{-# LANGUAGE CPP #-} {-# LANGUAGE NondecreasingIndentation #-} {-| Coverage checking, case splitting, and splitting for refine tactics. -} module Agda.TypeChecking.Coverage ( SplitClause(..), clauseToSplitClause, fixTarget , Covering(..), splitClauses , coverageCheck , isCovered , splitClauseWithAbsurd , splitLast , splitResult , normaliseProjP ) where import Prelude hiding (null) import Control.Monad import Control.Monad.Trans ( lift ) #if !MIN_VERSION_base(4,8,0) import Control.Applicative hiding (empty) #endif import Data.List hiding (null) import Data.Monoid (Any(..)) import Data.Map (Map) import qualified Data.Map as Map import Data.Set (Set) import qualified Data.Set as Set import qualified Data.Traversable as Trav import Agda.Syntax.Common import Agda.Syntax.Position import Agda.Syntax.Literal import Agda.Syntax.Internal import Agda.Syntax.Internal.Pattern import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Exception import Agda.TypeChecking.Rules.LHS.Problem (allFlexVars) import Agda.TypeChecking.Rules.LHS.Unify import Agda.TypeChecking.Coverage.Match import Agda.TypeChecking.Coverage.SplitTree import Agda.TypeChecking.Datatypes (getConForm) import Agda.TypeChecking.Pretty import Agda.TypeChecking.Substitute import Agda.TypeChecking.Reduce import Agda.TypeChecking.Records import Agda.TypeChecking.Telescope import Agda.TypeChecking.MetaVars import Agda.Interaction.Options import Agda.Utils.Either import Agda.Utils.Functor import Agda.Utils.List import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.Null import Agda.Utils.Permutation import Agda.Utils.Size import Agda.Utils.Tuple import Agda.Utils.Lens #include "undefined.h" import Agda.Utils.Impossible data SplitClause = SClause { scTel :: Telescope -- ^ Type of variables in @scPats@. , scPats :: [NamedArg DeBruijnPattern] -- ^ The patterns leading to the currently considered branch of -- the split tree. , scSubst :: PatternSubstitution -- ^ Substitution from 'scTel' to old context. -- Only needed directly after split on variable: -- * To update 'scTarget' -- * To rename other split variables when splitting on -- multiple variables. -- @scSubst@ is not ``transitive'', i.e., does not record -- the substitution from the original context to 'scTel' -- over a series of splits. It is freshly computed -- after each split by 'computeNeighborhood'; also -- 'splitResult', which does not split on a variable, -- should reset it to the identity 'idS', lest it be -- applied to 'scTarget' again, leading to Issue 1294. , scModuleParameterSub :: ModuleParamDict -- ^ We need to keep track of the module parameter substitutions for the -- clause for the purpose of inferring missing instance clauses. , scTarget :: Maybe (Arg Type) -- ^ The type of the rhs, living in context 'scTel'. -- This invariant is broken before calls to 'fixTarget'; -- there, 'scTarget' lives in the old context. -- 'fixTarget' moves 'scTarget' to the new context by applying -- substitution 'scSubst'. } -- | A @Covering@ is the result of splitting a 'SplitClause'. data Covering = Covering { covSplitArg :: Arg Nat -- ^ De Bruijn level (counting dot patterns) of argument we split on. , covSplitClauses :: [(QName, SplitClause)] -- ^ Covering clauses, indexed by constructor these clauses share. } -- | Project the split clauses out of a covering. splitClauses :: Covering -> [SplitClause] splitClauses (Covering _ qcs) = map snd qcs -- | Create a split clause from a clause in internal syntax. Used by make-case. clauseToSplitClause :: Clause -> SplitClause clauseToSplitClause cl = SClause { scTel = clauseTel cl , scPats = namedClausePats cl , scSubst = idS -- Andreas, 2014-07-15 TODO: Is this ok? , scModuleParameterSub = Map.empty , scTarget = clauseType cl } type CoverM = ExceptionT