{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE PatternGuards #-} #if __GLASGOW_HASKELL__ >= 710 {-# LANGUAGE FlexibleContexts #-} #endif module Agda.TypeChecking.Conversion where import Control.Applicative import Control.Monad import Control.Monad.Reader import Control.Monad.State import Data.List hiding (sort) import qualified Data.List as List import Data.Traversable hiding (mapM, sequence) import Agda.Syntax.Abstract.Views (isSet) import Agda.Syntax.Common import Agda.Syntax.Internal import Agda.Syntax.Translation.InternalToAbstract (reify) import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin (constructorForm) import Agda.TypeChecking.CompiledClause (CompiledClauses(Fail)) import Agda.TypeChecking.MetaVars import Agda.TypeChecking.MetaVars.Occurs (killArgs,PruneResult(..)) import Agda.TypeChecking.Reduce import Agda.TypeChecking.Substitute import qualified Agda.TypeChecking.SyntacticEquality as SynEq import Agda.TypeChecking.Telescope import Agda.TypeChecking.Constraints import {-# SOURCE #-} Agda.TypeChecking.CheckInternal (infer) import Agda.TypeChecking.Errors import Agda.TypeChecking.Free import Agda.TypeChecking.Datatypes (getConType) import Agda.TypeChecking.Records import Agda.TypeChecking.Pretty import Agda.TypeChecking.Injectivity import Agda.TypeChecking.Polarity import Agda.TypeChecking.SizedTypes import Agda.TypeChecking.Level import Agda.TypeChecking.Implicit (implicitArgs) import Agda.TypeChecking.Irrelevance import Agda.TypeChecking.ProjectionLike (elimView) import Agda.Interaction.Options import Agda.Utils.Except ( MonadError(catchError, throwError) ) import Agda.Utils.Functor import Agda.Utils.Monad import Agda.Utils.Maybe import Agda.Utils.Size import Agda.Utils.Tuple #include "undefined.h" import Agda.Utils.Impossible {- MOVED to TypeChecking.Level mlevel :: TCM (Maybe Term) mlevel = liftTCM $ (Just <$> primLevel) `catchError` \_ -> return Nothing -} -- | Try whether a computation runs without errors or new constraints -- (may create new metas, though). -- Restores state upon failure. tryConversion :: TCM () -> TCM Bool tryConversion = isJust <.> tryConversion' -- | Try whether a computation runs without errors or new constraints -- (may create new metas, though). -- Return 'Just' the result upon success. -- Return 'Nothing' and restore state upon failure. tryConversion' :: TCM a -> TCM (Maybe a) tryConversion' m = (Just <$> do disableDestructiveUpdate $ noConstraints m) `catchError` \ _ -> return Nothing -- | Check if to lists of arguments are the same (and all variables). -- Precondition: the lists have the same length. sameVars :: Elims -> Elims -> Bool sameVars xs ys = and $ zipWith same xs ys where same (Apply (Arg _ (Var n []))) (Apply (Arg _ (Var m []))) = n == m same _ _ = False -- | @intersectVars us vs@ checks whether all relevant elements in @us@ and @vs@ -- are variables, and if yes, returns a prune list which says @True@ for -- arguments which are different and can be pruned. intersectVars :: Elims -> Elims -> Maybe [Bool] intersectVars = zipWithM areVars where -- ignore irrelevant args areVars (Apply u) v | isIrrelevant u = Just False -- do not prune areVars (Apply (Arg _ (Var n []))) (Apply (Arg _ (Var m []))) = Just $ n /= m -- prune different vars areVars _ _ = Nothing equalTerm :: Type -> Term -> Term -> TCM () equalTerm = compareTerm CmpEq equalAtom :: Type -> Term -> Term -> TCM () equalAtom = compareAtom CmpEq equalType :: Type -> Type -> TCM () equalType = compareType CmpEq {- Comparing in irrelevant context always succeeds. However, we might want to dig for solutions of irrelevant metas. To this end, we can just ignore errors during conversion checking. -} -- convError :: MonadTCM tcm => TypeError -> tcm a -- | Ignore errors in irrelevant context. convError :: TypeError -> TCM () convError err = ifM ((==) Irrelevant <$> asks envRelevance) (return ()) $ typeError err -- | Type directed equality on values. -- compareTerm :: Comparison -> Type -> Term -> Term -> TCM () -- If one term is a meta, try to instantiate right away. This avoids unnecessary unfolding. -- Andreas, 2012-02-14: This is UNSOUND for subtyping! compareTerm cmp a u v = do reportSDoc "tc.conv.term" 10 $ sep [ text "compareTerm" , nest 2 $ prettyTCM u <+> prettyTCM cmp <+> prettyTCM v , nest 2 $ text ":" <+> prettyTCM a ] -- Check syntactic equality first. This actually saves us quite a bit of work. ((u, v), equal) <- SynEq.checkSyntacticEquality u v -- OLD CODE, traverses the *full* terms u v at each step, even if they -- are different somewhere. Leads to infeasibility in issue 854. -- (u, v) <- instantiateFull (u, v) -- let equal = u == v if equal then unifyPointers cmp u v $ verboseS "profile.sharing" 20 $ tick "equal terms" else do verboseS "profile.sharing" 20 $ tick "unequal terms" let checkPointerEquality def | not $ null $ List.intersect (pointerChain u) (pointerChain v) = do verboseS "profile.sharing" 10 $ tick "pointer equality" return () checkPointerEquality def = def checkPointerEquality $ do reportSDoc "tc.conv.term" 15 $ sep [ text "compareTerm (not syntactically equal)" , nest 2 $ prettyTCM u <+> prettyTCM cmp <+> prettyTCM v , nest 2 $ text ":" <+> prettyTCM a ] -- If we are at type Size, we cannot short-cut comparison -- against metas by assignment. -- Andreas, 2014-04-12: this looks incomplete. -- It seems to assume we are never comparing -- at function types into Size. let fallback = compareTerm' cmp a u v unlessSubtyping cont = if cmp == CmpEq then cont else do -- Andreas, 2014-04-12 do not short cut if type is blocked. ifBlockedType a (\ _ _ -> fallback) {-else-} $ \ a -> do -- do not short circuit size comparison! caseMaybeM (isSizeType a) cont (\ _ -> fallback) dir = fromCmp cmp rid = flipCmp dir -- The reverse direction. Bad name, I know. case (ignoreSharing u, ignoreSharing v) of (MetaV x us, MetaV y vs) | x /= y -> unlessSubtyping $ solve1 `orelse` solve2 `orelse` compareTerm' cmp a u v | otherwise -> fallback where (solve1, solve2) | x > y = (assign dir x us v, assign rid y vs u) | otherwise = (assign rid y vs u, assign dir x us v) (MetaV x us, _) -> unlessSubtyping $ assign dir x us v `orelse` fallback (_, MetaV y vs) -> unlessSubtyping $ assign rid y vs u `orelse` fallback _ -> fallback where assign dir x es v = do -- Andreas, 2013-10-19 can only solve if no projections reportSDoc "tc.conv.term.shortcut" 20 $ sep [ text "attempting shortcut" , nest 2 $ prettyTCM (MetaV x es) <+> text ":=" <+> prettyTCM v ] ifM (isInstantiatedMeta x) patternViolation {-else-} $ do assignE dir x es v $ compareTermDir dir a _ <- instantiate u -- () <- seq u' $ return () reportSLn "tc.conv.term.shortcut" 50 $ "shortcut successful\n result: " ++ show u -- Should be ok with catchError_ but catchError is much safer since we don't -- rethrow errors. orelse m h = catchError m (\_ -> h) unifyPointers :: Comparison -> Term -> Term -> TCM () -> TCM () unifyPointers _ _ _ action = action -- unifyPointers cmp _ _ action | cmp /= CmpEq = action -- unifyPointers _ u v action = do -- old <- gets stDirty -- modify $ \s -> s { stDirty = False } -- action -- (u, v) <- instantiate (u, v) -- dirty <- gets stDirty -- modify $ \s -> s { stDirty = old } -- when (not dirty) $ forceEqualTerms u v -- | Try to assign meta. If meta is projected, try to eta-expand -- and run conversion check again. assignE :: CompareDirection -> MetaId -> Elims -> Term -> (Term -> Term -> TCM ()) -> TCM () assignE dir x es v comp = assignWrapper dir x es v $ do case allApplyElims es of Just vs -> assignV dir x vs v Nothing -> do reportSDoc "tc.conv.assign" 30 $ sep [ text "assigning to projected meta " , prettyTCM x <+> sep (map prettyTCM es) <+> text (":" ++ show dir) <+> prettyTCM v ] etaExpandMeta [Records] x res <- isInstantiatedMeta' x case res of Just u -> do reportSDoc "tc.conv.assign" 30 $ sep [ text "seems like eta expansion instantiated meta " , prettyTCM x <+> text (":" ++ show dir) <+> prettyTCM u ] let w = u `applyE` es comp w v Nothing -> do reportSLn "tc.conv.assign" 30 "eta expansion did not instantiate meta" patternViolation -- nothing happened, give up compareTermDir :: CompareDirection -> Type -> Term -> Term -> TCM () compareTermDir dir a = dirToCmp (`compareTerm'` a) dir compareTerm' :: Comparison -> Type -> Term -> Term -> TCM () compareTerm' cmp a m n = verboseBracket "tc.conv.term" 20 "compareTerm" $ do a' <- reduce a catchConstraint (ValueCmp cmp a' m n) $ do reportSDoc "tc.conv.term" 30 $ fsep [ text "compareTerm", prettyTCM m, prettyTCM cmp, prettyTCM n, text ":", prettyTCM a' ] proofIrr <- proofIrrelevance isSize <- isJust <$> isSizeType a' s <- reduce $ getSort a' mlvl <- mlevel case s of Prop | proofIrr -> return () _ | isSize -> compareSizes cmp m n _ -> case ignoreSharing $ unEl a' of a | Just a == mlvl -> do a <- levelView m b <- levelView n equalLevel a b -- OLD: Pi dom _ -> equalFun (dom, a') m n a@Pi{} -> equalFun a m n Lam _ _ -> __IMPOSSIBLE__ Def r es -> do isrec <- isEtaRecord r if isrec then do sig <- getSignature let ps = fromMaybe __IMPOSSIBLE__ $ allApplyElims es -- Andreas, 2010-10-11: allowing neutrals to be blocked things does not seem -- to change Agda's behavior -- isNeutral Blocked{} = False isNeutral = isNeutral' . fmap ignoreSharing isMeta = isMeta' . fmap ignoreSharing isNeutral' (NotBlocked _ Con{}) = return False -- Andreas, 2013-09-18 / 2015-06-29: a Def by copatterns is -- not neutral if it is blocked (there can be missing projections -- to trigger a reduction. isNeutral' (NotBlocked r (Def q _)) = do -- Andreas, 2014-12-06 optimize this using r !! not <$> usesCopatterns q -- a def by copattern can reduce if projected isNeutral' _ = return True isMeta' (NotBlocked _ MetaV{}) = True isMeta' _ = False reportSDoc "tc.conv.term" 30 $ prettyTCM a <+> text "is eta record type" m <- reduceB m mNeutral <- isNeutral m n <- reduceB n nNeutral <- isNeutral n case (m, n) of _ | isMeta m || isMeta n -> compareAtom cmp a' (ignoreBlocking m) (ignoreBlocking n) _ | mNeutral && nNeutral -> do -- Andreas 2011-03-23: (fixing issue 396) -- if we are dealing with a singleton record, -- we can succeed immediately isSing <- isSingletonRecordModuloRelevance r ps case isSing of Right True -> return () -- do not eta-expand if comparing two neutrals _ -> compareAtom cmp a' (ignoreBlocking m) (ignoreBlocking n) _ -> do (tel, m') <- etaExpandRecord r ps $ ignoreBlocking m (_ , n') <- etaExpandRecord r ps $ ignoreBlocking n -- No subtyping on record terms c <- getRecordConstructor r -- Record constructors are covariant (see test/succeed/CovariantConstructors). compareArgs (repeat $ polFromCmp cmp) (telePi_ tel $ sort Prop) (Con c []) m' n' else compareAtom cmp a' m n _ -> compareAtom cmp a' m n where -- equality at function type (accounts for eta) equalFun :: Term -> Term -> Term -> TCM () equalFun (Shared p) m n = equalFun (derefPtr p) m n equalFun (Pi dom@(Dom info _) b) m n = do name <- freshName_ $ suggest (absName b) "x" addContext (name, dom) $ compareTerm cmp (absBody b) m' n' where (m',n') = raise 1 (m,n) `apply` [Arg info $ var 0] equalFun _ _ _ = __IMPOSSIBLE__ -- | @compareTel t1 t2 cmp tel1 tel1@ checks whether pointwise -- @tel1 \`cmp\` tel2@ and complains that @t2 \`cmp\` t1@ failed if -- not. compareTel :: Type -> Type -> Comparison -> Telescope -> Telescope -> TCM () compareTel t1 t2 cmp tel1 tel2 = verboseBracket "tc.conv.tel" 20 "compareTel" $ catchConstraint (TelCmp t1 t2 cmp tel1 tel2) $ case (tel1, tel2) of (EmptyTel, EmptyTel) -> return () (EmptyTel, _) -> bad (_, EmptyTel) -> bad (ExtendTel dom1@(Dom i1 a1) tel1, ExtendTel dom2@(Dom i2 a2) tel2) | getHiding i1 /= getHiding i2 -> bad -- Andreas, 2011-09-11 do not test r1 == r2 because they could differ -- e.g. one could be Forced and the other Relevant (see fail/UncurryMeta) | otherwise -> do name <- freshName_ (suggest (absName tel1) (absName tel2)) let r = max (getRelevance i1) (getRelevance i2) -- take "most irrelevant" dependent = (r /= Irrelevant) && isBinderUsed tel2 -- NEW pid <- newProblem_ $ compareType cmp a1 a2 dom <- if dependent then Dom i1 <$> blockTypeOnProblem a1 pid else return dom1 addContext (name, dom) $ compareTel t1 t2 cmp (absBody tel1) (absBody tel2) stealConstraints pid {- OLD, before 2013-05-15 let checkDom = escapeContext 1 $ compareType cmp a1 a2 c = TelCmp t1 t2 cmp (absBody tel1) (absBody tel2) addCtx name dom1 $ if dependent then guardConstraint c checkDom else checkDom >> solveConstraint_ c -} where -- Andreas, 2011-05-10 better report message about types bad = typeError $ UnequalTypes cmp t2 t1 -- switch t2 and t1 because of contravariance! -- bad = typeError $ UnequalTelescopes cmp tel1 tel2 -- | Raise 'UnequalTerms' if there is no hope that by -- meta solving and subsequent eta-contraction these -- terms could become equal. -- Precondition: the terms are in reduced form -- (with no top-level pointer) and -- failed to be equal in the 'compareAtom' check. -- -- By eta-contraction, a lambda or a record constructor term -- can become anything. etaInequal :: Comparison -> Type -> Term -> Term -> TCM () etaInequal cmp t m n = do let inequal = typeError $ UnequalTerms cmp m n t dontKnow = do reportSDoc "tc.conv.inequal" 20 $ hsep [ text "etaInequal: postponing " , prettyTCM m , text " != " , prettyTCM n ] patternViolation -- if type is not blocked, then we would have tried eta already flip (ifBlockedType t) (\ _ -> inequal) $ \ _ _ -> do -- type is blocked case (m, n) of (Con{}, _) -> dontKnow (_, Con{}) -> dontKnow (Lam{}, _) -> dontKnow (_, Lam{}) -> dontKnow _ -> inequal compareAtomDir :: CompareDirection -> Type -> Term -> Term -> TCM () compareAtomDir dir a = dirToCmp (`compareAtom` a) dir -- | Syntax directed equality on atomic values -- compareAtom :: Comparison -> Type -> Term -> Term -> TCM () compareAtom cmp t m n = verboseBracket "tc.conv.atom" 20 "compareAtom" $ -- if a PatternErr is thrown, rebuild constraint! catchConstraint (ValueCmp cmp t m n) $ do reportSDoc "tc.conv.atom" 50 $ text "compareAtom" <+> fsep [ prettyTCM m <+> prettyTCM cmp , prettyTCM n , text ":" <+> prettyTCM t ] -- Andreas: what happens if I cut out the eta expansion here? -- Answer: Triggers issue 245, does not resolve 348 (mb',nb') <- ifM (asks envCompareBlocked) ((notBlocked -*- notBlocked) <$> reduce (m,n)) $ do mb' <- etaExpandBlocked =<< reduceB m nb' <- etaExpandBlocked =<< reduceB n return (mb', nb') -- constructorForm changes literal to constructors -- only needed if the other side is not a literal (mb'', nb'') <- case (ignoreSharing $ ignoreBlocking mb', ignoreSharing $ ignoreBlocking nb') of (Lit _, Lit _) -> return (mb', nb') _ -> (,) <$> traverse constructorForm mb' <*> traverse constructorForm nb' mb <- traverse unLevel mb'' nb <- traverse unLevel nb'' let m = ignoreBlocking mb n = ignoreBlocking nb postpone = addConstraint $ ValueCmp cmp t m n checkSyntacticEquality = do n <- normalise n -- is this what we want? m <- normalise m if m == n then return () -- Check syntactic equality for blocked terms else postpone dir = fromCmp cmp rid = flipCmp dir -- The reverse direction. Bad name, I know. assign dir x es v = assignE dir x es v $ compareAtomDir dir t unifyPointers cmp (ignoreBlocking mb') (ignoreBlocking nb') $ do -- this needs to go after eta expansion to avoid creating infinite terms reportSDoc "tc.conv.atom" 30 $ text "compareAtom" <+> fsep [ prettyTCM mb <+> prettyTCM cmp , prettyTCM nb , text ":" <+> prettyTCM t ] case (ignoreSharing <$> mb, ignoreSharing <$> nb) of -- equate two metas x and y. if y is the younger meta, -- try first y := x and then x := y (NotBlocked _ (MetaV x xArgs), NotBlocked _ (MetaV y yArgs)) | x == y -> case intersectVars xArgs yArgs of -- all relevant arguments are variables Just kills -> do -- kills is a list with 'True' for each different var killResult <- killArgs kills x case killResult of NothingToPrune -> return () PrunedEverything -> return () PrunedNothing -> postpone PrunedSomething -> postpone -- OLD CODE: if killedAll then return () else checkSyntacticEquality -- not all relevant arguments are variables Nothing -> checkSyntacticEquality -- Check syntactic equality on meta-variables -- (same as for blocked terms) | otherwise -> do [p1, p2] <- mapM getMetaPriority [x,y] -- instantiate later meta variables first let (solve1, solve2) | (p1,x) > (p2,y) = (l,r) | otherwise = (r,l) where l = assign dir x xArgs n r = assign rid y yArgs m try m h = m `catchError_` \err -> case err of PatternErr{} -> h _ -> throwError err -- First try the one with the highest priority. If that doesn't -- work, try the low priority one. try solve1 solve2 -- one side a meta, the other an unblocked term (NotBlocked _ (MetaV x es), _) -> assign dir x es n (_, NotBlocked _ (MetaV x es)) -> assign rid x es m (Blocked{}, Blocked{}) -> checkSyntacticEquality (Blocked{}, _) -> useInjectivity