{-# LANGUAGE CPP #-} module Agda.TypeChecking.Telescope where import Control.Applicative import Data.List import Agda.Syntax.Common hiding (Arg, Dom, NamedArg, ArgInfo) import qualified Agda.Syntax.Common as Common import Agda.Syntax.Internal import Agda.TypeChecking.Monad import Agda.TypeChecking.Reduce import Agda.TypeChecking.Substitute import Agda.TypeChecking.Free import Agda.Utils.List import Agda.Utils.Permutation import Agda.Utils.Size import Agda.Utils.Tuple import Agda.Utils.VarSet (VarSet) import qualified Agda.Utils.VarSet as Set #include "../undefined.h" import Agda.Utils.Impossible -- | The permutation should permute the corresponding telescope. (left-to-right list) renameP :: Subst t => Permutation -> t -> t renameP p = applySubst (renaming p) -- | If @permute π : [a]Γ -> [a]Δ@, then @applySubst (renaming π) : Term Γ -> Term Δ@ renaming :: Permutation -> Substitution renaming p = gamma' where n = size p gamma = permute (reverseP $ invertP $ reverseP p) $ map var [0..] gamma' = gamma ++# raiseS n -- | If @permute π : [a]Γ -> [a]Δ@, then @substs (renamingR π) : Term Δ -> Term Γ@ renamingR :: Permutation -> Substitution renamingR p@(Perm n _) = permute (reverseP p) (map var [0..]) ++# raiseS n -- | Flatten telescope: (Γ : Tel) -> [Type Γ] flattenTel :: Telescope -> [Dom Type] flattenTel EmptyTel = [] flattenTel (ExtendTel a tel) = raise (size tel + 1) a : flattenTel (absBody tel) -- | Order a flattened telescope in the correct dependeny order: Γ -> -- Permutation (Γ -> Γ~) -- -- Since @reorderTel tel@ uses free variable analysis of type in @tel@, -- the telescope should be 'normalise'd. reorderTel :: [Dom Type] -> Maybe Permutation reorderTel tel = topoSort comesBefore tel' where tel' = zip (downFrom $ size tel) tel (i, _) `comesBefore` (_, a) = i `freeIn` unEl (unDom a) -- a tiny bit unsafe reorderTel_ :: [Dom Type] -> Permutation reorderTel_ tel = case reorderTel tel of Nothing -> __IMPOSSIBLE__ Just p -> p -- | Unflatten: turns a flattened telescope into a proper telescope. Must be -- properly ordered. unflattenTel :: [String] -> [Dom Type] -> Telescope unflattenTel [] [] = EmptyTel unflattenTel (x : xs) (a : tel) = ExtendTel a' (Abs x tel') where tel' = unflattenTel xs tel a' = applySubst rho a rho = parallelS (replicate (size tel + 1) __IMPOSSIBLE_TERM__) unflattenTel [] (_ : _) = __IMPOSSIBLE__ unflattenTel (_ : _) [] = __IMPOSSIBLE__ -- | Get the suggested names from a telescope teleNames :: Telescope -> [String] teleNames = map (fst . unDom) . telToList teleArgNames :: Telescope -> [Arg String] teleArgNames = map (argFromDom . fmap fst) . telToList teleArgs :: Telescope -> Args teleArgs tel = [ Common.Arg info (var i) | (i, Common.Dom info _) <- zip (downFrom $ size l) l ] where l = telToList tel -- | A telescope split in two. data SplitTel = SplitTel { firstPart :: Telescope , secondPart :: Telescope , splitPerm :: Permutation } -- | Split a telescope into the part that defines the given variables and the -- part that doesn't. splitTelescope :: VarSet -> Telescope -> SplitTel splitTelescope fv tel = SplitTel tel1 tel2 perm where names = teleNames tel ts0 = flattenTel tel n = size tel -- We start with a rough split into fv and the rest. This will most likely -- not be correct so we patch it up later with reorderTel. is = map (n - 1 -) $ filter (< n) $ reverse $ Set.toList fv isC = [0..n - 1] \\ is perm0 = Perm n $ is ++ isC permuteTel p ts = renameP (reverseP p) (permute p ts) ts1 = permuteTel perm0 ts0 perm1 = reorderTel_ ts1 ts2 = permuteTel perm1 ts1 perm = composeP perm1 perm0 tel' = unflattenTel (permute perm names) ts2 Perm _ js = perm m = genericLength $ takeWhile (`notElem` is) (reverse js) (tel1, tel2) = telFromList -*- telFromList $ genericSplitAt (n - m) $ telToList tel' telView :: Type -> TCM TelView telView = telViewUpTo (-1) -- | @telViewUpTo n t@ takes off the first @n@ function types of @t@. -- Takes off all if @n < 0@. telViewUpTo :: Int -> Type -> TCM TelView telViewUpTo n t = telViewUpTo' n (const True) t -- | @telViewUpTo' n p t@ takes off $t$ -- the first @n@ (or arbitrary many if @n < 0@) function domains -- as long as they satify @p@. telViewUpTo' :: Int -> (Dom Type -> Bool) -> Type -> TCM TelView telViewUpTo' 0 p t = return $ TelV EmptyTel t telViewUpTo' n p t = do t <- reduce t case ignoreSharing $ unEl t of Pi a b | p a -> absV a (absName b) <$> telViewUpTo' (n - 1) p (absBody b) _ -> return $ TelV EmptyTel t where absV a x (TelV tel t) = TelV (ExtendTel a (Abs x tel)) t -- | A safe variant of piApply. piApplyM :: Type -> Args -> TCM Type piApplyM t [] = return t piApplyM t (arg : args) = do t <- reduce t case ignoreSharing $ unEl t of Pi _ b -> absApp b (unArg arg) `piApplyM` args _ -> __IMPOSSIBLE__