{-# LANGUAGE CPP, PatternGuards, DeriveDataTypeable #-} module Agda.Syntax.Concrete.Definitions ( NiceDeclaration(..) , NiceConstructor, NiceTypeSignature , Clause(..) , DeclarationException(..) , Nice, runNice , niceDeclarations , notSoNiceDeclaration ) where import Control.Arrow ((***)) import Control.Applicative import Control.Monad.Error import Control.Monad.State import Data.Typeable (Typeable) import Data.Foldable hiding (concatMap, mapM_, notElem, elem, all) import qualified Data.Map as Map import Data.Map (Map) import Data.List as List import Data.Traversable (traverse) import Agda.Syntax.Concrete import Agda.Syntax.Common hiding (Arg, Dom, NamedArg, ArgInfo) import qualified Agda.Syntax.Common as Common import Agda.Syntax.Position import Agda.Syntax.Fixity import Agda.Syntax.Notation import Agda.Syntax.Concrete.Pretty () import Agda.Utils.Pretty import Agda.Utils.List (mhead, isSublistOf) import Agda.Utils.Monad import Agda.Utils.Update #include "../../undefined.h" import Agda.Utils.Impossible {-------------------------------------------------------------------------- Types --------------------------------------------------------------------------} {-| The nice declarations. No fixity declarations and function definitions are contained in a single constructor instead of spread out between type signatures and clauses. The @private@, @postulate@, and @abstract@ modifiers have been distributed to the individual declarations. -} data NiceDeclaration = Axiom Range Fixity' Access ArgInfo Name Expr -- ^ Axioms and functions can be declared irrelevant. (Hiding should be NotHidden) | NiceField Range Fixity' Access IsAbstract Name (Arg Expr) | PrimitiveFunction Range Fixity' Access IsAbstract Name Expr | NiceMutual Range TerminationCheck [NiceDeclaration] | NiceModule Range Access IsAbstract QName Telescope [Declaration] | NiceModuleMacro Range Access Name ModuleApplication OpenShortHand ImportDirective | NiceOpen Range QName ImportDirective | NiceImport Range QName (Maybe AsName) OpenShortHand ImportDirective | NicePragma Range Pragma | NiceRecSig Range Fixity' Access Name [LamBinding] Expr | NiceDataSig Range Fixity' Access Name [LamBinding] Expr | NiceFunClause Range Access IsAbstract TerminationCheck Declaration -- ^ a uncategorized function clause, could be a function clause -- without type signature or a pattern lhs (e.g. for irrefutable let)x | FunSig Range Fixity' Access ArgInfo TerminationCheck Name Expr | FunDef Range [Declaration] Fixity' IsAbstract TerminationCheck Name [Clause] -- ^ block of function clauses (we have seen the type signature before) | DataDef Range Fixity' IsAbstract Name [LamBinding] [NiceConstructor] | RecDef Range Fixity' IsAbstract Name (Maybe (Ranged Induction)) (Maybe (ThingWithFixity Name)) [LamBinding] [NiceDeclaration] | NicePatternSyn Range Fixity' Name [Arg Name] Pattern deriving (Typeable, Show) -- | Termination check? (Default = True). type TerminationCheck = Bool -- | Only 'Axiom's. type NiceConstructor = NiceTypeSignature -- | Only 'Axiom's. type NiceTypeSignature = NiceDeclaration -- | One clause in a function definition. There is no guarantee that the 'LHS' -- actually declares the 'Name'. We will have to check that later. data Clause = Clause Name LHS RHS WhereClause [Clause] deriving (Typeable, Show) -- | The exception type. data DeclarationException = MultipleFixityDecls [(Name, [Fixity'])] | MissingDefinition Name | MissingWithClauses Name | MissingTypeSignature LHS -- Andreas 2012-06-02: currently unused, remove after a while -- Fredrik 2012-09-20: now used, can we keep it? | MissingDataSignature Name | WrongDefinition Name DataRecOrFun DataRecOrFun | WrongParameters Name | NotAllowedInMutual NiceDeclaration | UnknownNamesInFixityDecl [Name] | Codata Range | DeclarationPanic String | UselessPrivate Range | UselessAbstract Range | AmbiguousFunClauses LHS [Name] -- ^ in a mutual block, a clause could belong to any of the @[Name]@ type signatures | InvalidNoTerminationCheckPragma Range deriving (Typeable) instance HasRange DeclarationException where getRange (MultipleFixityDecls xs) = getRange (fst $ head xs) getRange (MissingDefinition x) = getRange x getRange (MissingWithClauses x) = getRange x getRange (MissingTypeSignature x) = getRange x getRange (MissingDataSignature x) = getRange x getRange (WrongDefinition x k k') = getRange x getRange (WrongParameters x) = getRange x getRange (AmbiguousFunClauses lhs xs) = getRange lhs getRange (NotAllowedInMutual x) = getRange x getRange (UnknownNamesInFixityDecl xs) = getRange . head $ xs getRange (Codata r) = r getRange (DeclarationPanic _) = noRange