cmp t m n (_,Blocked{}) -> useInjectivity cmp t m n _ -> do -- -- Andreas, 2013-10-20 put projection-like function -- -- into the spine, to make compareElims work. -- -- 'False' means: leave (Def f []) unchanged even for -- -- proj-like funs. -- m <- elimView False m -- n <- elimView False n -- Andreas, 2015-07-01, actually, don't put them into the spine. -- Polarity cannot be communicated properly if projection-like -- functions are post-fix. case (ignoreSharing m, ignoreSharing n) of (Pi{}, Pi{}) -> equalFun m n (Sort s1, Sort Inf) -> return () (Sort s1, Sort s2) -> compareSort CmpEq s1 s2 (Lit l1, Lit l2) | l1 == l2 -> return () (Var i es, Var i' es') | i == i' -> do a <- typeOfBV i -- Variables are invariant in their arguments compareElims [] a (var i) es es' (Def f [], Def f' []) | f == f' -> return () (Def f es, Def f' es') | f == f' -> do def <- getConstInfo f -- To compute the type @a@ of a projection-like @f@, -- we have to infer the type of its first argument. a <- if projectionArgs (theDef def) <= 0 then return $ defType def else do -- Find an first argument to @f@. let arg = case (es, es') of (Apply arg : _, _) -> arg (_, Apply arg : _) -> arg _ -> __IMPOSSIBLE__ -- Infer its type. targ <- infer $ unArg arg -- getDefType wants the argument type reduced. fromMaybeM __IMPOSSIBLE__ $ getDefType f =<< reduce targ -- The polarity vector of projection-like functions -- does not include the parameters. pol <- getPolarity' cmp f compareElims pol a (Def f []) es es' (Def f es, Def f' es') -> unlessM (bothAbsurd f f') $ do trySizeUniv cmp t m n f es f' es' (Con x xArgs, Con y yArgs) | x == y -> do -- Get the type of the constructor instantiated to the datatype parameters. a' <- conType x t -- Constructors are covariant in their arguments -- (see test/succeed/CovariantConstructors). compareArgs (repeat $ polFromCmp cmp) a' (Con x []) xArgs yArgs _ -> etaInequal cmp t m n -- fixes issue 856 (unsound conversion error) where -- Andreas, 2013-05-15 due to new postponement strategy, type can now be blocked conType c t = ifBlockedType t (\ _ _ -> patternViolation) $ \ t -> do let impossible = do reportSDoc "impossible" 10 $ text "expected data/record type, found " <+> prettyTCM t reportSLn "impossible" 70 $ " raw = " ++ show t -- __IMPOSSIBLE__ -- Andreas, 2013-10-20: in case termination checking fails -- we might get some unreduced types here. -- In issue 921, this happens during the final attempt -- to solve left-over constraints. -- Thus, instead of crashing, just give up gracefully. patternViolation maybe impossible return =<< getConType c t equalFun t1 t2 = case (ignoreSharing t1, ignoreSharing t2) of (Pi dom1@(Dom i1 a1@(El a1s a1t)) b1, Pi (Dom i2 a2) b2) | argInfoHiding i1 /= argInfoHiding i2 -> typeError $ UnequalHiding t1 t2 -- Andreas 2010-09-21 compare r1 and r2, but ignore forcing annotations! | not (compareRelevance cmp (ignoreForced $ argInfoRelevance i2) (ignoreForced $ argInfoRelevance i1)) -> typeError $ UnequalRelevance cmp t1 t2 | otherwise -> verboseBracket "tc.conv.fun" 15 "compare function types" $ do reportSDoc "tc.conv.fun" 20 $ nest 2 $ vcat [ text "t1 =" <+> prettyTCM t1 , text "t2 =" <+> prettyTCM t2 ] -- We only need to require a1 == a2 if t2 is a dependent function type. -- If it's non-dependent it doesn't matter what we add to the context. pid <- newProblem_ $ compareType cmp a2 a1 dom <- if isBinderUsed b2 then Dom i1 <$> blockTypeOnProblem a1 pid -- then Dom i1 . El a1s <$> blockTermOnProblem (El Inf $ Sort a1s) a1t pid else return dom1 name <- freshName_ (suggest b1 b2) addContext (name, dom) $ compareType cmp (absBody b1) (absBody b2) stealConstraints pid -- Andreas, 2013-05-15 Now, comparison of codomains is not -- blocked any more by getting stuck on domains. -- Only the domain type in context will be blocked. {- OLD let checkDom = escapeContext 1 $ compareType cmp a2 a1 conCoDom = TypeCmp cmp (absBody b1) (absBody b2) -- We only need to require a1 == a2 if t2 is a dependent function type. -- If it's non-dependent it doesn't matter what we add to the context. name <- freshName_ (suggest b1 b2) addCtx name dom1 $ if isBinderUsed b2 -- dependent function type? then guardConstraint conCoDom checkDom else checkDom >> solveConstraint_ conCoDom -} _ -> __IMPOSSIBLE__ compareRelevance :: Comparison -> Relevance -> Relevance -> Bool compareRelevance CmpEq = (==) compareRelevance CmpLeq = (<=) -- | @compareElims pols a v els1 els2@ performs type-directed equality on eliminator spines. -- @t@ is the type of the head @v@. compareElims :: [Polarity] -> Type -> Term -> [Elim] -> [Elim] -> TCM () compareElims pols0 a v els01 els02 = catchConstraint (ElimCmp pols0 a v els01 els02) $ do let v1 = applyE v els01 v2 = applyE v els02 failure = typeError $ UnequalTerms CmpEq v1 v2 a -- Andreas, 2013-03-15 since one of the spines is empty, @a@ -- is the correct type here. unless (null els01) $ do reportSDoc "tc.conv.elim" 25 $ text "compareElims" $$ do nest 2 $ vcat [ text "a =" <+> prettyTCM a , text "pols0 (truncated to 10) =" <+> sep (map prettyTCM $ take 10 pols0) , text "v =" <+> prettyTCM v , text "els01 =" <+> prettyTCM els01 , text "els02 =" <+> prettyTCM els02 ] case (els01, els02) of ([] , [] ) -> return () ([] , Proj{}:_ ) -> failure -- not impossible, see issue 821 (Proj{} : _, [] ) -> failure -- could be x.p =?