{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-| The abstract syntax. This is what you get after desugaring and scope analysis of the concrete syntax. The type checker works on abstract syntax, producing internal syntax ("Agda.Syntax.Internal"). -} module Agda.Syntax.Abstract ( module Agda.Syntax.Abstract , module Agda.Syntax.Abstract.Name ) where import Prelude import Control.Arrow (first, second, (***)) import Data.Foldable (Foldable) import qualified Data.Foldable as Fold import Data.Function (on) import Data.Map (Map) import Data.Maybe import Data.Sequence (Seq, (<|), (><)) import qualified Data.Sequence as Seq import qualified Data.Set as Set import Data.Set (Set) import Data.Traversable import Data.Void import Data.Data (Data) import Data.Monoid (mappend) import Agda.Syntax.Concrete.Name (NumHoles(..)) import Agda.Syntax.Concrete (FieldAssignment'(..), exprFieldA, HoleContent'(..)) import qualified Agda.Syntax.Concrete as C import Agda.Syntax.Concrete.Pretty () import Agda.Syntax.Abstract.Name import Agda.Syntax.Abstract.Name as A (QNamed) import qualified Agda.Syntax.Internal as I import Agda.Syntax.Common import Agda.Syntax.Info import Agda.Syntax.Fixity ( Fixity' ) import Agda.Syntax.Literal import Agda.Syntax.Position import Agda.Syntax.Scope.Base import Agda.TypeChecking.Positivity.Occurrence import Agda.Utils.Functor import Agda.Utils.Geniplate import Agda.Utils.Lens import Agda.Utils.NonemptyList import Agda.Utils.Pretty #include "undefined.h" import Agda.Utils.Impossible -- | A name in a binding position: we also compare the nameConcrete -- when comparing the binders for equality. -- -- With @--caching@ on we compare abstract syntax to determine if we can -- reuse previous typechecking results: during that comparison two -- names can have the same nameId but be semantically different, -- e.g. in @{_ : A} -> ..@ vs. @{r : A} -> ..@. newtype BindName = BindName { unBind :: Name } deriving (Show, Data, HasRange, SetRange, KillRange) instance Eq BindName where (BindName n) == (BindName m) = ((==) `on` nameId) n m && ((==) `on` nameConcrete) n m instance Ord BindName where (BindName n) `compare` (BindName m) = (compare `on` nameId) n m `mappend` (compare `on` nameConcrete) n m type Args = [NamedArg Expr] -- | Expressions after scope checking (operators parsed, names resolved). data Expr = Var Name -- ^ Bound variable. | Def QName -- ^ Constant: axiom, function, data or record type. | Proj ProjOrigin AmbiguousQName -- ^ Projection (overloaded). | Con AmbiguousQName -- ^ Constructor (overloaded). | PatternSyn AmbiguousQName -- ^ Pattern synonym. | Macro QName -- ^ Macro. | Lit Literal -- ^ Literal. | QuestionMark MetaInfo InteractionId -- ^ Meta variable for interaction. -- The 'InteractionId' is usually identical with the -- 'metaNumber' of 'MetaInfo'. -- However, if you want to print an interaction meta as -- just @?@ instead of @?n@, you should set the -- 'metaNumber' to 'Nothing' while keeping the 'InteractionId'. | Underscore MetaInfo -- ^ Meta variable for hidden argument (must be inferred locally). | Dot ExprInfo Expr -- ^ @.e@, for postfix projection. | App AppInfo Expr (NamedArg Expr) -- ^ Ordinary (binary) application. | WithApp ExprInfo Expr [Expr] -- ^ With application. | Lam ExprInfo LamBinding Expr -- ^ @λ bs → e@. | AbsurdLam ExprInfo Hiding -- ^ @λ()@ or @λ{}@. | ExtendedLam ExprInfo DefInfo QName [Clause] | Pi ExprInfo Telescope Expr -- ^ Dependent function space @Γ → A@. | Generalized (Set.Set QName) Expr -- ^ Like a Pi, but the ordering is not known | Fun ExprInfo (Arg Expr) Expr -- ^ Non-dependent function space. | Set ExprInfo Integer -- ^ @Set@, @Set1@, @Set2@, ... | Prop ExprInfo Integer -- ^ @Prop@, @Prop1@, @Prop2@, ... | Let ExprInfo [LetBinding] Expr -- ^ @let bs in e@. | ETel Telescope -- ^ Only used when printing telescopes. | Rec ExprInfo RecordAssigns -- ^ Record construction. | RecUpdate ExprInfo Expr Assigns -- ^ Record update. | ScopedExpr ScopeInfo Expr -- ^ Scope annotation. | QuoteGoal ExprInfo Name Expr -- ^ Binds @Name@ to current type in @Expr@. | QuoteContext ExprInfo -- ^ Returns the current context. | Quote ExprInfo -- ^ Quote an identifier 'QName'. | QuoteTerm ExprInfo -- ^ Quote a term. | Unquote ExprInfo -- ^ The splicing construct: unquote ... | Tactic ExprInfo Expr [NamedArg Expr] [NamedArg Expr] -- ^ @tactic e x1 .. xn | y1 | .. | yn@ | DontCare Expr -- ^ For printing @DontCare@ from @Syntax.Internal@. deriving (Data, Show) -- | Smart constructor for Generalized generalized :: Set.Set QName -> Expr -> Expr generalized s e | Set.null s = e | otherwise = Generalized s e -- | Record field assignment @f = e@. type Assign = FieldAssignment' Expr type Assigns = [Assign] type RecordAssign = Either Assign ModuleName type RecordAssigns = [RecordAssign] -- | Is a type signature a `postulate' or a function signature? data Axiom = FunSig -- ^ A function signature. | NoFunSig -- ^ Not a function signature, i.e., a postulate (in user input) -- or another (e.g. data/record) type signature (internally). deriving (Data, Eq, Ord, Show) -- | Renaming (generic). type Ren a = [(a, a)] data ScopeCopyInfo = ScopeCopyInfo { renModules :: Ren ModuleName , renNames :: Ren QName } deriving (Eq, Show, Data) initCopyInfo :: ScopeCopyInfo initCopyInfo = ScopeCopyInfo { renModules = [] , renNames = [] } instance Pretty ScopeCopyInfo where pretty i = vcat [ prRen "renModules =" (renModules i) , prRen "renNames =" (renNames i) ] where prRen s r = sep [ text s, nest 2 $ vcat (map pr r) ] pr (x, y) = pretty x <+> "->" <+> pretty y data Declaration = Axiom Axiom DefInfo ArgInfo (Maybe [Occurrence]) QName Expr -- ^ Type signature (can be irrelevant, but not hidden). -- -- The fourth argument contains an optional assignment of -- polarities to arguments. | Generalize (Set.Set QName) DefInfo ArgInfo QName Expr -- ^ First argument is set of generalizable variables used in the type. | Field DefInfo QName (Arg Expr) -- ^ record field | Primitive DefInfo QName Expr -- ^ primitive function | Mutual MutualInfo [Declaration] -- ^ a bunch of mutually recursive definitions | Section ModuleInfo ModuleName GeneralizeTelescope [Declaration] | Apply ModuleInfo ModuleName ModuleApplication ScopeCopyInfo ImportDirective -- ^ The @ImportDirective@ is for highlighting purposes. | Import ModuleInfo ModuleName ImportDirective -- ^ The @ImportDirective@ is for highlighting purposes. | Pragma Range Pragma | Open ModuleInfo ModuleName ImportDirective -- ^ only retained for highlighting purposes | FunDef DefInfo QName Delayed [Clause] -- ^ sequence of function clauses | DataSig DefInfo QName GeneralizeTelescope Expr -- ^ lone data signature | DataDef DefInfo QName UniverseCheck DataDefParams [Constructor] -- ^ the 'LamBinding's are 'DomainFree' and bind the parameters of the datatype. | RecSig DefInfo QName GeneralizeTelescope Expr -- ^ lone record signature | RecDef DefInfo QName UniverseCheck (Maybe (Ranged Induction)) (Maybe HasEta) (Maybe QName) DataDefParams Expr [Declaration] -- ^ The 'LamBinding's are 'DomainFree' and bind the parameters of the datatype. -- The 'Expr' gives the constructor type telescope, @(x1 : A1)..