getRange (UselessPrivate r) = r getRange (UselessAbstract r) = r getRange (InvalidNoTerminationCheckPragma r) = r instance HasRange NiceDeclaration where getRange (Axiom r _ _ _ _ _) = r getRange (NiceField r _ _ _ _ _) = r getRange (NiceMutual r _ _) = r getRange (NiceModule r _ _ _ _ _) = r getRange (NiceModuleMacro r _ _ _ _ _) = r getRange (NiceOpen r _ _) = r getRange (NiceImport r _ _ _ _) = r getRange (NicePragma r _) = r getRange (PrimitiveFunction r _ _ _ _ _) = r getRange (FunSig r _ _ _ _ _ _) = r getRange (FunDef r _ _ _ _ _ _) = r getRange (DataDef r _ _ _ _ _) = r getRange (RecDef r _ _ _ _ _ _ _) = r getRange (NiceRecSig r _ _ _ _ _) = r getRange (NiceDataSig r _ _ _ _ _) = r getRange (NicePatternSyn r _ _ _ _) = r getRange (NiceFunClause r _ _ _ _) = r instance Error DeclarationException where noMsg = strMsg "" strMsg = DeclarationPanic instance Show DeclarationException where show (MultipleFixityDecls xs) = show $ sep [ fsep $ pwords "Multiple fixity declarations for" , vcat $ map f xs ] where f (x, fs) = pretty x <> text ":" <+> fsep (map (text . show) fs) show (MissingDefinition x) = show $ fsep $ pwords "Missing definition for" ++ [pretty x] show (MissingWithClauses x) = show $ fsep $ pwords "Missing with-clauses for function" ++ [pretty x] show (MissingTypeSignature x) = show $ fsep $ pwords "Missing type signature for left hand side" ++ [pretty x] show (MissingDataSignature x) = show $ fsep $ pwords "Missing type signature for " ++ [pretty x] show (WrongDefinition x k k') = show $ fsep $ pretty x : pwords ("has been declared as a " ++ show k ++ ", but is being defined as a " ++ show k') show (WrongParameters x) = show $ fsep $ pwords "List of parameters does not match previous signature for" ++ [pretty x] show (AmbiguousFunClauses lhs xs) = show $ fsep $ pwords "More than one matching type signature for left hand side" ++ [pretty lhs] ++ pwords "it could belong to any of:" ++ map pretty xs show (UnknownNamesInFixityDecl xs) = show $ fsep $ pwords "Names out of scope in fixity declarations:" ++ map pretty xs show (UselessPrivate _) = show $ fsep $ pwords "Using private here has no effect. Private applies only to declarations that introduce new identifiers into the module, like type signatures and data, record, and module declarations." show (UselessAbstract _) = show $ fsep $ pwords "Using abstract here has no effect. Abstract applies only definitions like data definitions, record type definitions and function clauses." show (InvalidNoTerminationCheckPragma _) = show $ fsep $ pwords "The NO_TERMINATION_CHECK pragma can only preceed a mutual block or a function definition." show (NotAllowedInMutual nd) = show $ fsep $ [text $ decl nd] ++ pwords "are not allowed in mutual blocks" where decl (Axiom{}) = "Postulates" decl (NiceField{}) = "Fields" decl (NiceMutual{}) = "Mutual blocks" decl (NiceModule{}) = "Modules" decl (NiceModuleMacro{}) = "Modules" decl (NiceOpen{}) = "Open declarations" decl (NiceImport{}) = "Import statements" decl (NicePragma{}) = "Pragmas" decl (PrimitiveFunction{}) = "Primitive declarations" decl (NicePatternSyn{}) = "Pattern synonyms" decl _ = __IMPOSSIBLE__ show (Codata _) = "The codata construction has been removed. " ++ "Use the INFINITY builtin instead." show (DeclarationPanic s) = s {-------------------------------------------------------------------------- The niceifier --------------------------------------------------------------------------} data InMutual = InMutual -- ^ we are nicifying a mutual block | NotInMutual -- ^ we are nicifying decls not in a mutual block deriving (Eq, Show) -- | The kind of the forward declaration, remembering the parameters. data DataRecOrFun = DataName Params -- ^ name of a data with parameters | RecName Params -- ^ name of a record with parameters | FunName TerminationCheck -- ^ name of a function deriving (Eq, Ord) type Params = [Hiding] instance Show DataRecOrFun where show (DataName n) = "data type" -- "with " ++ show n ++ " visible parameters" show (RecName n) = "record type" -- "with " ++ show n ++ " visible parameters" show (FunName{}) = "function" isFunName :: DataRecOrFun -> Bool isFunName (FunName{}) = True isFunName _ = False sameKind :: DataRecOrFun -> DataRecOrFun -> Bool sameKind DataName{} DataName{} = True sameKind RecName{} RecName{} = True sameKind FunName{} FunName{} = True sameKind _ _ = False terminationCheck :: DataRecOrFun -> Bool terminationCheck (FunName tc) = tc terminationCheck _ = True type LoneSigs = [(DataRecOrFun, Name)] data NiceEnv = NiceEnv { loneSigs :: LoneSigs -- ^ lone type signatures that wait for their definition , fixs :: Map Name Fixity' } initNiceEnv :: NiceEnv initNiceEnv = NiceEnv { loneSigs = [] , fixs = Map.empty } type Nice = StateT NiceEnv (Either DeclarationException) addLoneSig :: DataRecOrFun -> Name -> Nice () addLoneSig k x = modify $ \ niceEnv -> niceEnv { loneSigs = (k, x) : loneSigs niceEnv } removeLoneSig :: Name -> Nice () removeLoneSig x = modify $ \ niceEnv -> niceEnv { loneSigs = filter (\ (k', x') -> x /= x') $ loneSigs niceEnv } -- | Search for forward type signature that getSig :: Name -> Nice (Maybe DataRecOrFun) getSig n = gets $ fmap fst . List.find (\ (k, x) -> x == n) . loneSigs noLoneSigs :: Nice Bool noLoneSigs = gets $ null . loneSigs -- | Ensure that all forward declarations have been given a definition. checkLoneSigs :: LoneSigs -> Nice () checkLoneSigs xs = case xs of [] -> return () (_, x):_ -> throwError $ MissingDefinition x getFixity :: Name -> Nice Fixity' getFixity x = gets $ Map.findWithDefault defaultFixity' x . fixs runNice :: Nice a -> Either DeclarationException a runNice nice = nice `evalStateT` initNiceEnv data DeclKind = LoneSig DataRecOrFun Name | LoneDef DataRecOrFun Name | OtherDecl deriving (Eq, Show) declKind (FunSig _ _ _ _ tc x _) = LoneSig (FunName tc) x declKind (NiceRecSig _ _ _ x pars _) = LoneSig (RecName $ parameters pars) x declKind (NiceDataSig _ _ _ x pars _) = LoneSig (DataName $ parameters pars) x declKind (FunDef _ _ _ _ tc x _) = LoneDef (FunName tc) x declKind (DataDef _ _ _ x pars _) = LoneDef (DataName $ parameters pars) x declKind (RecDef _ _ _ x _ _ pars _) = LoneDef (RecName $ parameters pars) x declKind _ = OtherDecl -- | Compute visible parameters of a data or record signature or definition. parameters :: [LamBinding] -> Params parameters = List.concat . List.map numP where numP (DomainFree i _) = [argInfoHiding i] numP (DomainFull (TypedBindings _ (Common.Arg i (TBind _ xs _)))) = List.replicate (length xs) $ argInfoHiding i numP (DomainFull (TypedBindings _ (Common.Arg _ TLet{}))) = [] {- OLD: -- | Compute number of visible parameters of a data or record signature or definition. numberOfPars :: [LamBinding] -> Params numberOfPars = List.sum . List.map numP where numP (DomainFree NotHidden _ _) = 1 numP (DomainFull (TypedBindings _ (Arg NotHidden _ (TBind _ xs _)))) = length xs numP _ = 0 -- hidden / instance argument -- | Compute number of parameters of a data or record signature or definition. numberOfPars :: [LamBinding] -> Int numberOfPars = List.sum . List.map numP where numP (DomainFree{}) = 1 numP (DomainFull (TypedBindings _ arg)) = nP $ unArg arg where nP (TBind _ xs _) = length xs -} niceDeclarations :: [Declaration] -> Nice [NiceDeclaration] niceDeclarations ds = do fixs <- fixities ds case Map.keys fixs \\ concatMap declaredNames ds of [] -> localState $ do put $ initNiceEnv { fixs = fixs } ds <- nice ds checkLoneSigs =<< gets loneSigs modify $ \s -> s { loneSigs = [] } inferMutualBlocks ds xs -> throwError $ UnknownNamesInFixityDecl xs where -- Compute the names defined in a declaration declaredNames :: Declaration -> [Name] declaredNames d = case d of TypeSig _ x _ -> [x] Field x _ -> [x] FunClause (LHS p [] [] []) _ _ | IdentP (QName x) <- removeSingletonRawAppP p -> [x] FunClause{} -> [] DataSig _ _ x _ _ -> [x] Data _ _ x _ _ cs -> x : concatMap declaredNames cs RecordSig _ x _ _ -> [x] Record _ x _ c _ _ _ -> x : foldMap (:[]) c Infix _ _ -> [] Syntax _ _ -> [] PatternSyn _ x _ _ -> [x] Mutual _ ds -> concatMap declaredNames ds Abstract _ ds -> concatMap declaredNames ds Private _ ds -> concatMap declaredNames ds Postulate _ ds -> concatMap declaredNames ds Primitive _ ds -> concatMap declaredNames ds Open{} -> [] Import{} -> [] ModuleMacro{} -> [] Module{} -> [] Pragma{} -> [] inferMutualBlocks :: [NiceDeclaration] -> Nice [NiceDeclaration] inferMutualBlocks [] = return [] inferMutualBlocks (d : ds) = case declKind d of OtherDecl -> (d :) <$> inferMutualBlocks ds LoneDef _ x -> __IMPOSSIBLE__ LoneSig k x -> do addLoneSig k x (tc, (ds0, ds1)) <- untilAllDefined (terminationCheck k) ds -- Record modules are, for performance reasons, not always -- placed in mutual blocks. let prefix = case (d, ds0) of (NiceRecSig{}, [r@RecDef{}]) -> ([d, r] ++) _ -> (NiceMutual (getRange (d : ds0)) tc (d : ds0) :) prefix <$> inferMutualBlocks ds1 where untilAllDefined :: TerminationCheck -> [NiceDeclaration] -> Nice (TerminationCheck, ([NiceDeclaration], [NiceDeclaration])) untilAllDefined tc ds = do done <- noLoneSigs if done then return (tc, ([], ds)) else case ds of [] -> __IMPOSSIBLE__ <$ (checkLoneSigs =<< gets loneSigs) d : ds -> case declKind d of LoneSig k x -> addLoneSig k