= x for projection p ([] , Apply{} : _) -> failure -- not impossible, see issue 878 (Apply{} : _, [] ) -> failure (Apply{} : _, Proj{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True -- NB: popped up in issue 889 (Proj{} : _, Apply{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True -- but should be impossible (but again in issue 1467) (Apply arg1 : els1, Apply arg2 : els2) -> verboseBracket "tc.conv.elim" 20 "compare Apply" $ do reportSDoc "tc.conv.elim" 10 $ nest 2 $ vcat [ text "a =" <+> prettyTCM a , text "v =" <+> prettyTCM v , text "arg1 =" <+> prettyTCM arg1 , text "arg2 =" <+> prettyTCM arg2 ] reportSDoc "tc.conv.elim" 50 $ nest 2 $ vcat [ text "v =" <+> text (show v) , text "arg1 =" <+> text (show arg1) , text "arg2 =" <+> text (show arg2) , text "" ] let (pol, pols) = nextPolarity pols0 ifBlockedType a (\ m t -> patternViolation) $ \ a -> do case ignoreSharing . unEl $ a of (Pi (Dom info b) codom) -> do mlvl <- mlevel let freeInCoDom (Abs _ c) = 0 `freeInIgnoringSorts` c freeInCoDom _ = False dependent = (Just (unEl b) /= mlvl) && freeInCoDom codom -- Level-polymorphism (x : Level) -> ... does not count as dependency here -- NB: we could drop the free variable test and still be sound. -- It is a trade-off between the administrative effort of -- creating a blocking and traversing a term for free variables. -- Apparently, it is believed that checking free vars is cheaper. -- Andreas, 2013-05-15 r = getRelevance info -- NEW, Andreas, 2013-05-15 -- compare arg1 and arg2 pid <- newProblem_ $ applyRelevanceToContext r $ case r of Forced{} -> return () r | irrelevantOrUnused r -> compareIrrelevant b (unArg arg1) (unArg arg2) _ -> compareWithPol pol (flip compareTerm b) (unArg arg1) (unArg arg2) -- if comparison got stuck and function type is dependent, block arg arg <- if dependent then (arg1 $>) <$> blockTermOnProblem b (unArg arg1) pid else return arg1 -- continue, possibly with blocked instantiation compareElims pols (piApply a [arg]) (apply v [arg]) els1 els2 -- any left over constraints of arg are associatd to the comparison stealConstraints pid {- Stealing solves this issue: Does not create enough blocked tc-problems, see test/fail/DontPrune. (There are remaining problems which do not show up as yellow.) Need to find a way to associate pid also to result of compareElims. -} {- OLD, before 2013-05-15 let checkArg = applyRelevanceToContext r $ case r of Forced -> return () r | irrelevantOrUnused r -> compareIrrelevant b (unArg arg1) (unArg arg2) _ -> compareWithPol pol (flip compareTerm b) (unArg arg1) (unArg arg2) theRest = ElimCmp pols (piApply a [arg1]) (apply v [arg1]) els1 els2 if dependent then guardConstraint theRest checkArg else checkArg >> solveConstraint_ theRest -} a -> do reportSDoc "impossible" 10 $ text "unexpected type when comparing apply eliminations " <+> prettyTCM a reportSLn "impossible" 50 $ "raw type: " ++ show a patternViolation -- Andreas, 2013-10-22 -- in case of disabled reductions (due to failing termination check) -- we might get stuck, so do not crash, but fail gently. -- __IMPOSSIBLE__ -- case: f == f' are projections (Proj f : els1, Proj f' : els2) | f /= f' -> typeError . GenericError . show =<< prettyTCM f <+> text "/=" <+> prettyTCM f' | otherwise -> ifBlockedType a (\ m t -> patternViolation) $ \ a -> do res <- projectTyped v a f -- fails only if f is proj.like but parameters cannot be retrieved case res of Just (u, t) -> do -- Andreas, 2015-07-01: -- The arguments following the principal argument of a projection -- are invariant. (At least as long as we have no explicit polarity -- annotations.) compareElims [] t u els1 els2 Nothing -> do reportSDoc "tc.conv.elims" 30 $ sep [ text $ "projection " ++ show f , text "applied to value " <+> prettyTCM v , text "of unexpected type " <+> prettyTCM a ] patternViolation {- res <- getDefType f a -- get type of projection (like) function case res of Just ft -> do let arg = defaultArg v -- we could get the proper Arg deco from ft c = ft `piApply` [arg] u <- applyDef f arg -- correct both for proj.s and non proj.s (cmp, els1, els2) <- return $ case fst $ nextPolarity pols0 of Invariant -> (CmpEq , els1, els2) Covariant -> (CmpLeq, els1, els2) Contravariant -> (CmpLeq, els2, els1) Nonvariant -> __IMPOSSIBLE__ -- the polarity should be Invariant pols' <- getPolarity' cmp f compareElims pols' c u els1 els2 _ -> do reportSDoc "impossible" 10 $ sep [ text $ "projection " ++ show f , text "applied to value " <+> prettyTCM v , text "of unexpected type " <+> prettyTCM a ] patternViolation -- __IMPOSSIBLE__ -} -- | "Compare" two terms in irrelevant position. This always succeeds. -- However, we can dig for solutions of irrelevant metas in the -- terms we compare. -- (Certainly not the systematic solution, that'd be proof search...) compareIrrelevant :: Type -> Term -> Term -> TCM () {- 2012-04-02 DontCare no longer present compareIrrelevant t (DontCare v) w = compareIrrelevant t v w compareIrrelevant t v (DontCare w) = compareIrrelevant t v w -} compareIrrelevant t v w = do reportSDoc "tc.conv.irr" 20 $ vcat [ text "compareIrrelevant" , nest 2 $ text "v =" <+> prettyTCM v , nest 2 $ text "w =" <+> prettyTCM w ] reportSDoc "tc.conv.irr" 50 $ vcat [ nest 2 $ text $ "v = " ++ show v , nest 2 $ text $ "w = " ++ show w ] try v w $ try w v $ return () where try (Shared p) w fallback = try (derefPtr p) w fallback try (MetaV x es) w fallback = do mv <- lookupMeta x let rel = getMetaRelevance mv inst = case mvInstantiation mv of InstV{} -> True InstS{} -> True _ -> False reportSDoc "tc.conv.irr" 20 $ vcat [ nest 2 $ text $ "rel = " ++ show rel , nest 2 $ text $ "inst = " ++ show inst ] if not (irrelevantOrUnused rel) || inst then fallback else assignE DirEq x es w $ compareIrrelevant t -- the value of irrelevant or unused meta does not matter try v w fallback = fallback compareWithPol :: Polarity -> (Comparison -> a -> a -> TCM ()) -> a -> a -> TCM () compareWithPol Invariant cmp x y = cmp CmpEq x y compareWithPol Covariant cmp x y = cmp CmpLeq x y compareWithPol Contravariant cmp x y = cmp CmpLeq y x compareWithPol Nonvariant cmp x y = return () polFromCmp :: Comparison -> Polarity polFromCmp CmpLeq = Covariant polFromCmp CmpEq = Invariant -- | Type-directed equality on argument lists -- compareArgs :: [Polarity] -> Type -> Term -> Args -> Args -> TCM () compareArgs pol a v args1 args2 = compareElims pol a v (map Apply args1) (map Apply args2) --------------------------------------------------------------------------- -- * Types --------------------------------------------------------------------------- -- | Equality on Types compareType :: Comparison -> Type -> Type -> TCM () compareType cmp ty1@(El s1 a1) ty2@(El s2 a2) = verboseBracket "tc.conv.type" 20 "compareType" $ catchConstraint (TypeCmp cmp ty1 ty2) $ do reportSDoc "tc.conv.type" 50 $ vcat [ text "compareType" <+> sep [ prettyTCM ty1 <+> prettyTCM cmp , prettyTCM ty2 ] , hsep [ text " sorts:", prettyTCM s1, text " and ", prettyTCM s2 ] ] -- Andreas, 2011-4-27 should not compare sorts, but currently this is needed -- for solving sort and level metas compareSort CmpEq s1 s2 `catchError` \err -> case err of TypeError _ e -> do reportSDoc "tc.conv.type" 30 $ vcat [ text "sort comparison failed" , nest 2 $ vcat [ text "s1 =" <+> prettyTCM s1 , text "s2 =" <+> prettyTCM s2 ] ] case clValue e of -- Issue 659: Better error message SetOmegaNotValidType -> typeError $ UnequalBecauseOfUniverseConflict cmp a1 a2 _ -> do -- This error will probably be more informative compareTerm cmp (sort s1) a1 a2 -- Throw the original error if the above doesn't -- give an error (for instance, due to pending -- constraints). -- Or just ignore it... We run into this with irrelevant levels -- which may show up in sort constraints, causing them to fail. -- In any case it's not safe to ignore the error, for instance -- a1 might be Set and a2 a meta of type Set, in which case we -- really need the sort comparison to fail, instead of silently -- instantiating the meta. -- Andreas, 2013-10-31 Maybe the error went away -- when we compared the types. So we try the sort comparison -- again, this time not catching the error. (see Issue 930) -- throwError err compareSort CmpEq s1 s2 _ -> throwError err compareTerm cmp (sort s1) a1 a2 return () leqType :: Type -> Type -> TCM () leqType = compareType CmpLeq -- | @coerce v a b@ coerces @v : a@ to type @b@, returning a @v' : b@ -- with maybe extra hidden applications or hidden abstractions. -- -- In principle, this function can host coercive subtyping, but -- currently it only tries to fix problems with hidden function types. coerce :: Term -> Type -> Type -> TCM Term coerce v t1 t2 = blockTerm t2 $ do verboseS "tc.conv.coerce" 10 $ do (a1,a2) <- reify (t1,t2) let dbglvl = if isSet a1 && isSet a2 then 50 else 10 reportSDoc "tc.conv.coerce" dbglvl $ text "coerce" <+> vcat [ text "term v =" <+> prettyTCM v , text "from type t1 =" <+> prettyTCM a1 , text "to type t2 =" <+> prettyTCM a2 ] -- v <$ do workOnTypes $ leqType t1 t2 -- take off hidden/instance domains from t1 and t2 TelV tel1 b1 <- telViewUpTo' (-1) ((NotHidden /=) . getHiding) t1 TelV tel2 b2 <- telViewUpTo' (-1) ((NotHidden /=) . getHiding) t2 let n = size tel1 - size tel2 -- the crude solution would be -- v' = λ {tel2} → v {tel1} -- however, that may introduce unneccessary many function types -- If n > 0 and b2 is not blocked, it is safe to -- insert n many hidden args if n <= 0 then fallback else do ifBlockedType b2 (\ _ _ -> fallback) $ \ _ -> do (args, t1') <- implicitArgs n (NotHidden /=) t1 coerceSize (v `apply` args) t1' t2 where fallback = coerceSize v t1 t2 -- | Account for situations like @k : (Size< j) <= (Size< k + 1)@ -- -- Actually, the semantics is -- @(Size<= k) ∩ (Size< j) ⊆ rhs@ -- which gives a disjunctive constraint. Mmmh, looks like stuff -- TODO. -- -- For now, we do a cheap heuristics. coerceSize :: Term -> Type -> Type -> TCM Term coerceSize v t1 t2 = workOnTypes $ do let fallback = v <$ leqType t1 t2 done = caseMaybeM (isSizeType t1) fallback $ \ b1 -> return v -- Andreas, 2015-07-22, Issue 1615: -- If t1 is a meta and t2 a type like Size< v2, we need to make sure we do not miss -- the constraint v < v2! caseMaybeM (isSizeType t2) fallback $ \ b2 -> do -- Andreas, 2015-02-11 do not instantiate metas here (triggers issue 1203). ifM (tryConversion $ dontAssignMetas $ leqType t1 t2) (return v) $ {- else -} do -- A (most probably weaker) alternative is to just check syn.eq. -- ifM (snd <$> checkSyntacticEquality t1 t2) (return v) $ {- else -} do case b2 of -- @t2 = Size@. We are done! BoundedNo -> done -- @t2 = Size< v2@ BoundedLt v2 -> do sv2 <- sizeView v2 case sv2 of SizeInf -> done OtherSize{} -> do -- Andreas, 2014-06-16: -- Issue 1203: For now, just treat v < v2 as suc v <= v2 -- TODO: Need proper < comparison vinc <- sizeSuc 1 v compareSizes CmpLeq vinc v2 done -- @v2 = a2 + 1@: In this case, we can try @v <= a2@ SizeSuc a2 -> do compareSizes CmpLeq v a2 done -- to pass Issue 1136 --------------------------------------------------------------------------- -- * Sorts and levels --------------------------------------------------------------------------- compareLevel :: Comparison -> Level -> Level -> TCM () compareLevel CmpLeq u v = leqLevel u v compareLevel CmpEq u v = equalLevel u v compareSort :: Comparison -> Sort -> Sort -> TCM () compareSort CmpEq = equalSort compareSort CmpLeq = leqSort -- | Check that the first sort is less or equal to