SplitError TCM -- | Top-level function for checking pattern coverage. coverageCheck :: QName -> Type -> [Clause] -> TCM SplitTree coverageCheck f t cs = do TelV gamma a <- telView t let -- n = arity -- xs = variable patterns fitting lgamma n = size gamma xs = map (setOrigin Inserted) $ teleNamedArgs gamma -- The initial module parameter substitutions need to be weakened by the -- number of arguments that aren't module parameters. fv <- getDefFreeVars f moduleParams <- raise (n - fv) <$> use stModuleParameters -- construct the initial split clause let sc = SClause gamma xs idS moduleParams $ Just $ defaultArg a reportSDoc "tc.cover.top" 10 $ do let prCl cl = addContext (clauseTel cl) $ prettyTCMPatternList $ namedClausePats cl vcat [ text $ "Coverage checking " ++ show f ++ " with patterns:" , nest 2 $ vcat $ map prCl cs ] -- used = actually used clauses for cover -- pss = uncovered cases (splitTree, used, pss) <- cover f cs sc reportSDoc "tc.cover.splittree" 10 $ vcat [ text "generated split tree for" <+> prettyTCM f , text $ show splitTree ] -- report an error if there are uncovered cases unless (null pss) $ setCurrentRange cs $ typeError $ CoverageFailure f pss -- is = indices of unreachable clauses let is = Set.toList $ Set.difference (Set.fromList [0..genericLength cs - 1]) used -- report an error if there are unreachable clauses unless (null is) $ do let unreached = map (cs !!) is setCurrentRange unreached $ typeError $ UnreachableClauses f $ map namedClausePats unreached return splitTree -- | Top-level function for eliminating redundant clauses in the interactive -- case splitter isCovered :: QName -> [Clause] -> SplitClause -> TCM Bool isCovered f cs sc = do (_, _, missing) <- cover f cs sc return $ null missing -- | @cover f cs (SClause _ _ ps _) = return (splitTree, used, pss)@. -- checks that the list of clauses @cs@ covers the given split clause. -- Returns the @splitTree@, the @used@ clauses, and missing cases @pss@. cover :: QName -> [Clause] -> SplitClause -> TCM (SplitTree, Set Nat, [[NamedArg DeBruijnPattern]]) cover f cs sc@(SClause tel ps _ _ target) = do reportSDoc "tc.cover.cover" 10 $ vcat [ text "checking coverage of pattern:" , nest 2 $ text "tel =" <+> prettyTCM tel , nest 2 $ text "ps =" <+> do addContext tel $ prettyTCMPatternList ps ] exactSplitEnabled <- optExactSplit <$> pragmaOptions cs' <- normaliseProjP cs case match cs' ps of Yes (i,(mps,ls0)) | not exactSplitEnabled || (clauseCatchall (cs !! i) || all isTrivialPattern mps) -> do reportSLn "tc.cover.cover" 10 $ "pattern covered by clause " ++ show i -- Check if any earlier clauses could match with appropriate literals let lsis = mapMaybe (\(j,c) -> (,j) <$> matchLits c ps) $ zip [0..i-1] cs reportSLn "tc.cover.cover" 10 $ "literal matches: " ++ show lsis -- Andreas, 2016-10-08, issue #2243 (#708) -- If we have several literal matches with the same literals -- only take the first matching clause of these. let is = Map.elems $ Map.fromListWith min $ (ls0,i) : lsis return (SplittingDone (size tel), Set.fromList is, []) | otherwise -> do reportSDoc "tc.cover.cover" 10 $ vcat [ text $ "pattern covered by clause " ++ show i ++ " but case splitting was not exact. remaining mpats: " , nest 2 $ vcat $ map (text . show) mps ] setCurrentRange (cs !! i) $ typeError $ CoverageNoExactSplit f (cs !! i) No -> do reportSLn "tc.cover" 20 $ "pattern is not covered" case fmap getHiding target of Just h | h == Instance -> do -- Ulf, 2016-10-31: For now we only infer instance clauses. It would -- make sense to do it also for hidden, but since the value of a -- hidden clause is expected to be forced by later clauses, it's too -- late to add it now. If it was inferrable we would have gotten a -- type error before getting to this