{-# LANGUAGE CPP, TypeOperators, PatternGuards, FlexibleInstances, TypeSynonymInstances, OverlappingInstances #-} module Agda.Compiler.Epic.Injection where import Control.Monad.State import Control.Monad.Reader import Data.List import Data.Map(Map) import qualified Data.Map as M import Data.Maybe import Data.Set(Set) import qualified Data.Set as S import Agda.Syntax.Common import Agda.Syntax.Internal as I import Agda.Syntax.Internal.Pattern (FunArity(..)) import Agda.Syntax.Literal import Agda.TypeChecking.CompiledClause import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin import Agda.TypeChecking.Pretty import Agda.TypeChecking.Reduce import Agda.TypeChecking.Substitute import Agda.Utils.List import Agda.Utils.Monad import qualified Agda.Utils.HashMap as HM import Agda.Compiler.Epic.CompileState import Agda.Compiler.Epic.Interface as Interface #include "../../undefined.h" import Agda.Utils.Impossible -- | Find potentially injective functions, solve constraints to fix some constructor -- tags and make functions whose constraints are fulfilled injections findInjection :: [(QName, Definition)] -> Compile TCM [(QName, Definition)] findInjection defs = do funs <- forM defs $ \(name, def) -> case theDef def of f@(Function{}) -> isInjective name (funClauses f) _ -> return Nothing newNames <- M.keys <$> gets (Interface.conArity . curModule) injFuns <- solve newNames (catMaybes funs) defs' <- forM defs $ \(q, def) -> case q `isIn` injFuns of Nothing -> return (q, def) Just inj@(InjectiveFun nvar arity) -> case theDef def of f@(Function{}) -> do modifyEI $ \s -> s { injectiveFuns = M.insert q inj (injectiveFuns s) } let ns = replicate arity (defaultArg "") return $ (,) q $ def { theDef = f { funCompiled = Just $ Done ns $ var $ arity - nvar - 1 } } _ -> __IMPOSSIBLE__ lift $ reportSLn "epic.injection" 10 $ "injfuns: " ++ show injFuns return defs' where q `isIn` funs = case filter (\(nam, _) -> q == nam) funs of [] -> Nothing (_,x):_ -> Just x replaceFunCC :: QName -> CompiledClauses -> Compile TCM () replaceFunCC name cc = do lift $ modify $ \s -> s { stSignature = (stSignature s) { sigDefinitions = HM.adjust replaceDef name (sigDefinitions (stSignature s)) } , stImports = (stImports s) { sigDefinitions = HM.adjust replaceDef name (sigDefinitions (stImports s)) } } where replaceDef :: Definition -> Definition replaceDef def = case theDef def of f@(Function{}) -> def {theDef = f { funCompiled = Just $ cc } } x -> __IMPOSSIBLE__ -- | If the pairs of constructor names have the same tags, the function is -- injective. If Nothing, the function is not injective. type InjConstraints = Maybe [(QName,QName)] isInjective :: QName -- ^ Name of the function being tested -> [Clause] -- ^ The function's clauses -> Compile TCM (Maybe ((QName, InjectiveFun) , [(QName, QName)] -- These construtors should have the same name )) isInjective nam [] = return Nothing isInjective nam cls@(cl : _) = do lift $ reportSLn "epic.injection" 20 $ "checking isInjective " ++ show nam let total = funArity cls (listToMaybe . catMaybes <$>) . forM [0 .. total - 1] $ \i -> do cli <- forM cls $ \ cl -> isInjectiveHere nam i cl let cli' = catMaybes cli return $ if length cli == length cli' then