the second. -- -- We can put @SizeUniv@ below @Inf@, but otherwise, it is -- unrelated to the other universes. -- leqSort :: Sort -> Sort -> TCM () leqSort s1 s2 = catchConstraint (SortCmp CmpLeq s1 s2) $ do (s1,s2) <- reduce (s1,s2) let postpone = addConstraint (SortCmp CmpLeq s1 s2) no = typeError $ NotLeqSort s1 s2 yes = return () reportSDoc "tc.conv.sort" 30 $ sep [ text "leqSort" , nest 2 $ fsep [ prettyTCM s1 <+> text "=<" , prettyTCM s2 ] ] case (s1, s2) of (_ , Inf ) -> yes (SizeUniv, _ ) -> equalSort s1 s2 (_ , SizeUniv) -> equalSort s1 s2 (Type a , Type b ) -> unlessM typeInType $ leqLevel a b (Prop , Prop ) -> yes (Prop , Type _ ) -> yes (Type _ , Prop ) -> no -- (SizeUniv, SizeUniv) -> yes -- (SizeUniv, _ ) -> no -- (_ , SizeUniv) -> no (Inf , _ ) -> unlessM typeInType $ equalSort s1 s2 (DLub{} , _ ) -> unlessM typeInType $ postpone (_ , DLub{} ) -> unlessM typeInType $ postpone leqLevel :: Level -> Level -> TCM () leqLevel a b = liftTCM $ do reportSDoc "tc.conv.nat" 30 $ text "compareLevel" <+> sep [ prettyTCM a <+> text "=<" , prettyTCM b ] a <- reduce a b <- reduce b catchConstraint (LevelCmp CmpLeq a b) $ leqView a b where leqView a@(Max as) b@(Max bs) = do reportSDoc "tc.conv.nat" 30 $ text "compareLevelView" <+> sep [ text (show a) <+> text "=<" , text (show b) ] wrap $ case (as, bs) of -- same term _ | as == bs -> ok -- 0 ≤ any ([], _) -> ok -- as ≤ 0 (as, []) -> sequence_ [ equalLevel (Max [a]) (Max []) | a <- as ] -- as ≤ [b] (as@(_:_:_), [b]) -> sequence_ [ leqView (Max [a]) (Max [b]) | a <- as ] -- reduce constants (as, bs) | minN > 0 -> leqView (Max $ map (subtr minN) as) (Max $ map (subtr minN) bs) where ns = map constant as ms = map constant bs minN = minimum (ns ++ ms) -- remove subsumed -- Andreas, 2014-04-07: This is ok if we do not go back to equalLevel (as, bs) | not $ null subsumed -> leqView (Max $ as \\ subsumed) (Max bs) where subsumed = [ a | a@(Plus m l) <- as, n <- findN l, m <= n ] -- @findN a@ finds the unique(?) term @Plus n a@ in @bs@, if any. -- Andreas, 2014-04-07 Why must there be a unique term? findN a = case [ n | Plus n b <- bs, b == a ] of [n] -> [n] _ -> [] -- Andreas, 2012-10-02 raise error on unsolvable constraint ([ClosedLevel n], [ClosedLevel m]) -> if n <= m then ok else notok -- closed ≤ bs ([ClosedLevel n], bs) | n <= maximum (map constant bs) -> ok -- as ≤ neutral (as, bs) | neutralB && maxA > maxB -> notok | neutralB && any (\a -> neutral a && not (isInB a)) as -> notok | neutralB && neutralA -> maybeok $ all (\a -> constant a <= findN a) as where maxA = maximum $ map constant as maxB = maximum $ map constant bs neutralA = all neutral as neutralB = all neutral bs isInB a = elem (unneutral a) $ map unneutral bs findN a = case [ n | b@(Plus n _) <- bs, unneutral b == unneutral a ] of [n] -> n _ -> __IMPOSSIBLE__ -- [a] ≤ [neutral] ([a@(Plus n _)], [b@(Plus m NeutralLevel{})]) | m == n -> equalLevel (Max [a]) (Max [b]) -- Andreas, 2014-04-07: This call to equalLevel is ok even if we removed -- subsumed terms from the lhs. -- anything else _ -> postpone where ok = return () notok = typeError $ NotLeqSort (Type a) (Type b) postpone = patternViolation wrap m = catchError m $ \e -> case e of TypeError{} -> notok _ -> throwError e maybeok True = ok maybeok False = notok neutral (Plus _ NeutralLevel{}) = True neutral _ = False meta (Plus _ MetaLevel{}) = True meta _ = False unneutral (Plus _ (NeutralLevel _ v)) = v unneutral _ = __IMPOSSIBLE__ constant (ClosedLevel n) = n constant (Plus n _) = n subtr m (ClosedLevel n) = ClosedLevel (n - m) subtr m (Plus n l) = Plus (n - m) l -- choice [] = patternViolation -- choice (m:ms) = noConstraints m `catchError` \_ -> choice ms -- case e of -- PatternErr{} -> choice ms -- _ -> throwError e equalLevel :: Level -> Level -> TCM () equalLevel a b = do -- Andreas, 2013-10-31 Use normalization to make syntactic equality stronger (a, b) <- normalise (a, b) reportSLn "tc.conv.level" 50 $ "equalLevel (" ++ show a ++ ") (" ++ show b ++ ")" liftTCM $ catchConstraint (LevelCmp CmpEq a b) $ check a b where check a@(Max as) b@(Max bs) = do -- Jesper, 2014-02-02 remove terms that certainly do not contribute -- to the maximum as <- return $ [ a | a <- as, not $ a `isStrictlySubsumedBy` bs ] bs <- return $ [ b | b <- bs, not $ b `isStrictlySubsumedBy` as ] -- Andreas, 2013-10-31 remove common terms (that don't contain metas!!) -- THAT's actually UNSOUND when metas are instantiated, because -- max a b == max a c does not imply b == c -- as <- return $ Set.fromList $ closed0 as -- bs <- return $ Set.fromList $ closed0 bs -- let cs = Set.filter (not . hasMeta) $ Set.intersection as bs -- as <- return $ Set.toList $ as Set.\\ cs -- bs <- return $ Set.toList $ bs Set.\\ cs as <- return $ List.sort $ closed0 as bs <- return $ List.sort $ closed0 bs reportSDoc "tc.conv.level" 40 $ sep [ text "equalLevel" , vcat [ nest 2 $ sep [ prettyTCM a <+> text "==" , prettyTCM b ] , text "reduced" , nest 2 $ sep [ prettyTCM (Max as) <+> text "==" , prettyTCM (Max bs) ] ] ] reportSDoc "tc.conv.level" 50 $ sep [ text "equalLevel" , vcat [ nest 2 $ sep [ text (show (Max as)) <+> text "==" , text (show (Max bs)) ] ] ] case (as, bs) of _ | as == bs -> ok | any isBlocked (as ++ bs) -> do lvl <- levelType liftTCM $ useInjectivity CmpEq lvl (Level a) (Level b) -- closed == closed ([ClosedLevel n], [ClosedLevel m]) | n == m -> ok | otherwise -> notok -- closed == neutral ([ClosedLevel{}], _) | any isNeutral bs -> notok (_, [ClosedLevel{}]) | any isNeutral as -> notok -- 0 == any ([ClosedLevel 0], bs@(_:_:_)) -> sequence_ [ equalLevel (Max []) (Max [b]) | b <- bs ] (as@(_:_:_), [ClosedLevel 0]) -> sequence_ [ equalLevel (Max [a]) (Max []) | a <- as ] -- Andreas, 2014-04-07 Why should the following be ok? -- X (suc a) could be different from X (suc (suc a)) -- -- Same meta -- ([Plus n (MetaLevel x _)], [Plus m (MetaLevel y _)]) -- | n == m && x == y -> ok -- meta == any ([Plus n (MetaLevel x as)], _) | any (isThisMeta x) bs -> postpone (_, [Plus n (MetaLevel x bs)]) | any (isThisMeta x) as -> postpone ([Plus n (MetaLevel x as')], [Plus m (MetaLevel y bs')]) -- lexicographic comparison intended! | (n, y) < (m, x) -> meta n x as' bs | otherwise -> meta m y bs' as ([Plus n (MetaLevel x as')],_) -> meta n x as' bs (_,[Plus m (MetaLevel y bs')]) -> meta m y bs' as -- any other metas -- Andreas, 2013-10-31: There could be metas in neutral levels (see Issue 930). -- Should not we postpone there as well? Yes! _ | any hasMeta (as ++ bs) -> postpone -- neutral/closed == neutral/closed _ | all isNeutralOrClosed (as ++ bs) -> do reportSLn "tc.conv.level" 60 $ "equalLevel: all are neutral or closed" if length as == length bs then zipWithM_ (\a b -> [a] =!= [b]) as bs else notok -- more cases? _ -> postpone where a === b = do lvl <- levelType equalAtom lvl a b as =!= bs = levelTm (Max as) === levelTm (Max bs) ok = return () notok = typeError $ UnequalSorts (Type a) (Type b) postpone = do reportSLn "tc.conv.level" 30 $ "postponing: " ++ show a ++ " == " ++ show b patternViolation closed0 [] = [ClosedLevel 0] closed0 as = as -- perform assignment (Plus n (MetaLevel x as)) := bs meta n x as bs = do reportSLn "tc.meta.level" 30 $ "Assigning meta level" reportSLn "tc.meta.level" 50 $ "meta " ++ show as ++ " " ++ show bs bs' <- mapM (subtr n) bs assignE DirEq x as (levelTm (Max bs')) (===) -- fallback: check equality as atoms -- Make sure to give a sensible error message wrap m = m `catchError` \err -> case err of TypeError{} -> notok _ -> throwError err subtr n (ClosedLevel m) | m >= n = return $ ClosedLevel (m - n) | otherwise = notok subtr n (Plus m a) | m >= n = return $ Plus (m - n) a subtr _ (Plus _ BlockedLevel{}) = postpone subtr _ (Plus _ MetaLevel{}) = postpone subtr _ (Plus _ NeutralLevel{}) = postpone subtr _ (Plus _ UnreducedLevel{}) = __IMPOSSIBLE__ isNeutral (Plus _ NeutralLevel{}) = True isNeutral _ = False isClosed ClosedLevel{} = True isClosed _ = False isNeutralOrClosed l = isClosed l || isNeutral l isBlocked (Plus _ BlockedLevel{}) = True isBlocked _ = False hasMeta ClosedLevel{} = False hasMeta (Plus _ MetaLevel{}) = True hasMeta (Plus _ (BlockedLevel _ v)) = not $ null $ allMetas v hasMeta (Plus _ (NeutralLevel _ v)) = not $ null $ allMetas v hasMeta (Plus _ (UnreducedLevel v)) = not $ null $ allMetas v isThisMeta x (Plus _ (MetaLevel y _)) = x == y isThisMeta _ _ = False constant (ClosedLevel n) = n constant (Plus n _) = n (ClosedLevel m) `isStrictlySubsumedBy` [] = m == 0 (ClosedLevel m) `isStrictlySubsumedBy` ys = m < maximum (map constant ys) (Plus m x) `isStrictlySubsumedBy` ys = not $ null $ [ n | Plus n y <- ys, x == y, m < n ] -- | Check that the first sort equal to the second. equalSort :: Sort -> Sort -> TCM () equalSort s1 s2 = do ifM typeInType (return ()) $ catchConstraint (SortCmp CmpEq s1 s2) $ do (s1,s2) <- reduce (s1,s2) let postpone = addConstraint (SortCmp CmpEq s1 s2) yes = return () no = typeError $ UnequalSorts s1 s2 -- Test whether a level is infinity. isInf ClosedLevel{} = no isInf (Plus _ l) = case l of MetaLevel x es -> assignE DirEq x es (Sort Inf) $ equalAtom topSort -- Andreas, 2015-02-14 -- This seems to be a hack, as a level meta is instantiated -- by a sort. NeutralLevel _ v -> case ignoreSharing v of Sort Inf -> yes _ -> no _ -> no -- Equate a level with SizeUniv. eqSizeUniv l0 = case l0 of Plus 0 l -> case l of MetaLevel x es -> assignE DirEq x es (Sort SizeUniv) $ equalAtom topSort NeutralLevel _ v -> case ignoreSharing v of Sort SizeUniv -> yes _ -> no _ -> no _ -> no reportSDoc "tc.conv.sort" 30 $ sep [ text "equalSort" , vcat [ nest 2 $ fsep [ prettyTCM s1 <+> text "==" , prettyTCM s2 ] , nest 2 $ fsep [ text (show s1) <+> text "==" , text (show s2) ] ] ] case (s1, s2) of (Type a , Type b ) -> equalLevel a b (SizeUniv, SizeUniv) -> yes (SizeUniv, Type (Max as@(_:_))) -> mapM_ eqSizeUniv as (Type (Max as@(_:_)), SizeUniv) -> mapM_ eqSizeUniv as (SizeUniv, _ ) -> no (_ , SizeUniv) -> no (Prop , Prop ) -> yes (Type _ , Prop ) -> no (Prop , Type _ ) -> no (Inf , Inf ) -> yes (Inf , Type (Max as@(_:_))) -> mapM_ isInf as (Type (Max as@(_:_)), Inf) -> mapM_ isInf as -- Andreas, 2014-06-27: -- @Type (Max [])@ (which is Set0) falls through to error. (Inf , _ ) -> no (_ , Inf ) -> no -- Andreas, 2014-06-27: Why are there special cases for Set0? -- Andreas, 2015-02-14: Probably because s ⊔ s' = Set0 -- entailed that both s and s' are Set0. -- This is no longer true if SizeUniv ⊔ s = s -- (DLub s1 s2, s0@(Type (Max []))) -> do -- equalSort s1 s0 -- underAbstraction_ s2 $ \s2 -> equalSort s2 s0 -- (s0@(Type (Max [])), DLub s1 s2) -> do -- equalSort s0 s1 -- underAbstraction_ s2 $ \s2 -> equalSort s0 s2 (DLub{} , _ ) -> postpone (_ , DLub{} ) -> postpone --------------------------------------------------------------------------- -- * Definitions --------------------------------------------------------------------------- bothAbsurd :: QName -> QName -> TCM Bool bothAbsurd f f' | isAbsurdLambdaName f, isAbsurdLambdaName f' = do def <- getConstInfo f def' <- getConstInfo f' case (theDef def, theDef def') of (Function{ funCompiled = Just Fail}, Function{ funCompiled = Just Fail}) -> return True _ -> return False | otherwise = return False