point. inferMissingClause f sc return (SplittingDone (size tel), Set.empty, []) _ -> return (SplittingDone (size tel), Set.empty, [ps]) -- We need to split! -- If all clauses have an unsplit copattern, we try that first. Block res bs -> tryIf (getAny res) splitRes $ do let done = return (SplittingDone (size tel), Set.empty, [ps]) if null bs then done else do -- Otherwise, if there are variables to split, we try them -- in the order determined by a split strategy. reportSLn "tc.cover.strategy" 20 $ "blocking vars = " ++ show bs -- xs is a non-empty lists of blocking variables -- try splitting on one of them xs <- splitStrategy bs tel r <- altM1 (split Inductive sc) xs case r of Left err -> case err of CantSplit c tel us vs -> typeError $ CoverageCantSplitOn c tel us vs NotADatatype a -> enterClosure a $ typeError . CoverageCantSplitType IrrelevantDatatype a -> enterClosure a $ typeError . CoverageCantSplitIrrelevantType CoinductiveDatatype a -> enterClosure a $ typeError . CoverageCantSplitType {- UNUSED NoRecordConstructor a -> typeError $ CoverageCantSplitType a -} GenericSplitError s -> fail $ "failed to split: " ++ s -- If we get the empty covering, we have reached an impossible case -- and are done. Right (Covering n []) -> return (SplittingDone (size tel), Set.empty, []) Right (Covering n scs) -> do (trees, useds, psss) <- unzip3 <$> mapM (cover f cs) (map snd scs) -- Jesper, 2016-03-10 We need to remember which variables were -- eta-expanded by the unifier in order to generate a correct split -- tree (see Issue 1872). reportSDoc "tc.cover.split.eta" 60 $ vcat [ text "etaRecordSplits" , nest 2 $ vcat [ text "n = " <+> text (show n) , text "scs = " <+> prettyTCM scs , text "ps = " <+> text (show ps) ] ] let trees' = zipWith (etaRecordSplits (unArg n) ps) scs trees tree = SplitAt n trees' return (tree, Set.unions useds, concat psss) where tryIf :: Monad m => Bool -> m (Maybe a) -> m a -> m a tryIf True me m = fromMaybeM m me tryIf False me m = m -- Try to split result splitRes :: TCM (Maybe (SplitTree, Set Nat, [[NamedArg DeBruijnPattern]])) splitRes = do reportSLn "tc.cover" 20 $ "blocked by projection pattern" -- forM is a monadic map over a Maybe here mcov <- splitResult f sc Trav.forM mcov $ \ (Covering n scs) -> do -- If result splitting was successful, continue coverage checking. (projs, (trees, useds, psss)) <- mapSnd unzip3 . unzip <$> do mapM (traverseF $ cover f cs <=< (snd <.> fixTarget)) scs -- OR: -- forM scs $ \ (proj, sc') -> (proj,) <$> do -- cover f cs =<< do -- snd <$> fixTarget sc' let tree = SplitAt n $ zip projs trees return (tree, Set.unions useds, concat psss) gatherEtaSplits :: Int -> SplitClause -> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern] gatherEtaSplits n sc [] | n >= 0 = __IMPOSSIBLE__ -- we should have encountered the main -- split by now already | otherwise = [] gatherEtaSplits n sc (p:ps) = case namedArg p of VarP x | n == 0 -> case p' of -- this is the main split VarP _ -> __IMPOSSIBLE__ DotP _ -> __IMPOSSIBLE__ ConP _ _ qs -> qs ++ gatherEtaSplits (-1) sc ps LitP _ -> __IMPOSSIBLE__ ProjP{} -> __IMPOSSIBLE__ | otherwise -> updateNamedArg (\ _ -> p') p : gatherEtaSplits (n-1) sc ps where p' = lookupS (scSubst sc) $ dbPatVarIndex x DotP _ -> p : gatherEtaSplits (n-1) sc ps -- count dot patterns ConP _ _ qs -> gatherEtaSplits n sc (qs ++ ps) LitP _ -> gatherEtaSplits n sc ps ProjP{} -> gatherEtaSplits n sc ps addEtaSplits :: Int -> [NamedArg DeBruijnPattern] -> SplitTree -> SplitTree addEtaSplits k [] t = t addEtaSplits k (p:ps) t = case namedArg p of VarP _ -> addEtaSplits (k+1) ps t DotP _ -> addEtaSplits (k+1) ps t ConP c cpi qs -> SplitAt (p $> k) [(conName c , addEtaSplits k (qs ++ ps) t)] LitP _ -> __IMPOSSIBLE__ ProjP{} -> __IMPOSSIBLE__ etaRecordSplits :: Int -> [NamedArg DeBruijnPattern] -> (QName,SplitClause) -> SplitTree -> (QName,SplitTree) etaRecordSplits n ps (q , sc) t = (q , addEtaSplits 0 (gatherEtaSplits n sc ps) t) inferMissingClause :: QName -> SplitClause -> TCM () inferMissingClause f (SClause tel ps _ mpsub (Just t)) = setCurrentRange f $ do reportSDoc "tc.cover.infer" 20 $ addContext tel $ text "Trying to infer right-hand side of type" <+> prettyTCM t cl <- addContext tel $ withModuleParameters mpsub $ do (x, rhs) <- case getHiding t of Instance -> newIFSMeta "" (unArg t) Hidden -> __IMPOSSIBLE__ NotHidden -> __IMPOSSIBLE__ return $ Clause { clauseRange = noRange , clauseTel = tel , namedClausePats = ps , clauseBody = Just rhs , clauseType = Just t , clauseCatchall = False } addClauses f [cl] inferMissingClause _ (SClause _ _ _ _ Nothing) = __IMPOSSIBLE__ splitStrategy :: BlockingVars -> Telescope -> TCM BlockingVars splitStrategy bs tel = return $ updateLast clearBlockingVarCons xs -- Make sure we do not insists on precomputed coverage when -- we make our last try to split. -- Otherwise, we will not get a nice error message. where xs = bs {- KEEP! -- Andreas, 2012-10-13 -- The following split strategy which prefers all-constructor columns -- fails on test/fail/CoverStrategy xs = ys ++ zs (ys, zs) = partition allConstructors bs allConstructors :: BlockingVar -> Bool allConstructors = isJust . snd -} -- | Check that a type is a non-irrelevant datatype or a record with -- named constructor. Unless the 'Induction' argument is 'CoInductive' -- the data type must be inductive. isDatatype :: (MonadTCM tcm, MonadException SplitError tcm) => Induction -> Dom Type -> tcm (QName, [Arg Term], [Arg Term], [QName]) isDatatype ind at = do let t = unDom at throw f = throwException . f =<< do liftTCM $ buildClosure t t' <- liftTCM $ reduce t case ignoreSharing $ unEl t' of Def d es -> do let ~(Just args) = allApplyElims es def <- liftTCM $ theDef <$> getConstInfo d splitOnIrrelevantDataAllowed <- liftTCM $ optExperimentalIrrelevance <$> pragmaOptions case def of Datatype{dataPars = np, dataCons = cs, dataInduction = i} | i == CoInductive && ind /= CoInductive -> throw CoinductiveDatatype -- Andreas, 2011-10-03 allow some splitting on irrelevant data (if only one constr. matches) | isIrrelevant at && not splitOnIrrelevantDataAllowed -> throw IrrelevantDatatype | otherwise -> do let (ps, is) = genericSplitAt np args return (d, ps, is, cs) Record{recPars = np, recConHead = con, recInduction = i} | i == Just CoInductive && ind /= CoInductive -> throw CoinductiveDatatype | otherwise -> return (d, args, [], [conName con]) _ -> throw NotADatatype _ -> throw NotADatatype -- | Update the target type, add more patterns to split clause -- if target becomes a function type. -- Returns the domains of the function type (if any). fixTarget :: SplitClause -> TCM (Telescope, SplitClause) fixTarget sc@SClause{ scTel = sctel, scPats = ps, scSubst = sigma, scModuleParameterSub = mpsub, scTarget = target } = caseMaybe target (return (empty, sc)) $ \ a -> do reportSDoc "tc.cover.target" 20 $ sep [ text "split clause telescope: " <+> prettyTCM sctel , text "old patterns : " <+> do addContext sctel $ prettyTCMPatternList ps ] reportSDoc "tc.cover.target" 60 $ sep [ text "substitution : " <+> text (show sigma) ] reportSDoc "tc.cover.target" 30 $ sep [ text "target type before substitution (variables may be wrong): " <+> do addContext sctel $ prettyTCM a ] TelV tel b <- telView $ applyPatSubst sigma $ unArg a reportSDoc "tc.cover.target" 15 $ sep [ text "target type telescope (after substitution): " <+> do addContext sctel $ prettyTCM tel , text "target type core (after substitution): " <+> do addContext sctel $ addContext tel $ prettyTCM b ] let n = size tel -- Andreas, 2016-10-04 issue #2236 -- Need to set origin to "Inserted" to avoid printing of hidden patterns. xs = map (setOrigin Inserted) $ teleNamedArgs tel -- Compute new split clause sctel' = telFromList $ telToList (raise n sctel) ++ telToList tel -- Dot patterns in @ps@ need to be raised! (Issue 1298) ps' = applySubst (raiseS n) ps ++ xs newTarget = Just $ a $> b sc' = SClause { scTel = sctel' , scPats = ps' , scSubst = wkS n $ sigma -- Should be wkS instead of liftS since -- variables are only added to new tel. , scModuleParameterSub = applySubst (raiseS n) mpsub , scTarget = newTarget } -- Separate debug printing to find cause of crash (Issue 1374) reportSDoc "tc.cover.target" 30 $ sep [ text "new split clause telescope : " <+> prettyTCM sctel' ] reportSDoc "tc.cover.target" 30 $ sep [ text "new split clause patterns : " <+> do addContext sctel' $ prettyTCMPatternList ps' ] reportSDoc "tc.cover.target" 60 $ sep [ text "new split clause substitution: " <+> text (show $ scSubst sc') ] reportSDoc "tc.cover.target" 30 $ sep [ text "new split clause target : " <+> do addContext sctel' $ prettyTCM $ fromJust newTarget ] reportSDoc "tc.cover.target" 20 $ sep [ text "new split clause" , prettyTCM sc' ] return $ if n == 0 then (empty, sc { scTarget = newTarget }) else (tel, sc') -- | @computeNeighbourhood delta1 delta2 d pars ixs hix tel ps mpsub con@ -- -- @ -- delta1 Telescope before split point -- n Name of pattern variable at split point -- delta2 Telescope after split point -- d Name of datatype to split at -- pars Data type parameters -- ixs Data type indices -- hix Index of split variable -- tel Telescope for patterns ps -- ps Patterns before doing the split -- mpsub Current module parameter substitutions -- con Constructor to fit into hole -- @ -- @dtype == d pars ixs@ computeNeighbourhood :: Telescope -- ^ Telescope before split point. -> PatVarName -- ^ Name of pattern variable at split point. -> Telescope -- ^ Telescope after split point. -> QName -- ^ Name of datatype to split at. -> Args -- ^ Data type parameters. -> Args -- ^ Data type indices. -> Nat -- ^ Index of split variable. -> Telescope -- ^ Telescope for the patterns. -> [NamedArg DeBruijnPattern] -- ^ Patterns before doing the split. -> ModuleParamDict -- ^ Current module parameter substitution. -> QName -- ^ Constructor to fit into hole. -> CoverM (Maybe SplitClause) -- ^ New split clause if successful. computeNeighbourhood delta1 n delta2 d pars ixs hix tel ps mpsub c = do -- Get the type of the datatype dtype <- liftTCM $ (`piApply` pars) . defType <$> getConstInfo d -- Get the real constructor name con <- liftTCM $ getConForm c con <- return $ con { conName = c } -- What if we restore the current name? -- Andreas, 2013-11-29 changes nothing! {- con <- conSrcCon . theDef <$> getConstInfo con Con con ci [] <- liftTCM $ ignoreSharing <$> (constructorForm =<< normalise (Con con ci [])) -} -- Get the type of the constructor ctype <- liftTCM $ defType <$> getConInfo con -- Lookup the type of the constructor at the given parameters (gamma0, cixs) <- do TelV gamma0 (El _ d) <- liftTCM $ telView (ctype `piApply` pars) let Def _ es = ignoreSharing d Just cixs = allApplyElims es return (gamma0, cixs) -- Andreas, 2012-02-25 preserve name suggestion for recursive arguments -- of constructor let preserve (x, t@(El _ (Def d' _))) | d == d' = (n, t) preserve (x, (El s (Shared p))) = preserve (x, El s $ derefPtr p) preserve p = p gammal = map (fmap preserve) . telToList $ gamma0 gamma = telFromList gammal delta1Gamma = delta1 `abstract` gamma debugInit con ctype d pars ixs cixs delta1 delta2 gamma tel ps hix -- All variables are flexible let flex = allFlexVars delta1Gamma -- Unify constructor target and given type (in Δ₁Γ) let