x >> cons d (untilAllDefined (tc && terminationCheck k) ds) LoneDef k x -> removeLoneSig x >> cons d (untilAllDefined (tc && terminationCheck k) ds) OtherDecl -> cons d (untilAllDefined tc ds) where cons d = fmap (id *** (d :) *** id) nice :: [Declaration] -> Nice [NiceDeclaration] nice [] = return [] nice (Pragma (NoTerminationCheckPragma r) : ds@(Mutual{} : _)) = do ds <- nice ds case ds of NiceMutual r _ ds' : ds -> return $ NiceMutual r False ds' : ds _ -> __IMPOSSIBLE__ nice (Pragma (NoTerminationCheckPragma r) : d@TypeSig{} : ds) = niceTypeSig False d ds nice (Pragma (NoTerminationCheckPragma r) : d@FunClause{} : ds) = niceFunClause False d ds nice (d:ds) = do case d of TypeSig{} -> niceTypeSig True d ds FunClause{} -> niceFunClause True d ds Field x t -> (++) <$> niceAxioms [ d ] <*> nice ds DataSig r CoInductive x tel t -> throwError (Codata r) Data r CoInductive x tel t cs -> throwError (Codata r) DataSig r Inductive x tel t -> do addLoneSig (DataName $ parameters tel) x (++) <$> dataOrRec DataDef NiceDataSig niceAxioms r x tel (Just t) Nothing <*> nice ds Data r Inductive x tel t cs -> do t <- defaultTypeSig (DataName $ parameters tel) x t (++) <$> dataOrRec DataDef NiceDataSig niceAxioms r x tel t (Just cs) <*> nice ds RecordSig r x tel t -> do addLoneSig (RecName $ parameters tel) x fx <- getFixity x (NiceRecSig r fx PublicAccess x tel t :) <$> nice ds Record r x i c tel t cs -> do t <- defaultTypeSig (RecName $ parameters tel) x t c <- traverse (\c -> ThingWithFixity c <$> getFixity c) c (++) <$> dataOrRec (\x1 x2 x3 x4 -> RecDef x1 x2 x3 x4 i c) NiceRecSig niceDeclarations r x tel t (Just cs) <*> nice ds Mutual r ds' -> (:) <$> (mkOldMutual r =<< nice ds') <*> nice ds Abstract r ds' -> (++) <$> (abstractBlock r =<< nice ds') <*> nice ds Private r ds' -> (++) <$> (privateBlock r =<< nice ds') <*> nice ds Postulate _ ds' -> (++) <$> niceAxioms ds' <*> nice ds Primitive _ ds' -> (++) <$> (map toPrim <$> niceAxioms ds') <*> nice ds Module r x tel ds' -> (NiceModule r PublicAccess ConcreteDef x tel ds' :) <$> nice ds ModuleMacro r x modapp op is -> (NiceModuleMacro r PublicAccess x modapp op is :) <$> nice ds Infix _ _ -> nice ds Syntax _ _ -> nice ds PatternSyn r n as p -> do fx <- getFixity n (NicePatternSyn r fx n as p :) <$> nice ds Open r x is -> (NiceOpen r x is :) <$> nice ds Import r x as op is -> (NiceImport r x as op is :) <$> nice ds Pragma (NoTerminationCheckPragma r) -> throwError $ InvalidNoTerminationCheckPragma r Pragma p -> (NicePragma (getRange p) p :) <$> nice ds niceFunClause :: TerminationCheck -> Declaration -> [Declaration] -> Nice [NiceDeclaration] niceFunClause termCheck d@(FunClause lhs _ _) ds = do xs <- gets $ map snd . filter (isFunName . fst) . loneSigs -- for each type signature 'x' waiting for clauses, we try -- if we have some clauses for 'x' fixs <- gets fixs {- OLD CODE, a bit dense case filter (\ (x,(fits,rest)) -> not $ null fits) $ map (\ x -> (x, span (couldBeFunClauseOf (Map.lookup x fixs) x) $ d : ds)) xs of -} case [ (x, (fits, rest)) | x <- xs , let (fits, rest) = span (couldBeFunClauseOf (Map.lookup x fixs) x) (d : ds) , not (null fits) ] of -- case: clauses match none of the sigs [] -> case lhs of -- Subcase: The lhs is single identifier. -- Treat it as a function clause without a type signature. LHS p [] [] [] | IdentP (QName x) <- removeSingletonRawAppP p -> do ds <- nice ds d <- mkFunDef defaultArgInfo termCheck x Nothing [d] -- fun def without type signature is relevant return $ d ++ ds -- Subcase: The lhs is a proper pattern. -- This could be a let-pattern binding. Pass it on. -- A missing type signature error might be raise in ConcreteToAbstract _ -> do ds <- nice ds return $ NiceFunClause (getRange d) PublicAccess ConcreteDef termCheck d : ds -- case: clauses match exactly one of the sigs [(x,(fits,rest))] -> do removeLoneSig x cs <- mkClauses x $ expandEllipsis fits ds1 <- nice rest fx <- getFixity x d <- return $ FunDef (getRange fits) fits fx ConcreteDef termCheck x cs return $ d : ds1 -- case: clauses match more than one sigs (ambiguity) l -> throwError $ AmbiguousFunClauses lhs (map fst l) -- "ambiguous function clause; cannot assign it uniquely to one type signature" niceFunClause _ _ _ = __IMPOSSIBLE__ niceTypeSig :: TerminationCheck -> Declaration -> [Declaration] -> Nice [NiceDeclaration] niceTypeSig termCheck d@(TypeSig info x t) ds = do fx <- getFixity x -- register x as lone type signature, to recognize clauses later addLoneSig (FunName termCheck) x ds <- nice ds return $ FunSig (getRange d) fx PublicAccess info termCheck x t : ds niceTypeSig _ _ _ = __IMPOSSIBLE__ -- We