(xn : An) -> Prop@, -- and the optional name is the constructor's name. | PatternSynDef QName [Arg Name] (Pattern' Void) -- ^ Only for highlighting purposes | UnquoteDecl MutualInfo [DefInfo] [QName] Expr | UnquoteDef [DefInfo] [QName] Expr | ScopedDecl ScopeInfo [Declaration] -- ^ scope annotation deriving (Data, Show) class GetDefInfo a where getDefInfo :: a -> Maybe DefInfo instance GetDefInfo Declaration where getDefInfo (Axiom _ i _ _ _ _) = Just i getDefInfo (Generalize _ i _ _ _) = Just i getDefInfo (Field i _ _) = Just i getDefInfo (Primitive i _ _) = Just i getDefInfo (ScopedDecl _ (d:_)) = getDefInfo d getDefInfo (FunDef i _ _ _) = Just i getDefInfo (DataSig i _ _ _) = Just i getDefInfo (DataDef i _ _ _ _) = Just i getDefInfo (RecSig i _ _ _) = Just i getDefInfo (RecDef i _ _ _ _ _ _ _ _) = Just i getDefInfo _ = Nothing type ImportDirective = ImportDirective' QName ModuleName type Renaming = Renaming' QName ModuleName type ImportedName = ImportedName' QName ModuleName data ModuleApplication = SectionApp Telescope ModuleName [NamedArg Expr] -- ^ @tel. M args@: applies @M@ to @args@ and abstracts @tel@. | RecordModuleInstance ModuleName -- ^ @M {{...}}@ deriving (Data, Show, Eq) data Pragma = OptionsPragma [String] | BuiltinPragma String ResolvedName -- ^ 'ResolvedName' is not 'UnknownName'. -- Name can be ambiguous e.g. for built-in constructors. | BuiltinNoDefPragma String QName -- ^ Builtins that do not come with a definition, -- but declare a name for an Agda concept. | RewritePragma QName | CompilePragma String QName String | StaticPragma QName | EtaPragma QName -- ^ For coinductive records, use pragma instead of regular -- @eta-equality@ definition (as it is might make Agda loop). | InjectivePragma QName | InlinePragma Bool QName -- INLINE or NOINLINE | DisplayPragma QName [NamedArg Pattern] Expr deriving (Data, Show, Eq) -- | Bindings that are valid in a @let@. data LetBinding = LetBind LetInfo ArgInfo BindName Expr Expr -- ^ @LetBind info rel name type defn@ | LetPatBind LetInfo Pattern Expr -- ^ Irrefutable pattern binding. | LetApply ModuleInfo ModuleName ModuleApplication ScopeCopyInfo ImportDirective -- ^ @LetApply mi newM (oldM args) renamings dir@. -- The @ImportDirective@ is for highlighting purposes. | LetOpen ModuleInfo ModuleName ImportDirective -- ^ only for highlighting and abstractToConcrete | LetDeclaredVariable BindName -- ^ Only used for highlighting. Refers to the first occurrence of -- @x@ in @let x : A; x = e@. -- | LetGeneralize DefInfo ArgInfo Expr deriving (Data, Show, Eq) -- | Only 'Axiom's. type TypeSignature = Declaration type Constructor = TypeSignature type Field = TypeSignature -- | A lambda binding is either domain free or typed. data LamBinding = DomainFree (NamedArg BindName) -- ^ . @x@ or @{x}@ or @.x@ or @{x = y}@ | DomainFull TypedBinding -- ^ . @(xs:e)@ or @{xs:e}@ or @(let Ds)@ deriving (Data, Show, Eq) -- | A typed binding. Appears in dependent function spaces, typed lambdas, and -- telescopes. It might be tempting to simplify this to only bind a single -- name at a time, and translate, say, @(x y : A)@ to @(x : A)(y : A)@ -- before type-checking. However, this would be slightly problematic: -- -- 1. We would have to typecheck the type @A@ several times. -- -- 2. If @A@ contains a meta variable or hole, it would be duplicated -- by such a translation. -- -- While 1. is only slightly inefficient, 2. would be an outright bug. -- Duplicating @A@ could not be done naively, we would have to make sure -- that the metas of the copy are aliases of the metas