Just ((nam, InjectiveFun i total), concat cli') else Nothing patternToTerm :: Nat -> Pattern -> Term patternToTerm n p = case p of VarP v -> var n DotP t -> t ConP c typ args -> Con c $ zipWith (\ arg t -> arg {unArg = t}) args $ snd $ foldr (\ arg (n, ts) -> (n + nrBinds arg, patternToTerm n arg : ts)) (n , []) $ map namedArg args LitP l -> Lit l ProjP d -> Def d [] -- Andreas, 2012-10-31 that might not be enought to get a term from list of patterns (TODO) nrBinds :: Num i => Pattern -> i nrBinds p = case p of VarP v -> 1 DotP t -> 0 ConP c typ args -> sum $ map (nrBinds . namedArg) args LitP l -> 0 ProjP{} -> 0 substForDot :: [I.NamedArg Pattern] -> Substitution substForDot = makeSubst 0 0 . reverse . calcDots where makeSubst i accum [] = raiseS (i + accum) makeSubst i accum (True : ps) = makeSubst i (accum +1) ps makeSubst i accum (False : ps) = var (i + accum) :# makeSubst (i+1) accum ps calcDots = concatMap calcDots' . map namedArg calcDots' p = case p of VarP v -> [False] DotP t -> [True] ConP c typ args -> calcDots args LitP l -> [False] ProjP{} -> [False] isInjectiveHere :: QName -- ^ Name of the function being tested -> Int -- ^ The current argument -> Clause -> Compile TCM InjConstraints isInjectiveHere nam idx clause = do lift $ reportSDoc "epic.injection" 40 $ sep [ text "isInjectiveHere" , prettyTCM nam , text ("argumentNo=" ++ show idx) -- , prettyTCM (clausePats clause) ] case getBody clause of Nothing -> return emptyC Just body -> do let t = patternToTerm idxR $ unArg $ fromMaybe __IMPOSSIBLE__ $ clausePats clause !!! idx t' = applySubst (substForDot $ namedClausePats clause) t idxR = sum . map (nrBinds . unArg) . genericDrop (idx + 1) $ clausePats clause body' <- lift $ reduce body lift $ reportSLn "epic.injection" 40 "reduced body" injFs <- gets (injectiveFuns . importedModules) lift $ reportSLn "epic.injection" 40 "calculated injFs" res <- (t' <: body') `runReaderT` (M.insert nam (InjectiveFun idx (length (clausePats clause))) injFs) lift $ reportSDoc "epic.injection" 20 $ vcat [ text "isInjective:" <+> text (show nam) , text "at Index :" <+> text (show idx) , nest 2 $ vcat [ text "clause :" <+> text (show clause) , text "t :" <+> prettyTCM t , text "idxR :" <+> (text . show) idxR , text "body' :" <+> (text . show) body' ] , text "res :" <+> text (show res) ] return res -- | Turn NATURAL literal n into suc^n zero. litToCon :: Literal -> TCM Term litToCon l = case l of LitInt r n | n > 0 -> do inner <- litToCon (LitInt r (n - 1)) suc <- primSuc return $ suc `apply` [defaultArg inner] | otherwise -> primZero -- LitLevel _ n -> -- Does not really matter lit -> return $ Lit lit litInt :: Literal -> Bool litInt LitInt{} = True litInt _ = False insertAt :: (Nat,Term) -> Term -> Term insertAt (index, ins) = applySubst ([var i | i <- [0 .. index - 1]] ++# ins :# raiseS (index + 1)) solve :: [QName] -> [((QName, InjectiveFun), [(QName,QName)])] -> Compile TCM [(QName, InjectiveFun)] solve newNames xs = do lift $ reportSDoc "epic.injection" 30 $ sep $ text "Epic.Injection.solve" : map prettyTCM newNames -- Only primitive lists should be in the current module at this point, -- but we still want them conGraph <- M.union <$> gets (constrTags . curModule) <*> gets (constrTags . importedModules) (funs, mconstr) <- ($ xs) $ flip foldM ([] , Just $ initialTags conGraph newNames) $ \ (xs , prev) (fun , con) -> do m <- foldM solvable prev con return $ case m of Nothing -> (xs, prev) Just next -> (fun : xs, m) case mconstr of Nothing -> __IMPOSSIBLE__ Just constr -> updateTags constr return funs where solvable :: Maybe Tags -> (QName, QName) -> Compile TCM (Maybe Tags) solvable Nothing _ = return Nothing solvable (Just st) (c1, c2) = unify c1 c2 st updateTags :: Tags -> Compile TCM () updateTags tags = do let (hasTags, eqs) = M.partition isTag (constrGroup tags) isTag (IsTag _) = True isTag _ = False forM (M.toList hasTags) $ \ (c, tagged) -> case tagged of IsTag tag -> putCon c tag _ -> __IMPOSSIBLE__ case M.toList eqs of (c, Same n) : _ -> do let grp = eqGroups tags !!!! n tag <- assignConstrTag' c (S.toList grp) updateTags . fromMaybe __IMPOSSIBLE__ =<< setTag n tag tags { constrGroup = eqs } _ -> return () putCon :: QName -> Tag -> Compile TCM () putCon con tag = do m <- gets (constrTags . importedModules) case M.lookup con m of Nothing -> putConstrTag con tag Just _ -> return () -- old emptyC :: InjConstraints emptyC = Just [] addConstraint :: QName -> QName -> InjConstraints -> InjConstraints addConstraint q1 q2 Nothing = Nothing addConstraint q1 q2 (Just xs) = Just (if q1 == q2 then xs else (q1,q2) : xs) unionConstraints :: [InjConstraints] -> InjConstraints unionConstraints [] = Just [] unionConstraints (Nothing : _) = Nothing unionConstraints (Just c : cs) = do cs' <- unionConstraints cs return (c ++ cs') -- | Are two terms injectible? -- Tries to find a mapping between constructors that equates the terms. -- -- Precondition: t1 is normalised, t2 is in WHNF -- When reducing t2, it may become a literal, which makes this not work in some cases... class Injectible a where (<:) :: a -> a -> ReaderT (QName :-> InjectiveFun) (Compile TCM) InjConstraints instance Injectible a => Injectible (I.Arg a) where a1 <: a2 = unArg a1 <: unArg a2 instance Injectible a => Injectible [a] where l1 <: l2 | length l1 == length l2 = unionConstraints <$> zipWithM (<:) l1 l2 | otherwise = return Nothing instance Injectible a => Injectible (Elim' a) where e1 <: e2 = case (e1, e2) of (Proj f1 , Proj f2 ) | f1 == f2 -> return $ Just [] (Apply a1, Apply a2) -> a1 <: a2 _ -> return Nothing instance Injectible Term where t1 <: t2 = do injs <- ask -- Andreas, 2013-10-18: ignoring the precondition (NF, WHNF) since I am not maintaining it -- in recursive calls. -- The original code did not follow this invariant in the Var-Var and Def-Def case, -- thus, I am not trusting it. Also the call site does not seem to ensure it. -- It could be restored by only reducing the right argument in the Arg-instance. -- (t1, t2) <- lift . lift . reduce $ (t1, t2) -- NOTE: reduce *introduces* Lit! Loops! case (t1, t2) of (Lit l, Lit l') | l == l' -> return $ Just [] (Lit l, _) | litInt l -> do l' <- lift . lift $ litToCon l l' <: t2 (_, Lit l) | litInt l -> do l' <- lift . lift $ litToCon l t1 <: l' (_, Def n2 es2) | Just (InjectiveFun argn arit) <- M.lookup n2 injs -> do if genericLength es2 /= arit then return Nothing else do case es2 !!! argn of