could add a default type signature here, but at the moment we can't -- infer the type of a record or datatype, so better to just fail here. defaultTypeSig :: DataRecOrFun -> Name -> Maybe Expr -> Nice (Maybe Expr) defaultTypeSig k x t@Just{} = return t defaultTypeSig k x Nothing = do mk <- getSig x case mk of Nothing -> throwError $ MissingDataSignature x Just k' | k == k' -> Nothing <$ removeLoneSig x | sameKind k k' -> throwError $ WrongParameters x | otherwise -> throwError $ WrongDefinition x k' k dataOrRec mkDef mkSig niceD r x tel mt mcs = do mds <- traverse niceD mcs f <- getFixity x return $ [mkSig (fuseRange x t) f PublicAccess x tel t | Just t <- [mt] ] ++ [mkDef (getRange x) f ConcreteDef x (concatMap dropType tel) ds | Just ds <- [mds] ] where dropType (DomainFull (TypedBindings r (Common.Arg i (TBind _ xs _)))) = map (DomainFree i) xs dropType (DomainFull (TypedBindings _ (Common.Arg _ TLet{}))) = [] dropType b@DomainFree{} = [b] -- Translate axioms niceAxioms :: [TypeSignature] -> Nice [NiceDeclaration] niceAxioms ds = mapM niceAxiom ds niceAxiom :: TypeSignature -> Nice NiceDeclaration niceAxiom d@(TypeSig rel x t) = do fx <- getFixity x return $ Axiom (getRange d) fx PublicAccess rel x t niceAxiom d@(Field x argt) = do fx <- getFixity x return $ NiceField (getRange d) fx PublicAccess ConcreteDef x argt niceAxiom _ = __IMPOSSIBLE__ toPrim :: NiceDeclaration -> NiceDeclaration toPrim (Axiom r f a rel x t) = PrimitiveFunction r f a ConcreteDef x t toPrim _ = __IMPOSSIBLE__ -- Create a function definition. mkFunDef info termCheck x mt ds0 = do cs <- mkClauses x $ expandEllipsis ds0 f <- getFixity x return [ FunSig (fuseRange x t) f PublicAccess info termCheck x t , FunDef (getRange ds0) ds0 f ConcreteDef termCheck x cs ] where t = case mt of Just t -> t Nothing -> underscore (getRange x) underscore r = Underscore r Nothing expandEllipsis :: [Declaration] -> [Declaration] expandEllipsis [] = [] expandEllipsis (d@(FunClause Ellipsis{} _ _) : ds) = d : expandEllipsis ds expandEllipsis (d@(FunClause lhs@(LHS p ps _ _) _ _) : ds) = d : expand p ps ds where expand _ _ [] = [] expand p ps (FunClause (Ellipsis _ ps' eqs []) rhs wh : ds) = FunClause (LHS p (ps ++ ps') eqs []) rhs wh : expand p ps ds expand p ps (FunClause (Ellipsis _ ps' eqs es) rhs wh : ds) = FunClause (LHS p (ps ++ ps') eqs es) rhs wh : expand p (ps ++ ps') ds expand p ps (d@(FunClause (LHS _ _ _ []) _ _) : ds) = d : expand p ps ds expand _ _ (d@(FunClause (LHS p ps _ (_ : _)) _ _) : ds) = d : expand p ps ds expand _ _ (_ : ds) = __IMPOSSIBLE__ expandEllipsis (_ : ds) = __IMPOSSIBLE__ -- Turn function clauses into nice function clauses. mkClauses :: Name -> [Declaration] -> Nice [Clause] mkClauses _ [] = return [] mkClauses x (FunClause lhs@(LHS _ _ _ []) rhs wh : cs) = (Clause x lhs rhs wh [] :) <$> mkClauses x cs mkClauses x (FunClause lhs@(LHS _ ps _ es) rhs wh : cs) = do when (null with) $ throwError $ MissingWithClauses x wcs <- mkClauses x with (Clause x lhs rhs wh wcs :) <$> mkClauses x cs' where (with, cs') = span subClause cs -- A clause is a subclause if the number of with-patterns is -- greater or equal to the current number of with-patterns plus the -- number of with arguments. subClause (FunClause (LHS _ ps' _ _) _ _) = length ps' >= length ps + length es subClause (FunClause (Ellipsis _ ps' _ _) _ _) = True subClause _ = __IMPOSSIBLE__ mkClauses x (FunClause lhs@Ellipsis{} rhs wh : cs) = (Clause x lhs rhs wh [] :) <$> mkClauses x cs -- Will result in an error later. mkClauses _ _ = __IMPOSSIBLE__ -- for finding clauses for a type sig in mutual blocks couldBeFunClauseOf :: Maybe Fixity' -> Name -> Declaration -> Bool couldBeFunClauseOf mFixity x (FunClause Ellipsis{} _ _) = True couldBeFunClauseOf mFixity x (FunClause (LHS p _ _ _) _ _) = let pns = patternNames p xStrings = nameStringParts x patStrings = concatMap nameStringParts pns in -- trace ("x = " ++ show x) $ -- trace ("pns = " ++ show pns) $ -- trace ("xStrings = " ++ show xStrings) $ -- trace ("patStrings = " ++ show patStrings) $ -- trace ("mFixity = " ++ show mFixity) $ case (mhead pns, mFixity) of -- first identifier in the patterns is the fun.symbol? (Just y, _) | x == y -> True -- trace ("couldBe since y = " ++ show y) $ True -- are the parts of x contained in p _ | xStrings `isSublistOf` patStrings -> True -- trace ("couldBe since isSublistOf") $ True -- looking for a mixfix fun.symb (_, Just fix) -> -- also matches in case of a postfix let notStrings = stringParts (theNotation fix) in -- trace ("notStrings = " ++ show notStrings) $ -- trace ("patStrings = " ++ show patStrings) $ (not $ null