of the original. data TypedBinding = TBind Range [NamedArg BindName] Expr -- ^ As in telescope @(x y z : A)@ or type @(x y z : A) -> B@. | TLet Range [LetBinding] -- ^ E.g. @(let x = e)@ or @(let open M)@. deriving (Data, Show, Eq) type Telescope = [TypedBinding] data GeneralizeTelescope = GeneralizeTel { generalizeTelVars :: Map QName Name -- ^ Maps generalize variables to the corresponding bound variable (to be -- introduced by the generalisation). , generalizeTel :: Telescope } deriving (Data, Show, Eq) data DataDefParams = DataDefParams { dataDefGeneralizedParams :: Set Name -- ^ We don't yet know the position of generalized parameters from the data -- sig, so we keep these in a set on the side. , dataDefParams :: [LamBinding] } deriving (Data, Show, Eq) noDataDefParams :: DataDefParams noDataDefParams = DataDefParams Set.empty [] -- | A user pattern together with an internal term that it should be equal to -- after splitting is complete. -- Special cases: -- * User pattern is a variable but internal term isn't: -- this will be turned into an as pattern. -- * User pattern is a dot pattern: -- this pattern won't trigger any splitting but will be checked -- for equality after all splitting is complete and as patterns have -- been bound. -- * User pattern is an absurd pattern: -- emptiness of the type will be checked after splitting is complete. data ProblemEq = ProblemEq { problemInPat :: Pattern , problemInst :: I.Term , problemType :: Dom I.Type } deriving (Data, Show) -- These are not relevant for caching purposes instance Eq ProblemEq where _ == _ = True -- | We could throw away @where@ clauses at this point and translate them to -- @let@. It's not obvious how to remember that the @let@ was really a -- @where@ clause though, so for the time being we keep it here. data Clause' lhs = Clause { clauseLHS :: lhs , clauseStrippedPats :: [ProblemEq] -- ^ Only in with-clauses where we inherit some already checked patterns from the parent. -- These live in the context of the parent clause left-hand side. , clauseRHS :: RHS , clauseWhereDecls :: WhereDeclarations , clauseCatchall :: Bool } deriving (Data, Show, Functor, Foldable, Traversable, Eq) data WhereDeclarations = WhereDecls { whereModule :: Maybe ModuleName , whereDecls :: [Declaration] } deriving (Data, Show, Eq) noWhereDecls :: WhereDeclarations noWhereDecls = WhereDecls Nothing [] type Clause = Clause' LHS type SpineClause = Clause' SpineLHS data RHS = RHS { rhsExpr :: Expr , rhsConcrete :: Maybe C.Expr -- ^ We store the original concrete expression in case -- we have to reproduce it during interactive case splitting. -- 'Nothing' for internally generated rhss. } | AbsurdRHS | WithRHS QName [Expr] [Clause] -- ^ The 'QName' is the name of the with function. | RewriteRHS { rewriteExprs :: [(QName, Expr)] -- ^ The 'QName's are the names of the generated with functions, -- one for each 'Expr'. , rewriteStrippedPats :: [ProblemEq] -- ^ The patterns stripped by with-desugaring. These are only present -- if this rewrite follows a with. , rewriteRHS :: RHS -- ^ The RHS should not be another @RewriteRHS@. , rewriteWhereDecls :: WhereDeclarations -- ^ The where clauses are attached to the @RewriteRHS@ by --- the scope checker (instead of to the clause). } deriving (Data, Show) -- | Ignore 'rhsConcrete' when comparing 'RHS's. instance Eq RHS where RHS e _ == RHS e' _ = e == e' AbsurdRHS == AbsurdRHS = True WithRHS a b c == WithRHS a' b' c' = and [ a == a', b == b', c == c' ] RewriteRHS a b c d == RewriteRHS a' b' c' d' = and [ a == a', b == b', c == c' , d == d' ] _ == _ = False -- | The lhs of a clause in spine view (inside-out). -- Projection patterns are contained in @spLhsPats@, -- represented as @ProjP d@. data SpineLHS = SpineLHS { spLhsInfo :: LHSInfo -- ^ Range. , spLhsDefName :: QName -- ^ Name of function we are defining. , spLhsPats :: [NamedArg Pattern] -- ^ Elimination by pattern, projections, with-patterns. } deriving (Data, Show, Eq) -- | Ignore 'Range' when comparing 'LHS's. instance Eq LHS where LHS _ core == LHS _ core' = core == core' -- | The lhs of a clause in focused (projection-application) view (outside-in). -- Projection patters are represented as 'LHSProj's. data LHS = LHS { lhsInfo :: LHSInfo -- ^ Range. , lhsCore :: LHSCore -- ^ Copatterns. } deriving (Data, Show) -- | The lhs in projection-application and with-pattern view. -- Parameterised over the type @e@ of dot patterns. data LHSCore' e -- | The head applied to ordinary patterns. = LHSHead { lhsDefName :: QName -- ^ Head @f@. , lhsPats :: [NamedArg (Pattern' e)] -- ^ Applied to patterns @ps@. } -- | Projection. | LHSProj { lhsDestructor :: AmbiguousQName -- ^ Record projection identifier. , lhsFocus :: NamedArg (LHSCore' e) -- ^ Main argument of projection. , lhsPats :: [NamedArg (Pattern' e)] -- ^ Further applied to patterns. } -- | With patterns. | LHSWith { lhsHead :: LHSCore' e -- ^ E.g. the 'LHSHead'. , lhsWithPatterns :: [Pattern' e] -- ^ Applied to with patterns @| p1 | ... | pn@. -- These patterns are not prefixed with @WithP@! , lhsPats :: [NamedArg (Pattern' e)] -- ^ Further applied to patterns. } deriving (Data, Show, Functor, Foldable, Traversable, Eq) type LHSCore = LHSCore' Expr --------------------------------------------------------------------------- -- * Patterns --------------------------------------------------------------------------- -- | Parameterised over the type of dot patterns. data Pattern' e = VarP BindName | ConP ConPatInfo AmbiguousQName (NAPs e) | ProjP PatInfo ProjOrigin AmbiguousQName -- ^ Destructor pattern @d@. | DefP PatInfo AmbiguousQName (NAPs e) -- ^ Defined pattern: function definition @f ps@. -- It is also abused to convert destructor patterns into concrete syntax -- thus, we put AmbiguousQName here as well. | WildP PatInfo -- ^ Underscore pattern entered by user. -- Or generated at type checking for implicit arguments. | AsP PatInfo BindName (Pattern' e) | DotP PatInfo e -- ^ Dot pattern @.e@ | AbsurdP PatInfo | LitP Literal | PatternSynP PatInfo AmbiguousQName (NAPs e) | RecP PatInfo [FieldAssignment' (Pattern' e)] | EqualP PatInfo [(e, e)] | WithP PatInfo (Pattern' e) -- ^ @| p@, for with-patterns. deriving (Data, Show, Functor, Foldable, Traversable, Eq) type NAPs e = [NamedArg (Pattern' e)] type Pattern = Pattern' Expr type Patterns = [NamedArg Pattern] instance IsProjP (Pattern' e) where -- Andreas, 2018-06-19, issue #3130 -- Do not interpret things like .(p) as projection pattern any more. -- maybePostfixProjP (DotP _ e) = isProjP e <&> \ (_o, d) -> (ProjPostfix, d) isProjP (ProjP _ o d) = Just (o, d) isProjP _ = Nothing instance IsProjP Expr where isProjP (Proj o ds) = Just (o, ds) isProjP (ScopedExpr _ e) = isProjP e isProjP _ = Nothing {-------------------------------------------------------------------------- Things we parse but are not part of the Agda file syntax --------------------------------------------------------------------------} type HoleContent = C.HoleContent' Expr {-------------------------------------------------------------------------- Instances --------------------------------------------------------------------------} -- | Does