conIxs = drop (size pars) cixs givenIxs = raise (size gamma) ixs r <- unifyIndices delta1Gamma flex (raise (size gamma) dtype) conIxs givenIxs case r of NoUnify {} -> debugNoUnify $> Nothing DontKnow{} -> do debugCantSplit throwException $ CantSplit (conName con) (delta1 `abstract` gamma) conIxs givenIxs Unifies (delta1',rho0,_) -> do debugSubst "rho0" rho0 -- We have Δ₁' ⊢ ρ₀ : Δ₁Γ, so split it into the part for Δ₁ and the part for Γ let (rho1,rho2) = splitS (size gamma) rho0 -- Andreas, 2015-05-01 I guess it is fine to use @noConPatternInfo@ -- as the result of splitting is never used further down the pipeline. -- After splitting, Agda reloads the file. let conp = ConP con noConPatternInfo $ applySubst rho2 $ map (setOrigin Inserted) $ tele2NamedArgs gamma0 gamma -- Andreas, 2016-09-08, issue #2166: use gamma0 for correct argument names -- Compute final context and substitution let rho3 = consS conp rho1 -- Δ₁' ⊢ ρ₃ : Δ₁(x:D) delta2' = applyPatSubst rho3 delta2 -- Δ₂' = Δ₂ρ₃ delta' = delta1' `abstract` delta2' -- Δ' = Δ₁'Δ₂' rho = liftS (size delta2) rho3 -- Δ' ⊢ ρ : Δ₁(x:D)Δ₂ debugTel "delta'" delta' debugSubst "rho" rho addContext tel $ debugPs ps -- Apply the substitution let ps' = applySubst rho ps addContext delta' $ debugPlugged ps' let mpsub' = applySubst (fromPatternSubstitution rho) mpsub return $ Just $ SClause delta' ps' rho mpsub' Nothing -- target fixed later where debugInit con ctype d pars ixs cixs delta1 delta2 gamma tel ps hix = liftTCM $ reportSDoc "tc.cover.split.con" 20 $ vcat [ text "computeNeighbourhood" , nest 2 $ vcat [ text "context=" <+> (inTopContext . prettyTCM =<< getContextTelescope) , text "con =" <+> prettyTCM con , text "ctype =" <+> prettyTCM ctype , text "ps =" <+> do addContext tel $ prettyTCMPatternList ps , text "d =" <+> prettyTCM d , text "pars =" <+> prettyList (map prettyTCM pars) , text "ixs =" <+> addContext delta1 (prettyList (map prettyTCM ixs)) , text "cixs =" <+> do addContext gamma $ prettyList (map prettyTCM cixs) , text "delta1 =" <+> prettyTCM delta1 , text "delta2 =" <+> prettyTCM delta2 , text "gamma =" <+> prettyTCM gamma , text "hix =" <+> text (show hix) ] ] debugNoUnify = liftTCM $ reportSLn "tc.cover.split.con" 20 " Constructor impossible!" debugCantSplit = liftTCM $ reportSLn "tc.cover.split.con" 20 " Bad split!" debugSubst s sub = liftTCM $ reportSDoc "tc.cover.split.con" 20 $ nest 2 $ vcat [ text (s ++ " =") <+> prettyTCM sub ] debugTel s tel = liftTCM $ reportSDoc "tc.cover.split.con" 20 $ nest 2 $ vcat [ text (s ++ " =") <+> prettyTCM tel ] debugPs ps = liftTCM $ reportSDoc "tc.cover.split.con" 20 $ nest 2 $ vcat [ text "ps =" <+> prettyTCMPatternList ps ] debugPlugged ps' = liftTCM $ reportSDoc "tc.cover.split.con" 20 $ nest 2 $ vcat [ text "ps' =" <+> do prettyTCMPatternList ps' ] -- | Entry point from @Interaction.MakeCase@. splitClauseWithAbsurd :: SplitClause -> Nat -> TCM (Either SplitError (Either SplitClause Covering)) splitClauseWithAbsurd c x = split' Inductive False c (BlockingVar x Nothing) -- Andreas, 2016-05-03, issue 1950: -- Do not introduce trailing pattern vars after split, -- because this does not work for with-clauses. -- | Entry point from @TypeChecking.Empty@ and @Interaction.BasicOps@. -- @splitLast CoInductive@ is used in the @refine@ tactics. splitLast :: Induction -> Telescope -> [NamedArg DeBruijnPattern] -> TCM (Either SplitError Covering) splitLast ind tel ps = split ind sc (BlockingVar 0 Nothing) where sc = SClause tel ps empty empty Nothing -- | @split ind splitClause x = return res@ -- splits @splitClause@ at pattern var @x@ (de Bruijn index). -- -- Possible results @res@ are: -- -- 1. @Left err@: -- Splitting failed. -- -- 2. @Right covering@: -- A covering set of split clauses, one for each