notStrings) && (notStrings `isSublistOf` patStrings) -- not a notation, not first id: give up _ -> False -- trace ("couldBe not (case default)") $ False couldBeFunClauseOf _ _ _ = False -- trace ("couldBe not (fun default)") $ False -- ASR (27 May 2014). Commented out unused code. -- @isFunClauseOf@ is for non-mutual blocks where clauses must follow the -- type sig immediately -- isFunClauseOf :: Name -> Declaration -> Bool -- isFunClauseOf x (FunClause Ellipsis{} _ _) = True -- isFunClauseOf x (FunClause (LHS p _ _ _) _ _) = -- -- p is the whole left hand side, excluding "with" patterns and clauses -- case removeSingletonRawAppP p of -- IdentP (QName q) -> x == q -- lhs is just an identifier -- _ -> True -- -- more complicated lhss must come with type signatures, so we just assume -- -- it's part of the current definition -- isFunClauseOf _ _ = False removeSingletonRawAppP :: Pattern -> Pattern removeSingletonRawAppP (RawAppP _ [p]) = removeSingletonRawAppP p removeSingletonRawAppP p = p -- Make an old style mutual block from a list of mutual declarations mkOldMutual :: Range -> [NiceDeclaration] -> Nice NiceDeclaration mkOldMutual r ds = do -- Check that there aren't any missing definitions checkLoneSigs loneNames -- Check that there are no declarations that aren't allowed in old style mutual blocks case filter notAllowedInMutual ds of [] -> return () (NiceFunClause _ _ _ _ (FunClause lhs _ _)):_ -> throwError $ MissingTypeSignature lhs d:_ -> throwError $ NotAllowedInMutual d return $ NiceMutual r (all termCheck ds) $ sigs ++ other where -- Andreas, 2013-11-23 allow postulates in mutual blocks notAllowedInMutual Axiom{} = False notAllowedInMutual d = declKind d == OtherDecl -- Pull type signatures to the top (sigs, other) = partition isTypeSig ds isTypeSig Axiom{} = True isTypeSig d | LoneSig{} <- declKind d = True isTypeSig _ = False sigNames = [ (k, x) | LoneSig k x <- map declKind ds ] defNames = [ (k, x) | LoneDef k x <- map declKind ds ] -- compute the set difference with equality just on names loneNames = [ (k, x) | (k, x) <- sigNames, List.all ((x /=) . snd) defNames ] -- Andreas, 2013-02-28 (issue 804): -- do not termination check a mutual block if any of its -- inner declarations comes with a {-# NO_TERMINATION_CHECK #-} termCheck (FunSig _ _ _ _ tc _ _) = tc termCheck (FunDef _ _ _ _ tc _ _) = tc termCheck (NiceMutual _ tc _) = tc termCheck _ = True abstractBlock _ [] = return [] abstractBlock r ds = do let (ds', anyChange) = runChange $ mapM mkAbstract ds inherited = r == noRange -- hack to avoid failing on inherited abstract blocks in where clauses if anyChange || inherited then return ds' else throwError $ UselessAbstract r -- Make a declaration abstract mkAbstract :: Updater NiceDeclaration mkAbstract d = case d of NiceMutual r termCheck ds -> NiceMutual r termCheck <$> mapM mkAbstract ds FunDef r ds f a tc x cs -> (\ a -> FunDef r ds f a tc x) <$> setAbstract a <*> mapM mkAbstractClause cs DataDef r f a x ps cs -> (\ a -> DataDef r f a x ps) <$> setAbstract a <*> mapM mkAbstract cs RecDef r f a x i c ps cs -> (\ a -> RecDef r f a x i c ps) <$> setAbstract a <*> mapM mkAbstract cs NiceFunClause r p a termCheck d -> (\ a -> NiceFunClause r p a termCheck d) <$> setAbstract a -- no effect on fields or primitives, the InAbstract field there is unused NiceField r f p _ x e -> return $ NiceField r f p AbstractDef x e PrimitiveFunction r f p _ x e -> return $ PrimitiveFunction r f p AbstractDef x e NiceModule{} -> return $ d NiceModuleMacro{} -> return $ d Axiom{} -> return $ d NicePragma{} -> return $ d NiceOpen{} -> return $ d NiceImport{} -> return $ d FunSig{} -> return $ d NiceRecSig{} -> return $ d NiceDataSig{} -> return $ d NicePatternSyn{} -> return $ d setAbstract :: Updater IsAbstract setAbstract a = case a of AbstractDef -> return a ConcreteDef -> dirty $ AbstractDef mkAbstractClause :: Updater Clause mkAbstractClause (Clause x lhs rhs wh with) = do wh <- mkAbstractWhere wh Clause x lhs rhs wh <$> mapM mkAbstractClause with mkAbstractWhere :: Updater WhereClause mkAbstractWhere NoWhere = return $ NoWhere mkAbstractWhere (AnyWhere ds) = dirty $ AnyWhere [Abstract noRange ds] mkAbstractWhere (SomeWhere m ds) = dirty $SomeWhere m [Abstract noRange ds] {- OLD CODE abstractBlock _ [] = return [] abstractBlock r ds -- hack to avoid failing on inherited abstract blocks in where clauses | r == noRange = return $ map mkAbstract ds | all uselessAbstract ds = throwError $ UselessAbstract r | otherwise = return $ map mkAbstract ds uselessAbstract d = case d of FunDef{} -> False DataDef{} -> False RecDef{} -> False _ -> True -- Make