Nothing -> __IMPOSSIBLE__ Just (Proj{}) -> __IMPOSSIBLE__ Just (Apply a) -> t1 <: unArg a (Var i1 es1, Var i2 es2) | i1 == i2 -> es1 <: es2 (Def q1 es1, Def q2 es2) | q1 == q2 -> es1 <: es2 (Con con1 args1, Con con2 args2) -> do let c1 = conName con1 c2 = conName con2 args1' <- flip notForced args1 <$> do lift . getForcedArgs $ c1 args2' <- flip notForced args2 <$> do lift . getForcedArgs $ c2 addConstraint c1 c2 <$> do args1' <: args2' _ -> return Nothing {- (_, Def n2 args2) | Just (InjectiveFun argn arit) <- M.lookup n2 injs -> do if genericLength args2 /= arit then return Nothing else do arg <- lift . lift . reduce $ unArg $ args2 !! argn t1 <: arg (Var n1 args1, Var n2 args2) | n1 == n2 && length args1 == length args2 -> do args1' <- map unArg <$> mapM (lift . lift . reduce) args1 args2' <- map unArg <$> mapM (lift . lift . reduce) args2 unionConstraints <$> zipWithM (\a b -> (a <: b)) args1' args2' (Def q1 args1, Def q2 args2) | q1 == q2 && length args1 == length args2 -> do args1' <- map unArg <$> mapM (lift . lift . reduce) args1 args2' <- map unArg <$> mapM (lift . lift . reduce) args2 unionConstraints <$> zipWithM (\a b -> (a <: b)) args1' args2' (Con con1 args1, Con con2 args2) -> do let c1 = conName con1 c2 = conName con2 args1' <- map unArg <$> flip notForced args1 <$> getForcedArgs c1 args2' <- map unArg <$> (mapM (lift . lift . reduce) =<< flip notForced args2 <$> getForcedArgs c2) if length args1' == length args2' then addConstraint c1 c2 <$> unionConstraints <$> zipWithM (\a b -> (a <: b)) args1' args2' else return Nothing _ -> return Nothing -} data TagEq = Same Int | IsTag Tag deriving Eq data Tags = Tags { eqGroups :: Int :-> Set QName , constrGroup :: QName :-> TagEq } initialTags :: Map QName Tag -> [QName] -> Tags initialTags setTags newNames = Tags { eqGroups = M.fromList $ zip [0..] (map S.singleton newNames) , constrGroup = M.map IsTag setTags `M.union` M.fromList (zip newNames (map Same [0..])) } unify :: QName -> QName -> Tags -> Compile TCM (Maybe Tags) unify c1 c2 ts = do let g1 = constrGroup ts !!!! c1 g2 = constrGroup ts !!!! c2 case (g1, g2) of (Same n1, Same n2) | n1 == n2 -> return $ Just ts (IsTag t1, IsTag t2) | t1 == t2 -> return $ Just ts (Same n1, Same n2) -> mergeGroups n1 n2 ts (Same n1, IsTag t2) -> setTag n1 t2 ts (IsTag t1 , Same n2) -> setTag n2 t1 ts _ -> return $ Nothing setTag :: Int -> Tag -> Tags -> Compile TCM (Maybe Tags) setTag gid tag ts = return $ Just $ ts { constrGroup = foldr (\c -> M.insert c (IsTag tag)) (constrGroup ts) (S.toList $ eqGroups ts !!!! gid)} mergeGroups :: Int -> Int -> Tags -> Compile TCM (Maybe Tags) mergeGroups n1 n2 ts = do let g1s = eqGroups ts !!!! n1 g2s = eqGroups ts !!!! n2 gs = S.union g1s g2s g1l = S.toList g1s g2l = S.toList g2s ifNotM (andM $ zipWith unifiable g1l g2l) (return Nothing) $ return $ Just $ ts { eqGroups = M.delete n2 $ M.insert n1 gs (eqGroups ts) , constrGroup = M.fromList [ (e2, Same n1) | e2 <- g2l ] `M.union` constrGroup ts } unifiable :: QName -> QName -> Compile TCM Bool unifiable c1 c2 = do d1 <- getConData c1 d2 <- getConData c2 return $ d1 /= d2 (!!!!) :: Ord k => k :-> v -> k -> v m !!!! k = case M.lookup k m of Nothing -> __IMPOSSIBLE__ Just x -> x