a b <- addCtx x arg $ newTypeMeta sb let ty = El s' $ Pi arg (Abs (show x) b) cs <- equalType (El s t') ty ty' <- reduce ty return (ty', cs) -} --------------------------------------------------------------------------- -- * Telescopes --------------------------------------------------------------------------- -- | Type check a telescope. Binds the variables defined by the telescope. checkTelescope_ :: A.Telescope -> (Telescope -> TCM a) -> TCM a checkTelescope_ [] ret = ret EmptyTel checkTelescope_ (b : tel) ret = checkTypedBindings_ b $ \tel1 -> checkTelescope_ tel $ \tel2 -> ret $ abstract tel1 tel2 -- | Check a typed binding and extends the context with the bound variables. -- The telescope passed to the continuation is valid in the original context. checkTypedBindings_ :: A.TypedBindings -> (Telescope -> TCM a) -> TCM a checkTypedBindings_ = checkTypedBindings PiNotLam data LamOrPi = LamNotPi | PiNotLam deriving (Eq,Show) -- | Check a typed binding and extends the context with the bound variables. -- The telescope passed to the continuation is valid in the original context. -- -- Parametrized by a flag wether we check a typed lambda or a Pi. This flag -- is needed for irrelevance. checkTypedBindings :: LamOrPi -> A.TypedBindings -> (Telescope -> TCM a) -> TCM a checkTypedBindings lamOrPi (A.TypedBindings i (Arg h rel b)) ret = checkTypedBinding lamOrPi h rel b $ \bs -> ret $ foldr (\(x,t) -> ExtendTel (Dom h rel t) . Abs x) EmptyTel bs checkTypedBinding :: LamOrPi -> Hiding -> Relevance -> A.TypedBinding -> ([(String,Type)] -> TCM a) -> TCM a checkTypedBinding lamOrPi h rel (A.TBind i xs e) ret = do -- Andreas, 2011-04-26 irrelevant function arguments may appear -- non-strictly in the codomain type -- 2011-10-04 if flag --experimental-irrelevance is set allowed <- optExperimentalIrrelevance <$> pragmaOptions t <- modEnv lamOrPi allowed $ isType_ e addCtxs xs (Dom h (modRel lamOrPi allowed rel) t) $ ret $ mkTel xs t where -- if we are checking a typed lambda, we resurrect before we check the -- types, but do not modify the new context entries -- otherwise, if we are checking a pi, we do not resurrect, but -- modify the new context entries modEnv LamNotPi True = doWorkOnTypes modEnv _ _ = id modRel PiNotLam True = irrToNonStrict modRel _ _ = id mkTel [] t = [] mkTel (x:xs) t = (show $ nameConcrete x,t) : mkTel xs (raise 1 t) checkTypedBinding lamOrPi h rel (A.TNoBind e) ret = do t <- isType_ e ret [("_",t)] -- | Type check a lambda expression. checkLambda :: Arg A.TypedBinding -> A.Expr -> Type -> TCM Term checkLambda (Arg _ _ A.TNoBind{}) _ _ = __IMPOSSIBLE__ checkLambda (Arg h r (A.TBind _ xs typ)) body target = do let numbinds = length xs TelV tel btyp <- telViewUpTo numbinds target if size tel < size xs || numbinds /= 1 then dontUseTargetType else useTargetType tel btyp where dontUseTargetType = do -- Checking λ (xs : argsT) → body : target verboseS "tc.term.lambda" 5 $ tick "lambda-no-target-type" -- First check that argsT is a valid type argsT <- workOnTypes $ Dom h r <$> isType_ typ -- In order to have as much type information as possible when checking -- body, we first unify (xs : argsT) → ?t₁ with the target type. If this -- is inconclusive we need to block the resulting term so we create a -- fresh problem for the check. t1 <- addCtxs xs argsT $ workOnTypes newTypeMeta_ let tel = telFromList $ mkTel xs argsT -- Do not coerce hidden lambdas if (h /= NotHidden) then do pid <- newProblem_ $ leqType (telePi tel t1) target -- Now check body : ?t₁ v <- addCtxs xs argsT $ checkExpr body t1 -- Block on the type comparison blockTermOnProblem target (teleLam tel v) pid else do -- Now check body : ?t₁ v <- addCtxs xs argsT $ checkExpr body t1 -- Block on the type comparison coerce (teleLam tel v) (telePi tel t1) target useTargetType tel@(ExtendTel arg (Abs y EmptyTel)) btyp = do verboseS "tc.term.lambda" 5 $ tick "lambda-with-target-type" unless (domHiding arg == h) $ typeError $ WrongHidingInLambda target -- Andreas, 2011-10-01 ignore relevance in lambda if not explicitly given let r' = domRelevance arg -- relevance of function type when (r == Irrelevant && r' /= r) $ typeError $ WrongIrrelevanceInLambda target -- unless (argRelevance arg == r) $ typeError $ WrongIrrelevanceInLambda target -- We only need to block the final term on the argument type -- comparison. The body will be blocked if necessary. We still want to -- compare the argument types first, so we spawn a new problem for that -- check. (pid, argT) <- newProblem $ isTypeEqualTo typ (unDom arg) v <- add x y (Dom h r' argT) $ checkExpr body btyp blockTermOnProblem target (Lam h $ Abs (show $ nameConcrete x) v) pid where [x] = xs add x y | C.isNoName (nameConcrete x) = addCtxString y | otherwise = addCtx x useTargetType _ _ = __IMPOSSIBLE__ mkTel [] t = [] mkTel (x : xs) t = ((,) s <$> t) : mkTel xs (raise 1 t) where s = show $ nameConcrete x --------------------------------------------------------------------------- -- * Literal --------------------------------------------------------------------------- checkLiteral :: Literal -> Type -> TCM Term checkLiteral lit t = do t' <- litType lit coerce (Lit lit) t' t -- moved to TypeChecking.Monad.Builtin to avoid import cycles: -- litType :: Literal -> TCM Type --------------------------------------------------------------------------- -- * Terms --------------------------------------------------------------------------- -- TODO: move somewhere suitable reduceCon :: QName -> TCM QName reduceCon c = do Con c [] <- ignoreSharing <$> (constructorForm =<< reduce (Con c [])) return c -- | @checkArguments' exph r args t0 t e k@ tries @checkArguments exph args t0 t@. -- If it succeeds, it continues @k@ with the returned results. If it fails, -- it registers a postponed typechecking problem and returns the resulting new -- meta variable. -- -- Checks @e := ((_ : t0) args) : t@. checkArguments' :: ExpandHidden -> ExpandInstances -> Range -> [NamedArg A.Expr] -> Type -> Type -> A.Expr -> (Args -> Type -> TCM Term) -> TCM Term checkArguments' exph expIFS r args t0 t e k = do z <- runErrorT $ checkArguments exph expIFS r args t0 t case z of Right (vs, t1) -> k vs t1 -- vs = evaluated args -- t1 = remaining type (needs to be subtype of t) -- cs = new constraints Left t0 -> postponeTypeCheckingProblem e t (unblockedTester t0) -- if unsuccessful, postpone checking e : t until t0 unblocks unScope (A.ScopedExpr scope e) = unScope e unScope e = e -- | Type check an expression. checkExpr :: A.Expr -> Type -> TCM Term checkExpr e t = verboseBracket "tc.term.expr.top" 5 "checkExpr" $ traceCall (CheckExpr e t) $ localScope $ shared <$> do reportSDoc "tc.term.expr.top" 15 $ text "Checking" <+> sep [ fsep [ prettyTCM e, text ":", prettyTCM t ] , nest 2 $ text "at " <+> (text . show =<< getCurrentRange) ] reportSDoc "tc.term.expr.top.detailed" 80 $ text "Checking" <+> fsep [ prettyTCM e, text ":", text (show t) ] t <- reduce t reportSDoc "tc.term.expr.top" 15 $ text " --> " <+> prettyTCM t let scopedExpr (A.ScopedExpr scope e) = setScope scope >> scopedExpr e scopedExpr e = return e unScope (A.ScopedExpr scope e) = unScope e unScope e = e e <- scopedExpr e case e of -- Insert hidden lambda if appropriate _ | Pi (Dom h rel _) _ <- ignoreSharing $ unEl t , not (hiddenLambdaOrHole h e) , h /= NotHidden -> do x <- freshName r (argName t) reportSLn "tc.term.expr.impl" 15 $ "Inserting implicit lambda" checkExpr (A.Lam (A.ExprRange $ getRange e) (domainFree h rel x) e) t where r = case rStart $ getRange e of Nothing -> noRange Just pos -> posToRange pos pos hiddenLambdaOrHole h (A.AbsurdLam _ h') | h == h' = True hiddenLambdaOrHole h (A.ExtendedLam _ _ _ []) = False hiddenLambdaOrHole h (A.ExtendedLam _ _ _ cls) = any hiddenLHS cls hiddenLambdaOrHole h (A.Lam _ (A.DomainFree h' _ _) _) | h == h' = True hiddenLambdaOrHole h (A.Lam _ (A.DomainFull (A.TypedBindings _ (Arg h' _ _))) _) | h == h' = True hiddenLambdaOrHole _ (A.QuestionMark _) = True hiddenLambdaOrHole _ _ = False hiddenLHS (A.Clause (A.LHS _ (A.LHSHead _ (a : _)) _) _ _) = elem (argHiding a) [Hidden, Instance] hiddenLHS _ = False -- a meta variable without arguments: type check directly for efficiency A.QuestionMark i -> checkMeta newQuestionMark t i A.Underscore i -> checkMeta (newValueMeta RunMetaOccursCheck) t i A.WithApp _ e es -> typeError $ NotImplemented "type checking of with application" -- check |- Set l : t (requires universe polymorphism) A.App i s (Arg NotHidden r l) | A.Set _ 0 <- unScope s -> ifM (not <$> hasUniversePolymorphism) (typeError $ GenericError "Use --universe-polymorphism to enable level arguments to Set") $ do lvl <- primLevel -- allow NonStrict variables when checking level -- Set : (NonStrict) Level -> Set\omega n <- levelView =<< applyRelevanceToContext NonStrict (checkExpr (namedThing l) (El (mkType 0) lvl)) -- check that Set (l+1) <= t reportSDoc "tc.univ.poly" 10 $ text "checking Set " <+> prettyTCM n <+> text "against" <+> prettyTCM t coerce (Sort $ Type n) (sort $ sSuc $ Type n) t A.App i q (Arg NotHidden r e) | A.Quote _ <- unScope q -> do let quoted (A.Def x) = return x quoted (A.Con (AmbQ [x])) = return x quoted (A.Con (AmbQ xs)) = typeError $ GenericError $ "quote: Ambigous name: " ++ show xs quoted (A.ScopedExpr _ e) = quoted e quoted _ = typeError $ GenericError $ "quote: not a defined name" x <- quoted (namedThing e) ty <- qNameType coerce (quoteName x) ty t | A.QuoteTerm _ <- unScope q -> do (et, _) <- inferExpr (namedThing e) q <- quoteTerm =<< normalise et ty <- el primAgdaTerm coerce q ty t | A.Unquote _ <- unScope q -> do e1 <- checkExpr (namedThing e) =<< el primAgdaTerm e2 <- unquote e1 checkTerm e2 t A.Quote _ -> typeError $ GenericError "quote must be applied to a defined name" A.QuoteTerm _ -> typeError $ GenericError "quoteTerm must be applied to a term" A.Unquote _ -> typeError $ GenericError "unquote must be applied to a term" A.AbsurdLam i h -> do t <- instantiateFull t ifBlockedType t (\ m t' -> postponeTypeCheckingProblem_ e t') $ \ t' -> do case ignoreSharing $ unEl t' of Pi dom@(Dom h' r a) _ | h == h' && not (null $ allMetas a) -> postponeTypeCheckingProblem e t' $ null . allMetas <$> instantiateFull a | h == h' -> blockTerm t' $ do isEmptyType (getRange i) a -- Add helper function top <- currentModule let name = "absurd" aux <- qualify top <$> freshName (getRange i) name -- if we are in irrelevant position, the helper function -- is added as irrelevant rel <- asks envRelevance reportSDoc "tc.term.absurd" 10 $ vcat [ text "Adding absurd function" <+> prettyTCM rel <> prettyTCM aux , nest 2 $ text "of type" <+> prettyTCM t' ] addConstant aux $ Defn rel aux t' [Nonvariant] [Unused] (defaultDisplayForm aux) 0 noCompiledRep $ Function { funClauses = [Clause { clauseRange = getRange e , clauseTel = EmptyTel -- telFromList [fmap ("()",) dom] , clausePerm = Perm 1 [] -- Perm 1 [0] , clausePats = [Arg h r $ VarP "()"] , clauseBody = Bind $ NoAbs "()" NoBody } ] , funCompiled = Fail , funDelayed = NotDelayed , funInv = NotInjective , funAbstr = ConcreteDef {- , funPolarity = [Nonvariant] -- WAS: [Covariant] , funArgOccurrences = [Unused] -} , funMutual = [] , funProjection = Nothing , funStatic = False , funCopy = False , funTerminates = Just True } -- Andreas 2012-01-30: since aux is lifted to toplevel -- it needs to be applied to the current telescope (issue 557) tel <- getContextTelescope return $ Def aux $ teleArgs tel -- WAS: return (Def aux []) | otherwise -> typeError $ WrongHidingInLambda t' _ -> typeError $ ShouldBePi t' {- OLD A.ExtendedLam i di qname cs -> do t <- reduceB =<< instantiateFull t let isMeta t = case ignoreSharing $ unEl t of { MetaV{} -> True; _ -> False } case t of Blocked{} -> postponeTypeCheckingProblem_ e $ ignoreBlocking t NotBlocked t' | isMeta t' -> postponeTypeCheckingProblem_ e $ ignoreBlocking t NotBlocked t -> do -} A.ExtendedLam i di qname cs -> do t <- instantiateFull t ifBlockedType t (\ m t' -> postponeTypeCheckingProblem_ e t') $ \ t -> do j <- currentOrFreshMutualBlock rel <- asks envRelevance addConstant qname $ Defn rel qname t [] [] (defaultDisplayForm qname) j noCompiledRep Axiom reportSDoc "tc.term.exlam" 50 $ text "extended lambda's implementation \"" <> prettyTCM qname <> text "\" has type: " $$ prettyTCM t -- <+> -- text " where clauses: " <+> text (show cs) abstract (A.defAbstract di) $ checkFunDef' t rel NotDelayed di qname cs args <- getContextArgs top <- currentModule freevars <- getSecFreeVars top let argsNoParam = genericDrop freevars args -- don't count module parameters let (hid, notHid) = partition ((Hidden ==) . argHiding) argsNoParam addExtLambdaTele qname (length hid, length notHid) reduce $ (Def qname [] `apply` args) where -- Concrete definitions cannot use information about abstract things. abstract ConcreteDef = inConcreteMode abstract AbstractDef = inAbstractMode A.Lam i (A.DomainFull (A.TypedBindings _ b)) e -> checkLambda b e t A.Lam i (A.DomainFree h rel x) e0 -> checkExpr (A.Lam i (domainFree h rel x) e0) t A.Lit lit -> checkLiteral lit t A.Let i ds e -> checkLetBindings ds $ checkExpr e t A.Pi _ tel e -> do t' <- checkTelescope_ tel $ \tel -> do t <- instantiateFull =<< isType_ e tel <- instantiateFull tel return $ telePi tel t let s = getSort t' when (s == Inf) $ reportSDoc "tc.term.sort" 20 $ vcat [ text ("reduced to omega:") , nest 2 $ text "t =" <+> prettyTCM t' , nest 2 $ text "cxt =" <+> (prettyTCM =<< getContextTelescope) ] coerce (unEl t') (sort s) t A.Fun _ (Arg h r a) b -> do a' <- isType_ a b' <- isType_ b s <- reduce $ getSort a' `sLub` getSort b' coerce (Pi (Dom h r a') (NoAbs "_" b')) (sort s) t A.Set _ n -> do n <- ifM typeInType (return 0) (return n) coerce (Sort $ mkType n) (sort $ mkType $ n + 1) t A.Prop _ -> do typeError $ GenericError "Prop is no longer supported" -- s <- ifM typeInType (return $ mkType 0) (return Prop) -- coerce (Sort Prop) (sort $ mkType 1) t A.Rec _ fs -> do t <- reduce t case ignoreSharing $ unEl t of Def r vs -> do axs <- getRecordFieldNames r let xs = map unArg axs ftel <- getRecordFieldTypes r con <- getRecordConstructor r scope <- getScope let arg x e = case [ a | a <- axs, unArg a == x ] of [a] -> unnamed e <$ a _ -> defaultNamedArg e -- we only end up here if the field names are bad let meta x = A.Underscore $ A.MetaInfo (getRange e) scope Nothing (show x) missingExplicits = [ (unArg a, [unnamed . meta <$> a]) | a <- axs, argHiding a == NotHidden , notElem (unArg a) (map fst fs) ] -- In es omitted explicit fields are replaced by underscores -- (from missingExplicits). Omitted implicit or instance fields -- are still left out and inserted later by checkArguments_. es <- concat <$> orderFields r [] xs ([ (x, [arg x e]) | (x, e) <- fs ] ++ missingExplicits) let tel = ftel `apply` vs args <- checkArguments_ ExpandLast (getRange e) es -- (zipWith (\ax e -> fmap (const (unnamed e)) ax) axs es) tel -- Don't need to block here! return $ Con con args MetaV _ _ -> do let fields = map fst fs rs <- findPossibleRecords fields case rs of -- If there are no records with the right fields we might as well fail right away. [] -> case fs of [] -> typeError $ GenericError "There are no records in scope" [(f, _)] -> typeError $ GenericError $ "There is no known record with the field " ++ show f _ -> typeError $ GenericError $ "There is no known record with the fields " ++ unwords (map show fields) -- If there's only one record with the appropriate fields, go with that. [r] -> do def <- getConstInfo r vs <- newArgsMeta (defType def) let target = piApply (defType def) vs s = case ignoreSharing $ unEl target of Level l -> Type l Sort s -> s _ -> __IMPOSSIBLE__ inferred = El s $ Def r vs v <- checkExpr e inferred coerce v inferred t -- Andreas 2012-04-21: OLD CODE, WRONG DIRECTION, I GUESS: -- blockTerm t $ v <$ leqType_ t inferred -- If there are more than one possible record we postpone _:_:_ -> do reportSDoc "tc.term.expr.rec" 10 $ sep [ text "Postponing type checking of" , nest 2 $ prettyA e <+> text ":" <+> prettyTCM t ] postponeTypeCheckingProblem_ e t _ -> typeError $ ShouldBeRecordType t A.RecUpdate ei recexpr fs -> do case ignoreSharing $ unEl t of Def r vs -> do rec <- checkExpr recexpr t name <- freshNoName (getRange recexpr) addLetBinding Relevant name rec t $ do projs <- recFields <$> getRecordDef r axs <- getRecordFieldNames r scope <- getScope let xs = map unArg axs es <- orderFields r Nothing xs $ map (\(x, e) -> (x, Just e)) fs let es' = zipWith (replaceFields name ei) projs es checkExpr (A.Rec ei [ (x, e) | (x, Just e) <- zip xs es' ]) t MetaV _ _ -> do inferred <- inferExpr recexpr >>= reduce . snd case ignoreSharing $ unEl inferred of MetaV _ _ -> postponeTypeCheckingProblem_ e t _ -> do v <- checkExpr e inferred coerce v inferred t _ -> typeError $ ShouldBeRecordType t where replaceFields :: Name -> A.ExprInfo -> Arg A.QName -> Maybe A.Expr -> Maybe A.Expr replaceFields n ei (Arg NotHidden _ p) Nothing = Just $ A.App ei (A.Def p) $ defaultNamedArg $ A.Var n replaceFields _ _ (Arg _ _ _) Nothing = Nothing replaceFields _ _ _ (Just e) = Just $ e A.DontCare e -> -- resurrect vars ifM ((Irrelevant ==) <$> asks envRelevance) (DontCare <$> do applyRelevanceToContext Irrelevant $ checkExpr e t) (internalError "DontCare may only appear in irrelevant contexts") {- STALE?: Andreas, 2011-10-03 why do I get an internal error for Issue337? -- except that should be fixed now (issue 337) __IMPOSSIBLE__ -} A.ScopedExpr scope e -> setScope scope >> checkExpr e t e0@(A.QuoteGoal _ x e) -> do t' <- etaContract =<< normalise t let metas = allMetas t' case metas of _:_ -> postponeTypeCheckingProblem e0 t' $ andM $ map isInstantiatedMeta metas [] -> do quoted <- quoteTerm (unEl t') tmType <- agdaTermType (v, ty) <- addLetBinding Relevant x quoted tmType (inferExpr e) blockTerm t' $ coerce v ty t' A.ETel _ -> __IMPOSSIBLE__ -- Application -- Subcase: ambiguous constructor _ | Application (A.Con (AmbQ cs@(_:_:_))) args <- appView e -> do -- First we should figure out which constructor we want. reportSLn "tc.check.term" 40 $ "Ambiguous constructor: " ++ show cs -- Get the datatypes of the various constructors let getData Constructor{conData = d} = d getData _ = __IMPOSSIBLE__ reportSLn "tc.check.term" 40 $ " ranges before: " ++ show (getRange cs) -- We use the reduced constructor when disambiguating, but -- the original constructor for type checking. This is important -- since they may have different types (different parameters). -- See issue 279. cs <- zip cs . zipWith setRange (map getRange cs) <$> mapM reduceCon cs reportSLn "tc.check.term" 40 $ " ranges after: " ++ show (getRange cs) reportSLn "tc.check.term" 40 $ " reduced: " ++ show cs dcs <- mapM (\(c0, c1) -> (getData /\ const c0) . theDef <$> getConstInfo c1) cs -- Type error let badCon t = typeError $ DoesNotConstructAnElementOf (fst $ head cs) t {- OLD CODE -- Lets look at the target type at this point let getCon = do TelV _ t1 <- telView t t1 <- reduceB $ unEl t1 reportSDoc "tc.check.term.con" 40 $ nest 2 $ text "target type: " <+> prettyTCM t1 case ignoreSharing <$> t1 of NotBlocked (Def d _) -> do let dataOrRec = case [ c | (d', c) <- dcs, d == d' ] of [c] -> do reportSLn "tc.check.term" 40 $ " decided on: " ++ show c return (Just c) [] -> badCon (Def d []) cs -> typeError $ GenericError $ "Can't resolve overloaded constructors targeting the same datatype (" ++ show d ++ "): " ++ unwords (map show cs) defn <- theDef <$> getConstInfo d case defn of Datatype{} -> dataOrRec Record{} -> dataOrRec _ -> badCon (ignoreBlocking t1) NotBlocked (MetaV _ _) -> return Nothing Blocked{} -> return Nothing _ -> badCon (ignoreBlocking t1) -} -- Lets look at the target type at this point let getCon = do TelV _ t1 <- telView t reportSDoc "tc.check.term.con" 40 $ nest 2 $ text "target type: " <+> prettyTCM t1 ifBlocked (unEl t1) (\ m t -> return Nothing) $ \ t' -> (isDataOrRecord t' >>=) $ maybe (badCon t') $ \ d -> case [ c | (d', c) <- dcs, d == d' ] of [c] -> do reportSLn "tc.check.term" 40 $ " decided on: " ++ show c return (Just c) [] -> badCon (Def d []) cs -> typeError $ GenericError $ "Can't resolve overloaded constructors targeting the same datatype (" ++ show d ++ "): " ++ unwords (map show cs) let unblock = isJust <$> getCon -- to unblock, call getCon later again mc <- getCon case mc of Just c -> checkConstructorApplication e t c args Nothing -> postponeTypeCheckingProblem e t unblock -- Subcase: non-ambiguous constructor | Application (A.Con (AmbQ [c])) args <- appView e -> checkConstructorApplication e t c args -- Subcase: pattern synonym | Application (A.PatternSyn n) args <- appView e -> do (ns, p) <- lookupPatternSyn n -- Expand the pattern synonym by substituting for -- the arguments we have got and lambda-lifting -- over the ones we haven't. let (zs, ns', as) = zipWithTails (\n a -> (n, namedThing (unArg a))) ns args p' = A.patternToExpr $ setRange (getRange n) p e' = A.lambdaLiftExpr ns' (A.substExpr zs p') `A.app` as checkExpr e' t -- Subcase: defined symbol or variable. | Application hd args <- appView e -> checkHeadApplication e t hd args domainFree h rel x = A.DomainFull $ A.TypedBindings r $ Arg h rel $ A.TBind r [x] $ A.Underscore info where r = getRange x info = A.MetaInfo { A.metaRange = r , A.metaScope = emptyScopeInfo , A.metaNumber = Nothing , A.metaNameSuggestion = show x } checkMeta :: (Type -> TCM Term) -> Type -> A.MetaInfo -> TCM Term checkMeta newMeta t i = do case A.metaNumber i of Nothing -> do setScope (A.metaScope i) v <- newMeta t setValueMetaName v (A.metaNameSuggestion i) return v -- Rechecking an existing metavariable Just n -> do let v = MetaV (MetaId n) [] t' <- jMetaType . mvJudgement <$> lookupMeta (MetaId n) coerce v t' t inferMeta :: (Type -> TCM Term) -> A.MetaInfo -> TCM (Args -> Term, Type) inferMeta newMeta i = case A.metaNumber i of Nothing -> do setScope (A.metaScope i) t <- workOnTypes $ newTypeMeta_ v <- newMeta t return (apply v, t) -- Rechecking an existing metavariable Just n -> do let v = MetaV (MetaId n) t' <- jMetaType . mvJudgement <$> lookupMeta (MetaId n) return (v, t') -- | Infer the type of a head thing (variable, function symbol, or constructor) inferHead :: A.Expr -> TCM (Args -> Term, Type) inferHead (A.Var x) = do -- traceCall (InferVar x) $ do (u, a) <- getVarInfo x when (unusableRelevance $ domRelevance a) $ typeError $ VariableIsIrrelevant x return (apply u, unDom a) inferHead (A.Def x) = do proj <- isProjection x case proj of Nothing -> do (u, a) <- inferDef Def x return (apply u, a) Just{} -> do Just (r, n) <- funProjection . theDef <$> getConstInfo x cxt <- size <$> freeVarsToApply x m <- getDefFreeVars x reportSDoc "tc.term.proj" 10 $ sep [ text "building projection" <+> prettyTCM x , nest 2 $ parens (text "ctx =" <+> text (show cxt)) , nest 2 $ parens (text "n =" <+> text (show n)) , nest 2 $ parens (text "m =" <+> text (show m)) ] let hs | n == 0 = __IMPOSSIBLE__ | otherwise = genericReplicate (n - 1) NotHidden -- TODO: hiding names = [ s ++ [c] | s <- "" : names, c <- ['a'..'z'] ] eta = foldr (\(h, s) -> Lam h . NoAbs s) (Def x []) (zip hs names) (u, a) <- inferDef (\f vs -> eta `apply` vs) x return (apply u, a) inferHead (A.Con (AmbQ [c])) = do -- Constructors are polymorphic internally so when building the constructor -- term we should throw away arguments corresponding to parameters. -- First, inferDef will try to apply the constructor to the free parameters -- of the current context. We ignore that. (u, a) <- inferDef (\c _ -> Con c []) c -- Next get the number of parameters in the current context. Constructor{conPars = n} <- theDef <$> (instantiateDef =<< getConstInfo c) verboseS "tc.term.con" 7 $ do reportSLn "" 0 $ unwords [show c, "has", show n, "parameters."] -- So when applying the constructor throw away the parameters. return (apply u . genericDrop n, a) inferHead (A.Con _) = __IMPOSSIBLE__ -- inferHead will only be called on unambiguous constructors inferHead (A.QuestionMark i) = inferMeta newQuestionMark i inferHead (A.Underscore i) = inferMeta (newValueMeta RunMetaOccursCheck) i inferHead e = do (term, t) <- inferExpr e return (apply term, t) inferDef :: (QName -> Args -> Term) -> QName -> TCM (Term, Type) inferDef mkTerm x = traceCall (InferDef (getRange x) x) $ do d <- instantiateDef =<< getConstInfo x -- irrelevant defs are only allowed in irrelevant position let drel = defRelevance d when (drel /= Relevant) $ do rel <- asks envRelevance reportSDoc "tc.irr" 50 $ vcat [ text "declaration relevance =" <+> text (show drel) , text "context relevance =" <+> text (show rel) ] unless (drel `moreRelevant` rel) $ typeError $ DefinitionIsIrrelevant x vs <- freeVarsToApply x verboseS "tc.term.def" 10 $ do ds <- mapM prettyTCM vs dx <- prettyTCM x dt <- prettyTCM $ defType d reportSLn "" 0 $ "inferred def " ++ unwords (show dx : map show ds) ++ " : " ++ show dt return (mkTerm x vs, defType d) -- | Check the type of a constructor application. This is easier than -- a general application since the implicit arguments can be inserted -- without looking at the arguments to the constructor. checkConstructorApplication :: A.Expr -> Type -> QName -> [NamedArg A.Expr] -> TCM Term checkConstructorApplication org t c args = do reportSDoc "tc.term.con" 50 $ vcat [ text "entering checkConstructorApplication" , nest 2 $ vcat [ text "org =" <+> prettyTCM org , text "t =" <+> prettyTCM t , text "c =" <+> prettyTCM c , text "args =" <+> prettyTCM args ] ] let (args', paramsGiven) = checkForParams args if paramsGiven then fallback else do reportSDoc "tc.term.con" 50 $ text "checkConstructorApplication: no parameters explicitly supplied, continuing..." cdef <- getConstInfo c let Constructor{conData = d} = theDef cdef reportSDoc "tc.term.con" 50 $ nest 2 $ text "d =" <+> prettyTCM d -- Issue 661: t maybe an evaluated form of d .., so we evaluate d -- as well and then check wether we deal with the same datatype t0 <- reduce (Def d []) case (ignoreSharing t0, ignoreSharing $ unEl t) of -- Only fully applied constructors get special treatment (Def d0 _, Def d' vs) -> do reportSDoc "tc.term.con" 50 $ nest 2 $ text "d0 =" <+> prettyTCM d0 reportSDoc "tc.term.con" 50 $ nest 2 $ text "d' =" <+> prettyTCM d' reportSDoc "tc.term.con" 50 $ nest 2 $ text "vs =" <+> prettyTCM vs if d' /= d0 then fallback else do -- Issue 661: d' may take more parameters than d, in particular -- these additional parameters could be a module parameter telescope. -- Since we get the constructor type ctype from d but the parameters -- from t = Def d' vs, we drop the additional parameters. npars <- getNumberOfParameters d npars' <- getNumberOfParameters d' flip (maybe fallback) (sequenceA $ List2 (npars, npars')) $ \(List2 (n,n')) -> do reportSDoc "tc.term.con" 50 $ nest 2 $ text $ "n = " ++ show n reportSDoc "tc.term.con" 50 $ nest 2 $ text $ "n' = " ++ show n' -- when (n > n') __IMPOSSIBLE__ -- NOT IN SCOPE `__IMPOSSIBLE__' WHY??? when (n > n') bla let ps = genericTake n $ genericDrop (n' - n) vs ctype = defType cdef reportSDoc "tc.term.con" 20 $ vcat [ text "special checking of constructor application of" <+> prettyTCM c , nest 2 $ vcat [ text "ps =" <+> prettyTCM ps , text "ctype =" <+> prettyTCM ctype ] ] let