not compare 'ScopeInfo' fields. -- Does not distinguish between prefix and postfix projections. instance Eq Expr where ScopedExpr _ a1 == ScopedExpr _ a2 = a1 == a2 Var a1 == Var a2 = a1 == a2 Def a1 == Def a2 = a1 == a2 Proj _ a1 == Proj _ a2 = a1 == a2 Con a1 == Con a2 = a1 == a2 PatternSyn a1 == PatternSyn a2 = a1 == a2 Macro a1 == Macro a2 = a1 == a2 Lit a1 == Lit a2 = a1 == a2 QuestionMark a1 b1 == QuestionMark a2 b2 = (a1, b1) == (a2, b2) Underscore a1 == Underscore a2 = a1 == a2 Dot r1 e1 == Dot r2 e2 = (r1, e1) == (r2, e2) App a1 b1 c1 == App a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) WithApp a1 b1 c1 == WithApp a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) Lam a1 b1 c1 == Lam a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) AbsurdLam a1 b1 == AbsurdLam a2 b2 = (a1, b1) == (a2, b2) ExtendedLam a1 b1 c1 d1 == ExtendedLam a2 b2 c2 d2 = (a1, b1, c1, d1) == (a2, b2, c2, d2) Pi a1 b1 c1 == Pi a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) Generalized a1 b1 == Generalized a2 b2 = (a1, b1) == (a2, b2) Fun a1 b1 c1 == Fun a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) Set a1 b1 == Set a2 b2 = (a1, b1) == (a2, b2) Prop a1 b1 == Prop a2 b2 = (a1, b1) == (a2, b2) Let a1 b1 c1 == Let a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) ETel a1 == ETel a2 = a1 == a2 Rec a1 b1 == Rec a2 b2 = (a1, b1) == (a2, b2) RecUpdate a1 b1 c1 == RecUpdate a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) QuoteGoal a1 b1 c1 == QuoteGoal a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) QuoteContext a1 == QuoteContext a2 = a1 == a2 Quote a1 == Quote a2 = a1 == a2 QuoteTerm a1 == QuoteTerm a2 = a1 == a2 Unquote a1 == Unquote a2 = a1 == a2 Tactic a1 b1 c1 d1 == Tactic a2 b2 c2 d2 = (a1, b1, c1, d1) == (a2, b2, c2, d2) DontCare a1 == DontCare a2 = a1 == a2 _ == _ = False -- | Does not compare 'ScopeInfo' fields. instance Eq Declaration where ScopedDecl _ a1 == ScopedDecl _ a2 = a1 == a2 Axiom a1 b1 c1 d1 e1 f1 == Axiom a2 b2 c2 d2 e2 f2 = (a1, b1, c1, d1, e1, f1) == (a2, b2, c2, d2, e2, f2) Generalize a1 b1 c1 d1 e1 == Generalize a2 b2 c2 d2 e2 = (a1, b1, c1, d1, e1) == (a2, b2, c2, d2, e2) Field a1 b1 c1 == Field a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) Primitive a1 b1 c1 == Primitive a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) Mutual a1 b1 == Mutual a2 b2 = (a1, b1) == (a2, b2) Section a1 b1 c1 d1 == Section a2 b2 c2 d2 = (a1, b1, c1, d1) == (a2, b2, c2, d2) Apply a1 b1 c1 d1 e1 == Apply a2 b2 c2 d2 e2 = (a1, b1, c1, d1, e1) == (a2, b2, c2, d2, e2) Import a1 b1 c1 == Import a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) Pragma a1 b1 == Pragma a2 b2 = (a1, b1) == (a2, b2) Open a1 b1 c1 == Open a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) FunDef a1 b1 c1 d1 == FunDef a2 b2 c2 d2 = (a1, b1, c1, d1) == (a2, b2, c2, d2) DataSig a1 b1 c1 d1 == DataSig a2 b2 c2 d2 = (a1, b1, c1, d1) == (a2, b2, c2, d2) DataDef a1 b1 c1 d1 e1 == DataDef a2 b2 c2 d2 e2 = (a1, b1, c1, d1, e1) == (a2, b2, c2, d2, e2) RecSig a1 b1 c1 d1 == RecSig a2 b2 c2 d2 = (a1, b1, c1, d1) == (a2, b2, c2, d2) RecDef a1 b1 c1 d1 e1 f1 g1 h1 i1 == RecDef a2 b2 c2 d2 e2 f2 g2 h2 i2 = (a1, b1, c1, d1, e1, f1, g1, h1, i1) == (a2, b2, c2, d2, e2, f2, g2, h2, i2) PatternSynDef a1 b1 c1 == PatternSynDef a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) UnquoteDecl a1 b1 c1 d1 == UnquoteDecl a2 b2 c2 d2 = (a1, b1, c1, d1) == (a2, b2, c2, d2) UnquoteDef a1 b1 c1 == UnquoteDef a2 b2 c2 = (a1, b1, c1) == (a2, b2, c2) _ == _ = False instance Underscore Expr