Agda-2.5.1.1: A dependently typed functional programming language and proof assistant

Safe HaskellNone
LanguageHaskell98

Agda.TypeChecking.SizedTypes.Solve

Description

Solving size constraints under hypotheses.

The size solver proceeds as follows:

  1. Get size constraints, cluster into connected components.

All size constraints that mention the same metas go into the same cluster. Each cluster can be solved by itself.

Constraints that do not fit our format are ignored. We check whether our computed solution fulfills them as well in the last step.

  1. Find a joint context for each cluster.

Each constraint comes with its own typing context, which contains size hypotheses j : Size< i. We need to find a common super context in which all constraints of a cluster live, and raise all constraints to this context.

There might not be a common super context. Then we are screwed, since our solver is not ready to deal with such a situation. We will blatantly refuse to solve this cluster and blame it on the user.

  1. Convert the joint context into a hypothesis graph.

This is straightforward. Each de Bruijn index becomes a rigid variable, each typing assumption j : Size< i becomes an arc.

  1. Convert the constraints into a constraint graph.

Here we need to convert MetaVs into flexible variables.

  1. Run the solver
  2. Convert the solution into meta instantiations.
  3. Double-check whether the constraints are solved.

Synopsis

Documentation

solveSizeConstraints :: DefaultToInfty -> TCM () Source #

Solve size constraints involving hypotheses.

getSizeHypotheses :: Context -> TCM [(CtxId, SizeConstraint)] Source #

Collect constraints from a typing context, looking for SIZELT hypotheses.

canonicalizeSizeConstraint :: SizeConstraint -> Maybe SizeConstraint Source #

Convert size constraint into form where each meta is applied to indices n-1,...,1,0 where n is the arity of that meta.

X[σ] <= t becomes X[id] <= t[σ^-1]

X[σ] ≤ Y[τ] becomes X[id] ≤ Y[τ[σ^-1]] or X[σ[τ^1]] ≤ Y[id] whichever is defined. If none is defined, we give up.

Cf. SizedTypes.oldCanonicalizeSizeConstraint.

Fixes (the rather artificial) issue 300. But it is unsound when pruned metas occur and triggers issue 1914. Thus we deactivate it. This needs to be properly implemented, possibly using the metaPermuatation of each meta variable.

type DBSizeExpr = SizeExpr' NamedRigid SizeMeta Source #

Size expression with de Bruijn indices.

computeSizeConstraint :: Closure Constraint -> TCM (Maybe HypSizeConstraint) Source #

Turn a constraint over de Bruijn indices into a size constraint.

sizeExpr :: Term -> TCM (Maybe DBSizeExpr) Source #

Turn a term into a size expression.

Returns Nothing if the term isn't a proper size expression.

unSizeExpr :: DBSizeExpr -> TCM Term Source #

Turn a de size expression into a term.