ctype' = ctype `piApply` ps reportSDoc "tc.term.con" 20 $ nest 2 $ text "ctype' =" <+> prettyTCM ctype' -- check the non-parameter arguments checkArguments' ExpandLast ExpandInstanceArguments (getRange c) args' ctype' t org $ \us t' -> do reportSDoc "tc.term.con" 20 $ nest 2 $ vcat [ text "us =" <+> prettyTCM us , text "t' =" <+> prettyTCM t' ] coerce (Con c us) t' t _ -> do reportSDoc "tc.term.con" 50 $ nest 2 $ text "we are not at a datatype, falling back" fallback where fallback = checkHeadApplication org t (A.Con (AmbQ [c])) args bla = __IMPOSSIBLE__ -- Check if there are explicitly given hidden arguments, -- in which case we fall back to default type checking. -- We could work harder, but let's not for now. -- -- Andreas, 2012-04-18: if all inital args are underscores, ignore them checkForParams args = let (hargs, rest) = span isHiddenArg args removeScope (A.ScopedExpr _ e) = removeScope e removeScope e = e notUnderscore A.Underscore{} = False notUnderscore _ = True in (rest,) $ any notUnderscore $ map (removeScope . namedArg) hargs {- UNUSED CODE, BUT DON'T REMOVE (2012-04-18) -- Split the arguments to a constructor into those corresponding -- to parameters and those that don't. Dummy underscores are inserted -- for parameters that are not given explicitly. splitArgs [] args = ([], args) splitArgs ps [] = (map (const dummyUnderscore) ps, args) splitArgs ps args@(Arg NotHidden _ _ : _) = (map (const dummyUnderscore) ps, args) splitArgs (p:ps) (arg : args) | elem mname [Nothing, Just p] = (arg :) *** id $ splitArgs ps args | otherwise = (dummyUnderscore :) *** id $ splitArgs ps (arg:args) where mname = nameOf (unArg arg) dummyUnderscore = Arg Hidden Relevant (unnamed $ A.Underscore $ A.MetaInfo noRange emptyScopeInfo Nothing) -} -- | @checkHeadApplication e t hd args@ checks that @e@ has type @t@, -- assuming that @e@ has the form @hd args@. The corresponding -- type-checked term is returned. -- -- If the head term @hd@ is a coinductive constructor, then a -- top-level definition @fresh tel = hd args@ (where the clause is -- delayed) is added, where @tel@ corresponds to the current -- telescope. The returned term is @fresh tel@. -- -- Precondition: The head @hd@ has to be unambiguous, and there should -- not be any need to insert hidden lambdas. checkHeadApplication :: A.Expr -> Type -> A.Expr -> [NamedArg A.Expr] -> TCM Term checkHeadApplication e t hd args = do kit <- coinductionKit case hd of A.Con (AmbQ [c]) | Just c == (nameOfSharp <$> kit) -> do -- Type checking # generated #-wrapper. The # that the user can write will be a Def, -- but the sharp we generate in the body of the wrapper is a Con. defaultResult A.Con (AmbQ [c]) -> do (f, t0) <- inferHead hd reportSDoc "tc.term.con" 5 $ vcat [ text "checkHeadApplication inferred" <+> prettyTCM c <+> text ":" <+> prettyTCM t0 ] checkArguments' ExpandLast ExpandInstanceArguments (getRange hd) args t0 t e $ \vs t1 -> do TelV eTel eType <- telView t -- If the expected type @eType@ is a metavariable we have to make -- sure it's instantiated to the proper pi type TelV fTel fType <- telViewUpTo (size eTel) t1 -- We know that the target type of the constructor (fType) -- does not depend on fTel so we can compare fType and eType -- first. when (size eTel > size fTel) $ typeError $ UnequalTypes CmpLeq t1 t -- switch because of contravariance -- Andreas, 2011-05-10 report error about types rather telescopes -- compareTel CmpLeq eTel fTel >> return () -- This will fail! reportSDoc "tc.term.con" 10 $ vcat [ text "checking" <+> prettyTCM fType <+> text "?<=" <+> prettyTCM eType ] blockTerm t $ f vs <$ workOnTypes (do addCtxTel eTel $ leqType fType eType compareTel t t1 CmpLeq eTel fTel) (A.Def c) | Just c == (nameOfSharp <$> kit) -> do -- TODO: Handle coinductive constructors under lets. lets <- envLetBindings <$> ask unless (Map.null lets) $ typeError $ NotImplemented "coinductive constructor in the scope of a let-bound variable" -- The name of the fresh function. i <- fresh :: TCM Int let name = filter (/= '_') (show $ A.qnameName c) ++ "-" ++ show i c' <- setRange (getRange c) <$> liftM2 qualify (killRange <$> currentModule) (freshName_ name) -- The application of the fresh function to the relevant -- arguments. e' <- Def c' <$> getContextArgs -- Add the type signature of the fresh function to the -- signature. i <- currentOrFreshMutualBlock tel <- getContextTelescope -- If we are in irrelevant position, add definition irrelevantly. -- TODO: is this sufficient? rel <- asks envRelevance addConstant c' (Defn rel c' t [] [] (defaultDisplayForm c') i noCompiledRep $ Axiom) -- Define and type check the fresh function. ctx <- getContext let info = A.mkDefInfo (A.nameConcrete $ A.qnameName c') defaultFixity' PublicAccess ConcreteDef noRange pats = map (\ (Dom h r (n, _)) -> Arg h r $ Named Nothing $ A.VarP n) $ reverse ctx clause = A.Clause (A.LHS (A.LHSRange noRange) (A.LHSHead c' pats) []) (A.RHS $ unAppView (A.Application (A.Con (AmbQ [c])) args)) [] reportSDoc "tc.term.expr.coind" 15 $ vcat $ [ text "The coinductive constructor application" , nest 2 $ prettyTCM e , text "was translated into the application" , nest 2 $ prettyTCM e' , text "and the function" , nest 2 $ prettyTCM rel <> prettyTCM c' <+> text ":" , nest 4 $ prettyTCM (telePi tel t) , nest 2 $ prettyA clause <> text "." ] escapeContextToTopLevel $ checkFunDef Delayed info c' [clause] reportSDoc "tc.term.expr.coind" 15 $ do def <- theDef <$> getConstInfo c' text "The definition is" <+> text (show $ funDelayed def) <> text "." return e' A.Con _ -> __IMPOSSIBLE__ _ -> defaultResult where defaultResult = do (f, t0) <- inferHead hd checkArguments' ExpandLast ExpandInstanceArguments (getRange hd) args t0 t e $ \vs t1 -> coerce (f vs) t1 t instance Error Type where strMsg _ = __IMPOSSIBLE__ noMsg = __IMPOSSIBLE__ traceCallE :: Error e => (Maybe r -> Call) -> ErrorT e TCM r -> ErrorT e TCM r traceCallE call m = do z <- lift $ traceCall call' $ runErrorT m case z of Right e -> return e Left err -> throwError err where call' Nothing = call Nothing call' (Just (Left _)) = call Nothing call' (Just (Right x)) = call (Just x) -- | Check a list of arguments: @checkArgs args t0 t1@ checks that -- @t0 = Delta -> t0'@ and @args : Delta@. Inserts hidden arguments to -- make this happen. Returns the evaluated arguments @vs@, the remaining -- type @t0'@ (which should be a subtype of @t1@) and any constraints @cs@ -- that have to be solved for everything to be well-formed. -- -- TODO: doesn't do proper blocking of terms checkArguments :: ExpandHidden -> ExpandInstances -> Range -> [NamedArg A.Expr] -> Type -> Type -> ErrorT Type TCM (Args, Type) checkArguments DontExpandLast _ _ [] t0 t1 = return ([], t0) checkArguments exh expandIFS r [] t0 t1 = traceCallE (CheckArguments r [] t0 t1) $ lift $ do t1' <- unEl <$> reduce t1 implicitArgs (-1) (expand t1') t0 where expand (Pi (Dom h _ _) _) Hidden = h /= Hidden expand _ Hidden = True expand (Pi (Dom h _ _) _) Instance = h /= Instance && expandIFS == ExpandInstanceArguments expand _ Instance = expandIFS == ExpandInstanceArguments expand _ NotHidden = False {- OLD CODE checkArguments exh expandIFS r [] t0 t1 = traceCallE (CheckArguments r [] t0 t1) $ do t0' <- lift $ reduce t0 t1' <- lift $ reduce t1 case ignoreSharing $ unEl t0' of Pi (Dom Hidden rel a) _ | notHPi Hidden $ unEl t1' -> do v <- lift $ applyRelevanceToContext rel $ newValueMeta RunMetaOccursCheck a let arg = Arg Hidden rel v (vs, t0'') <- checkArguments exh expandIFS r [] (piApply t0' [arg]) t1' return (arg : vs, t0'') Pi (Dom Instance rel a) _ | expandIFS == ExpandInstanceArguments && (notHPi Instance $ unEl t1') -> do lift $ reportSLn "tc.term.args.ifs" 15 $ "inserting implicit meta for type " ++ show a v <- lift $ applyRelevanceToContext rel $ initializeIFSMeta a let arg = Arg Instance rel v (vs, t0'') <- checkArguments exh expandIFS r [] (piApply t0' [arg]) t1' return (arg : vs, t0'') _ -> return ([], t0') where notHPi h (Pi (Dom h' _ _) _) | h == h' = False notHPi h (Shared p) = notHPi h $ derefPtr p notHPi _ _ = True -} checkArguments exh expandIFS r args0@(Arg h _ e : args) t0 t1 = traceCallE (CheckArguments r args0 t0 t1) $ do lift $ reportSDoc "tc.term.args" 30 $ sep [ text "checkArguments" -- , text " args0 =" <+> prettyA args0 , nest 2 $ vcat [ text "e =" <+> prettyA e , text "t0 =" <+> prettyTCM t0 , text "t1 =" <+> prettyTCM t1 ] ] t0b <- lift $ reduceB t0 let isMeta t = case ignoreSharing $ unEl t of { MetaV{} -> True; _ -> False } case t0b of Blocked{} -> throwError $ ignoreBlocking t0b NotBlocked t0' | isMeta t0' -> throwError $ ignoreBlocking t0b NotBlocked t0' -> do -- (t0', cs) <- forcePi h (name e) t0 e' <- return $ namedThing e case ignoreSharing $ unEl t0' of Pi (Dom h' rel a) _ | h == h' && (h == NotHidden || sameName (nameOf e) (nameInPi $ unEl t0')) -> do u <- lift $ applyRelevanceToContext rel $ checkExpr e' a let arg = Arg h rel u -- save relevance info in argument (us, t0'') <- checkArguments exh expandIFS (fuseRange r e) args (piApply t0' [arg]) t1 return (arg : us, t0'') {- UNUSED. 2012-04-02 do not insert DontCare (is redundant anyway) where nukeIfIrrelevant arg = if argRelevance arg == Irrelevant then -- Andreas, 2011-09-09 keep irr. args. until after termination checking arg { unArg = DontCare $ unArg arg } else arg -} Pi (Dom Instance rel a) b | expandIFS == ExpandInstanceArguments -> insertIFSUnderscore rel (absName b) a Pi (Dom Hidden rel a) b -> insertUnderscore rel (absName b) Pi (Dom NotHidden _ _) _ -> lift $ typeError $ WrongHidingInApplication t0' _ -> lift $ typeError $ ShouldBePi t0' where insertIFSUnderscore rel x a = do lift $ reportSLn "tc.term.args.ifs" 15 $ "inserting implicit meta (2) for type " ++ show a v <- lift $ applyRelevanceToContext rel $ initializeIFSMeta x a let arg = Arg Instance rel v (vs, t0'') <- checkArguments exh expandIFS r args0 (piApply t0 [arg]) t1 return (arg : vs, t0'') insertUnderscore rel x = do scope <- lift $ getScope let m = A.Underscore $ A.MetaInfo { A.metaRange = r , A.metaScope = scope , A.metaNumber = Nothing , A.metaNameSuggestion = x } checkArguments exh expandIFS r (Arg Hidden rel (unnamed m) : args0) t0 t1 name (Named _ (A.Var x)) = show x name (Named (Just x) _) = x name _ = "x" sameName Nothing _ = True sameName n1 n2 = n1 == n2 nameInPi (Pi _ b) = Just $ absName b nameInPi (Shared p) = nameInPi (derefPtr p) nameInPi _ = __IMPOSSIBLE__ -- | Check that a list of arguments fits a telescope. checkArguments_ :: ExpandHidden -> Range -> [NamedArg A.Expr] -> Telescope -> TCM Args checkArguments_ exh r args tel = do z <- runErrorT $ checkArguments exh ExpandInstanceArguments r args (telePi tel $ sort Prop) (sort Prop) case z of Right (args, _) -> return args Left _ -> __IMPOSSIBLE__ -- | Infer the type of an expression. Implemented by checking against a meta -- variable. Except for neutrals, for them a