a declaration abstract mkAbstract d = case d of NiceField r f a _ x e -> NiceField r f a AbstractDef x e PrimitiveFunction r f a _ x e -> PrimitiveFunction r f a AbstractDef x e NiceMutual r termCheck ds -> NiceMutual r termCheck (map mkAbstract ds) FunDef r ds f _ tc x cs -> FunDef r ds f AbstractDef tc x (map mkAbstractClause cs) DataDef r f _ x ps cs -> DataDef r f AbstractDef x ps $ map mkAbstract cs RecDef r f _ x i c ps cs -> RecDef r f AbstractDef x i c ps $ map mkAbstract cs NiceFunClause r a _ termCheck d -> NiceFunClause r a AbstractDef termCheck d NiceModule{} -> d NiceModuleMacro{} -> d Axiom{} -> d NicePragma{} -> d NiceOpen{} -> d NiceImport{} -> d FunSig{} -> d NiceRecSig{} -> d NiceDataSig{} -> d NicePatternSyn{} -> d mkAbstractClause (Clause x lhs rhs wh with) = Clause x lhs rhs (mkAbstractWhere wh) (map mkAbstractClause with) mkAbstractWhere NoWhere = NoWhere mkAbstractWhere (AnyWhere ds) = AnyWhere [Abstract noRange ds] mkAbstractWhere (SomeWhere m ds) = SomeWhere m [Abstract noRange ds] -} privateBlock _ [] = return [] privateBlock r ds = do let (ds', anyChange) = runChange $ mapM mkPrivate ds if anyChange then return ds' else throwError $ UselessPrivate r -- Make a declaration private. -- Andreas, 2012-11-17: -- Mark computation 'dirty' if there was a declaration that could be privatized. -- If no privatization is taking place, we want to complain about 'UselessPrivate'. -- Alternatively, we could only dirty if a non-private thing was privatized. -- Then, nested 'private's would sometimes also be complained about. mkPrivate :: Updater NiceDeclaration mkPrivate d = case d of Axiom r f p rel x e -> (\ p -> Axiom r f p rel x e) <$> setPrivate p NiceField r f p a x e -> (\ p -> NiceField r f p a x e) <$> setPrivate p PrimitiveFunction r f p a x e -> (\ p -> PrimitiveFunction r f p a x e) <$> setPrivate p NiceMutual r termCheck ds -> NiceMutual r termCheck <$> mapM mkPrivate ds NiceModule r p a x tel ds -> (\ p -> NiceModule r p a x tel ds) <$> setPrivate p NiceModuleMacro r p x ma op is -> (\ p -> NiceModuleMacro r p x ma op is) <$> setPrivate p FunSig r f p rel tc x e -> (\ p -> FunSig r f p rel tc x e) <$> setPrivate p NiceRecSig r f p x ls t -> (\ p -> NiceRecSig r f p x ls t) <$> setPrivate p NiceDataSig r f p x ls t -> (\ p -> NiceDataSig r f p x ls t) <$> setPrivate p NiceFunClause r p a termCheck d -> (\ p -> NiceFunClause r p a termCheck d) <$> setPrivate p {- Axiom r f _ rel x e -> dirty $ Axiom r f PrivateAccess rel x e NiceField r f _ a x e -> dirty $ NiceField r f PrivateAccess a x e PrimitiveFunction r f _ a x e -> dirty $ PrimitiveFunction r f PrivateAccess a x e NiceMutual r termCheck ds -> NiceMutual r termCheck <$> mapM mkPrivate ds NiceModule r _ a x tel ds -> dirty $ NiceModule r PrivateAccess a x tel ds NiceModuleMacro r _ x ma op is -> dirty $ NiceModuleMacro r PrivateAccess x ma op is FunSig r f _ rel tc x e -> dirty $ FunSig r f PrivateAccess rel tc x e NiceRecSig r f _ x ls t -> dirty $ NiceRecSig r f PrivateAccess x ls t NiceDataSig r f _ x ls t -> dirty $ NiceDataSig r f PrivateAccess x ls t NiceFunClause r _ a termCheck d -> dirty $ NiceFunClause r PrivateAccess a termCheck d -} NicePragma _ _ -> return $ d NiceOpen _ _ _ -> return $ d NiceImport _ _ _ _ _ -> return $ d FunDef{} -> return $ d DataDef{} -> return $ d RecDef{} -> return $ d NicePatternSyn _ _ _ _ _ -> return $ d setPrivate :: Updater Access setPrivate p = case p of PrivateAccess -> return p _ -> dirty $ PrivateAccess -- Andreas, 2012-11-22: Q: is this necessary? -- Are where clauses not always private? mkPrivateClause :: Updater Clause mkPrivateClause (Clause x lhs rhs wh with) = do wh <- mkPrivateWhere wh Clause x lhs rhs wh <$> mapM mkPrivateClause with mkPrivateWhere :: Updater WhereClause mkPrivateWhere NoWhere = return $ NoWhere mkPrivateWhere (AnyWhere ds) = dirty $ AnyWhere [Private (getRange ds) ds] mkPrivateWhere (SomeWhere m ds) = dirty $ SomeWhere m [Private (getRange ds) ds] {- OLD CODE, with two functions (uselessPrivate, mkPrivate) to be maintained in sync. privateBlock _ [] = return [] privateBlock r ds | all uselessPrivate ds = throwError $ UselessPrivate r | otherwise = return $ map mkPrivate ds uselessPrivate d = case d of FunDef{} -> True DataDef{} -> True RecDef{} -> True _ -> False -- Make a declaration private mkPrivate d = case d of Axiom r f _ rel x e -> Axiom r f PrivateAccess rel x e NiceField r f _ a x e -> NiceField r f PrivateAccess a x e PrimitiveFunction r f _ a x e -> PrimitiveFunction r f PrivateAccess a x e NiceMutual r termCheck ds -> NiceMutual r termCheck (map mkPrivate ds) NiceModule r _ a x tel