valid constructor. -- This could be the empty set (denoting an absurd clause). split :: Induction -- ^ Coinductive constructors are allowed if this argument is -- 'CoInductive'. -> SplitClause -> BlockingVar -> TCM (Either SplitError Covering) split ind sc x = fmap blendInAbsurdClause <$> split' ind True sc x where n = lookupPatternVar sc $ blockingVarNo x blendInAbsurdClause :: Either SplitClause Covering -> Covering blendInAbsurdClause = fromRight (const $ Covering n []) -- | Convert a de Bruijn index relative to the clause telescope to a de Bruijn -- level. The result should be the argument position (counted from left, -- starting with 0) to split at (dot patterns included!). lookupPatternVar :: SplitClause -> Int -> Arg Nat lookupPatternVar SClause{ scTel = tel, scPats = pats } x = arg $> if n < 0 then __IMPOSSIBLE__ else n where n = if k < 0 then __IMPOSSIBLE__ else fromMaybe __IMPOSSIBLE__ $ permPicks perm !!! k perm = fromMaybe __IMPOSSIBLE__ $ dbPatPerm pats k = size tel - x - 1 arg = telVars (size tel) tel !! k -- | @split' ind splitClause x = return res@ -- splits @splitClause@ at pattern var @x@ (de Bruijn index). -- -- Possible results @res@ are: -- -- 1. @Left err@: -- Splitting failed. -- -- 2. @Right (Left splitClause')@: -- Absurd clause (type of @x@ has 0 valid constructors). -- -- 3. @Right (Right covering)@: -- A covering set of split clauses, one for each valid constructor. split' :: Induction -- ^ Coinductive constructors are allowed if this argument is -- 'CoInductive'. -> Bool -- ^ If 'True', introduce new trailing variable patterns via -- 'fixTarget'. -> SplitClause -> BlockingVar -> TCM (Either SplitError (Either SplitClause Covering)) split' ind fixtarget sc@(SClause tel ps _ mpsub target) (BlockingVar x mcons) = liftTCM $ runExceptionT $ do debugInit tel x ps mpsub -- Split the telescope at the variable -- t = type of the variable, Δ₁ ⊢ t (n, t, delta1, delta2) <- do let (tel1, Dom info (n, t) : tel2) = genericSplitAt (size tel - x - 1) $ telToList tel return (n, Dom info t, telFromList tel1, telFromList tel2) -- Check that t is a datatype or a record -- Andreas, 2010-09-21, isDatatype now directly throws an exception if it fails -- cons = constructors of this datatype (d, pars, ixs, cons) <- inContextOfT $ isDatatype ind t -- Compute the neighbourhoods for the constructors ns <- catMaybes <$> do forM cons $ \ con -> fmap (con,) <$> do msc <- computeNeighbourhood delta1 n delta2 d pars ixs x tel ps mpsub con if not fixtarget then return msc else do Trav.forM msc $ \ sc -> lift $ snd <$> fixTarget sc{ scTarget = target } case ns of [] -> do let ps' = (fmap . fmap . fmap . fmap) (\(DBPatVar name y) -> if (x==y) then DBPatVar absurdPatternName y else DBPatVar name y) ps return $ Left $ SClause { scTel = telFromList $ telToList delta1 ++ [fmap ((,) "()") t] ++ -- add name "()" telToList delta2 , scPats = ps , scSubst = idS -- not used anyway , scModuleParameterSub = __IMPOSSIBLE__ -- not used , scTarget = Nothing -- not used } -- Andreas, 2011-10-03 -- if more than one constructor matches, we cannot be irrelevant -- (this piece of code is unreachable if --experimental-irrelevance is off) (_ : _ : _) | unusableRelevance (getRelevance t) -> throwException . IrrelevantDatatype =<< do liftTCM $ buildClosure (unDom t) -- Andreas, 2012-10-10 fail if precomputed constructor set does not cover -- all the data type constructors _ | Just pcons' <- mcons, let pcons = map conName pcons', let cons = (map fst ns), let diff = Set.fromList cons Set.