polymorphic type is inferred. inferExpr :: A.Expr -> TCM (Term, Type) inferExpr e = inferOrCheck e Nothing {- case e of _ | Application hd args <- appView e, defOrVar hd -> traceCall (InferExpr e) $ do (f, t0) <- inferHead hd res <- runErrorT $ checkArguments DontExpandLast ExpandInstanceArguments (getRange hd) args t0 (sort Prop) case res of Right (vs, t1) -> return (f vs, t1) Left t1 -> fallback -- blocked on type t1 _ -> fallback where fallback = do t <- workOnTypes $ newTypeMeta_ v <- checkExpr e t return (v,t) -} defOrVar :: A.Expr -> Bool defOrVar A.Var{} = True defOrVar A.Def{} = True defOrVar _ = False inferOrCheck :: A.Expr -> Maybe Type -> TCM (Term, Type) inferOrCheck e mt = case e of _ | Application hd args <- appView e, defOrVar hd -> traceCall (InferExpr e) $ do (f, t0) <- inferHead hd res <- runErrorT $ checkArguments DontExpandLast ExpandInstanceArguments (getRange hd) args t0 $ maybe (sort Prop) id mt case res of Right (vs, t1) -> maybe (return (f vs, t1)) (\ t -> (,t) <$> coerce (f vs) t1 t) mt Left t1 -> fallback -- blocked on type t1 _ -> fallback where fallback = do t <- maybe (workOnTypes $ newTypeMeta_) return mt v <- checkExpr e t return (v,t) -- | Infer the type of an expression, and if it is of the form -- @{tel} -> D vs@ for some datatype @D@ then insert the hidden -- arguments. Otherwise, leave the type polymorphic. inferExprForWith :: A.Expr -> TCM (Term, Type) inferExprForWith e = do (v, t) <- inferExpr e TelV tel t0 <- telViewUpTo' (-1) ((NotHidden /=) . domHiding) t case ignoreSharing $ unEl t0 of Def d vs -> do res <- isDataOrRecordType d case res of Nothing -> return (v, t) Just{} -> do (args, t1) <- implicitArgs (-1) (NotHidden /=) t return (v `apply` args, t1) _ -> return (v, t) checkTerm :: Term -> Type -> TCM Term checkTerm tm ty = do atm <- reify tm checkExpr atm ty --------------------------------------------------------------------------- -- * Let bindings --------------------------------------------------------------------------- checkLetBindings :: [A.LetBinding] -> TCM a -> TCM a checkLetBindings = foldr (.) id . map checkLetBinding checkLetBinding :: A.LetBinding -> TCM a -> TCM a checkLetBinding b@(A.LetBind i rel x t e) ret = traceCallCPS_ (CheckLetBinding b) ret $ \ret -> do t <- isType_ t v <- applyRelevanceToContext rel $ checkExpr e t addLetBinding rel x v t ret checkLetBinding b@(A.LetPatBind i p e) ret = traceCallCPS_ (CheckLetBinding b) ret $ \ret -> do (v, t) <- inferExpr e let -- construct a type t -> dummy for use in checkLeftHandSide t0 = El (getSort t) $ Pi (Dom NotHidden Relevant t) (NoAbs "_" typeDontCare) p0 = Arg NotHidden Relevant (Named Nothing p) reportSDoc "tc.term.let.pattern" 10 $ vcat [ text "let-binding pattern p at type t" , nest 2 $ vcat [ text "p (A) =" <+> text (show p) -- prettyTCM p , text "t =" <+> prettyTCM t ] ] checkLeftHandSide (CheckPattern p EmptyTel t) [p0] t0 $ \ mgamma delta sub xs ps t' perm -> do -- A single pattern in internal syntax is returned. let p = case ps of [p] -> unArg p; _ -> __IMPOSSIBLE__ reportSDoc "tc.term.let.pattern" 20 $ nest 2 $ vcat [ text "p (I) =" <+> text (show p) , text "delta =" <+> text (show delta) ] -- We translate it into a list of projections. fs <- recordPatternToProjections p -- We remove the bindings for the pattern variables from the context. cxt0 <- getContext let (binds, cxt) = splitAt (size delta) cxt0 escapeContext (length binds) $ do reportSDoc "tc.term.let.pattern" 20 $ nest 2 $ vcat [ text "delta =" <+> prettyTCM delta , text "binds =" <+> text (show binds) -- prettyTCM binds ] {- WE CANNOT USE THIS BINDING -- We add a first let-binding for the value of e. x <- freshNoName (getRange e) addLetBinding Relevant x v t $ do -} -- We create a substitution for the let-bound variables -- (unfortunately, we cannot refer to x in internal syntax -- so we have to copy v). let sigma = zipWith ($) fs (repeat v) -- We apply the types of the let bound-variables to this substitution. -- The 0th variable in a context is the last one, so we reverse. -- Further, we need to lower all other de Bruijn indices by -- the size of delta, so we append the identity substitution. let sub = parallelS (reverse sigma) let fdelta = flattenTel delta reportSDoc "tc.term.let.pattern" 20 $ nest 2 $ vcat [ text "fdelta =" <+> text (show fdelta) ] let tsl = applySubst sub fdelta -- We get a list of types let ts = map unDom tsl -- and relevances. let rels = map domRelevance tsl -- We get list of names of the let-bound vars from the context. let xs = map (fst . unDom) (reverse binds) -- We add all the bindings to the context. foldr (uncurry4 addLetBinding) ret $ zip4 rels xs sigma ts checkLetBinding (A.LetApply i x modapp rd rm) ret = do -- Any variables in the context that doesn't belong to the current -- module should go with the new module. -- fv <- getDefFreeVars =<< (qnameFromList . mnameToList) <$> currentModule fv <- getModuleFreeVars =<< currentModule n <- size <$> getContext let new = n - fv reportSLn "tc.term.let.apply" 10 $ "Applying " ++ show modapp ++ " with " ++ show new ++ " free variables" reportSDoc "tc.term.let.apply" 20 $ vcat [ text "context =" <+> (prettyTCM =<< getContextTelescope) , text "module =" <+> (prettyTCM =<< currentModule) , text "fv =" <+> (text $ show fv) ] checkSectionApplication i x modapp rd rm withAnonymousModule x new ret -- LetOpen is only used for highlighting and has no semantics checkLetBinding A.LetOpen{} ret = ret