ds -> NiceModule r PrivateAccess a x tel ds NiceModuleMacro r _ x ma op is -> NiceModuleMacro r PrivateAccess x ma op is FunSig r f _ rel tc x e -> FunSig r f PrivateAccess rel tc x e NiceRecSig r f _ x ls t -> NiceRecSig r f PrivateAccess x ls t NiceDataSig r f _ x ls t -> NiceDataSig r f PrivateAccess x ls t NiceFunClause r _ a termCheck d -> NiceFunClause r PrivateAccess a termCheck d NicePragma _ _ -> d NiceOpen _ _ _ -> d NiceImport _ _ _ _ _ -> d FunDef{} -> d DataDef{} -> d RecDef{} -> d NicePatternSyn _ _ _ _ _ -> d mkPrivateClause (Clause x lhs rhs wh with) = Clause x lhs rhs (mkPrivateWhere wh) (map mkPrivateClause with) mkPrivateWhere NoWhere = NoWhere mkPrivateWhere (AnyWhere ds) = AnyWhere [Private (getRange ds) ds] mkPrivateWhere (SomeWhere m ds) = SomeWhere m [Private (getRange ds) ds] -} -- | Add more fixities. Throw an exception for multiple fixity declarations. plusFixities :: Map.Map Name Fixity' -> Map.Map Name Fixity' -> Nice (Map.Map Name Fixity') plusFixities m1 m2 | not (null isect) = throwError $ MultipleFixityDecls isect | otherwise = return $ Map.unionWithKey mergeFixites m1 m2 where mergeFixites name (Fixity' f1 s1) (Fixity' f2 s2) = Fixity' f s where f | f1 == noFixity = f2 | f2 == noFixity = f1 | otherwise = __IMPOSSIBLE__ s | s1 == noNotation = s2 | s2 == noNotation = s1 | otherwise = __IMPOSSIBLE__ isect = [decls x | (x,compat) <- Map.assocs (Map.intersectionWith compatible m1 m2), not compat] decls x = (x, map (Map.findWithDefault __IMPOSSIBLE__ x) [m1,m2]) -- cpp doesn't know about primes compatible (Fixity' f1 s1) (Fixity' f2 s2) = (f1 == noFixity || f2 == noFixity) && (s1 == noNotation || s2 == noNotation) -- | Get the fixities from the current block. Doesn't go inside /any/ blocks. -- The reason for this is that fixity declarations have to appear at the same -- level (or possibly outside an abstract or mutual block) as its target -- declaration. fixities :: [Declaration] -> Nice (Map.Map Name Fixity') fixities (d:ds) = case d of Syntax x syn -> plusFixities (Map.singleton x (Fixity' noFixity syn)) =<< fixities ds Infix f xs -> plusFixities (Map.fromList [ (x,Fixity' f noNotation) | x <- xs ]) =<< fixities ds Mutual _ ds' -> fixities (ds' ++ ds) Abstract _ ds' -> fixities (ds' ++ ds) Private _ ds' -> fixities (ds' ++ ds) _ -> fixities ds fixities [] = return $ Map.empty -- Andreas, 2012-04-07 -- The following function is only used twice, for building a Let, and for -- printing an error message. notSoNiceDeclaration :: NiceDeclaration -> Declaration notSoNiceDeclaration d = case d of Axiom _ _ _ rel x e -> TypeSig rel x e NiceField _ _ _ _ x argt -> Field x argt PrimitiveFunction r _ _ _ x e -> Primitive r [TypeSig defaultArgInfo x e] NiceMutual r _ ds -> Mutual r $ map notSoNiceDeclaration ds NiceModule r _ _ x tel ds -> Module r x tel ds NiceModuleMacro r _ x ma o dir -> ModuleMacro r x ma o dir NiceOpen r x dir -> Open r x dir NiceImport r x as o dir -> Import r x as o dir NicePragma _ p -> Pragma p NiceRecSig r _ _ x bs e -> RecordSig r x bs e NiceDataSig r _ _ x bs e -> DataSig r Inductive x bs e NiceFunClause _ _ _ _ d -> d FunSig _ _ _ rel tc x e -> TypeSig rel x e FunDef r [d] _ _ _ _ _ -> d FunDef r ds _ _ _ _ _ -> Mutual r ds -- Andreas, 2012-04-07 Hack! DataDef r _ _ x bs cs -> Data r Inductive x bs Nothing $ map notSoNiceDeclaration cs RecDef r _ _ x i c bs ds -> Record r x i (unThing <$> c) bs Nothing $ map notSoNiceDeclaration ds where unThing (ThingWithFixity c _) = c NicePatternSyn r _ n as p -> PatternSyn r n as p {- -- Andreas, 2012-03-08 the following function is only used twice, -- both just on a single declaration. notSoNiceDeclarations :: [NiceDeclaration] -> [Declaration] notSoNiceDeclarations = concatMap notNice where notNice d = case d of Axiom _ _ _ rel x e -> [TypeSig rel x e] NiceField _ _ _ _ x argt -> [Field x argt] PrimitiveFunction r _ _ _ x e -> [Primitive r [TypeSig Relevant x e]] NiceMutual _ _ ds -> concatMap notNice ds NiceModule r _ _ x tel ds -> [Module r x tel ds] NiceModuleMacro r _ x ma o dir -> [ModuleMacro r x ma o dir] NiceOpen r x dir -> [Open r x dir] NiceImport r x as o dir -> [Import r x as o dir] NicePragma _ p -> [Pragma p] NiceRecSig r _ _ x bs e -> [RecordSig r x bs e] NiceDataSig r _ _ x bs e -> [DataSig r Inductive x bs e] FunSig _ _ _ rel tc x e -> [TypeSig rel x e] FunDef _ ds _ _ _ _ _ -> ds DataDef r _ _ x bs cs -> [Data r Inductive x bs Nothing $ concatMap notNice cs] RecDef r _ _ x c bs ds -> [Record r x (unThing <$> c) bs Nothing $ concatMap notNice ds] where unThing (ThingWithFixity c _) = c NicePatternSyn r _ n as p -> [PatternSyn r n as p] -}