\\ Set.fromList pcons, not (Set.null diff) -> do liftTCM $ reportSDoc "tc.cover.precomputed" 10 $ vcat [ hsep $ text "pcons =" : map prettyTCM pcons , hsep $ text "cons =" : map prettyTCM cons ] throwException (GenericSplitError "precomputed set of constructors does not cover all cases") _ -> return $ Right $ Covering (lookupPatternVar sc x) ns where inContextOfT :: MonadTCM tcm => tcm a -> tcm a inContextOfT = addContext tel . escapeContext (x + 1) inContextOfDelta2 :: MonadTCM tcm => tcm a -> tcm a inContextOfDelta2 = addContext tel . escapeContext x -- Debug printing debugInit tel x ps mpsub = liftTCM $ do reportSDoc "tc.cover.top" 10 $ vcat [ text "TypeChecking.Coverage.split': split" , nest 2 $ vcat [ text "tel =" <+> prettyTCM tel , text "x =" <+> text (show x) , text "ps =" <+> do addContext tel $ prettyTCMPatternList ps , text "mpsub =" <+> prettyTCM mpsub ] ] debugHoleAndType delta1 delta2 s ps t = liftTCM $ reportSDoc "tc.cover.top" 10 $ nest 2 $ vcat $ [ text "p =" <+> text (patVarNameToString s) , text "ps =" <+> text (show ps) , text "delta1 =" <+> prettyTCM delta1 , text "delta2 =" <+> inContextOfDelta2 (prettyTCM delta2) , text "t =" <+> inContextOfT (prettyTCM t) ] -- | @splitResult f sc = return res@ -- -- If the target type of @sc@ is a record type, a covering set of -- split clauses is returned (@sc@ extended by all valid projection patterns), -- otherwise @res == Nothing@. -- Note that the empty set of split clauses is returned if the record has no fields. splitResult :: QName -> SplitClause -> TCM (Maybe Covering) splitResult f sc@(SClause tel ps _ _ target) = do reportSDoc "tc.cover.split" 10 $ vcat [ text "splitting result:" , nest 2 $ text "f =" <+> text (show f) , nest 2 $ text "target =" <+> (addContext tel $ maybe empty prettyTCM target) ] -- if we want to split projections, but have no target type, we give up let done = return Nothing caseMaybe target done $ \ t -> do isR <- addContext tel $ isRecordType $ unArg t case isR of Just (_r, vs, Record{ recFields = fs }) -> do reportSDoc "tc.cover" 20 $ sep [ text $ "we are of record type _r = " ++ show _r , text "applied to parameters vs = " <+> (addContext tel $ prettyTCM vs) , text $ "and have fields fs = " ++ show fs ] let es = patternsToElims ps -- Note: module parameters are part of ps let self = defaultArg $ Def f [] `applyE` es pargs = vs ++ [self] reportSDoc "tc.cover" 20 $ sep [ text "we are self = " <+> (addContext tel $ prettyTCM $ unArg self) ] let n = defaultArg $ permRange $ fromMaybe __IMPOSSIBLE__ $ dbPatPerm ps -- Andreas & James, 2013-11-19 includes the dot patterns! -- See test/succeed/CopatternsAndDotPatterns.agda for a case with dot patterns -- and copatterns which fails for @n = size tel@ with a broken case tree. -- Andreas, 2016-07-22 read the style of projections from the user's lips projOrigin <- ifM (optPostfixProjections <$> pragmaOptions) (return ProjPostfix) (return ProjPrefix) Just . Covering n <$> do forM fs $ \ proj -> do -- compute the new target dType <- defType <$> do getConstInfo $ unArg proj -- WRONG: typeOfConst $ unArg proj let -- type of projection instantiated at self target' = Just $ proj $> dType `piApply` pargs -- Always visible (#2287) projArg = fmap (Named Nothing . ProjP projOrigin) $ setHiding NotHidden proj sc' = sc { scPats = scPats sc ++ [projArg] , scSubst = idS , scTarget = target' } return (unArg proj, sc') _ -> done -- * Boring instances -- | For debugging only. instance PrettyTCM SplitClause where prettyTCM (SClause tel pats sigma mpsub target) = sep [ text "SplitClause" , nest 2 $ vcat [ text "tel =" <+> prettyTCM tel , text "pats =" <+> sep (map (prettyTCM . namedArg) pats) , text "subst =" <+> (text . show) sigma , text "mpsub =" <+> prettyTCM mpsub , text "target =" <+> do caseMaybe target empty $ \ t -> do addContext tel $ prettyTCM t -- Triggers crash (see Issue 1374). -- , text "subst target = " <+> do -- caseMaybe target empty $ \ t -> do -- addContext tel $ prettyTCM $ applySubst sigma t ] ]