where underscore = Underscore emptyMetaInfo isUnderscore = __IMPOSSIBLE__ instance LensHiding LamBinding where getHiding (DomainFree x) = getHiding x getHiding (DomainFull tb) = getHiding tb mapHiding f (DomainFree x) = DomainFree $ mapHiding f x mapHiding f (DomainFull tb) = DomainFull $ mapHiding f tb instance LensHiding TypedBinding where getHiding (TBind _ (x : _) _) = getHiding x -- Slightly dubious getHiding (TBind _ [] _) = __IMPOSSIBLE__ getHiding TLet{} = mempty mapHiding f (TBind r xs e) = TBind r ((map . mapHiding) f xs) e mapHiding f b@TLet{} = b instance HasRange LamBinding where getRange (DomainFree x) = getRange x getRange (DomainFull b) = getRange b instance HasRange TypedBinding where getRange (TBind r _ _) = r getRange (TLet r _) = r instance HasRange Expr where getRange (Var x) = getRange x getRange (Def x) = getRange x getRange (Proj _ x) = getRange x getRange (Con x) = getRange x getRange (Lit l) = getRange l getRange (QuestionMark i _) = getRange i getRange (Underscore i) = getRange i getRange (Dot i _) = getRange i getRange (App i _ _) = getRange i getRange (WithApp i _ _) = getRange i getRange (Lam i _ _) = getRange i getRange (AbsurdLam i _) = getRange i getRange (ExtendedLam i _ _ _) = getRange i getRange (Pi i _ _) = getRange i getRange (Generalized _ x) = getRange x getRange (Fun i _ _) = getRange i getRange (Set i _) = getRange i getRange (Prop i _) = getRange i getRange (Let i _ _) = getRange i getRange (Rec i _) = getRange i getRange (RecUpdate i _ _) = getRange i getRange (ETel tel) = getRange tel getRange (ScopedExpr _ e) = getRange e getRange (QuoteGoal _ _ e) = getRange e getRange (QuoteContext i) = getRange i getRange (Quote i) = getRange i getRange (QuoteTerm i) = getRange i getRange (Unquote i) = getRange i getRange (Tactic i _ _ _) = getRange i getRange (DontCare{}) = noRange getRange (PatternSyn x) = getRange x getRange (Macro x) = getRange x instance HasRange Declaration where getRange (Axiom _ i _ _ _ _ ) = getRange i getRange (Generalize _ i _ _ _) = getRange i getRange (Field i _ _ ) = getRange i getRange (Mutual i _ ) = getRange i getRange (Section i _ _ _ ) = getRange i getRange (Apply i _ _ _ _) = getRange i getRange (Import i _ _ ) = getRange i getRange (Primitive i _ _ ) = getRange i getRange (Pragma i _ ) = getRange i getRange (Open i _ _ ) = getRange i getRange (ScopedDecl _ d ) = getRange d getRange (FunDef i _ _ _ ) = getRange i getRange (DataSig i _ _ _ ) = getRange i getRange (DataDef i _ _ _ _ ) = getRange i getRange (RecSig i _ _ _ ) = getRange i getRange (RecDef i _ _ _ _ _ _ _ _) = getRange i getRange (PatternSynDef x _ _ ) = getRange x getRange (UnquoteDecl _ i _ _) = getRange i getRange (UnquoteDef i _ _) = getRange i instance HasRange (Pattern' e) where getRange (VarP x) = getRange x getRange (ConP i _ _) = getRange i getRange (ProjP i _ _) = getRange i getRange (DefP i _ _) = getRange i getRange (WildP i) = getRange i getRange (AsP i _ _) = getRange i getRange (DotP i _) = getRange i getRange (AbsurdP i) = getRange i getRange (LitP l) = getRange l getRange (PatternSynP i _ _) = getRange i getRange (RecP i _) = getRange i getRange (EqualP i _) = getRange i getRange (WithP i _) = getRange i instance HasRange SpineLHS where getRange (SpineLHS i _ _) = getRange i instance HasRange LHS where getRange (LHS i _) = getRange i instance HasRange (LHSCore' e) where getRange (LHSHead f ps) = fuseRange f ps getRange (LHSProj d lhscore ps) = d `fuseRange` lhscore `fuseRange` ps getRange (LHSWith h wps ps) = h `fuseRange` wps `fuseRange` ps instance HasRange a => HasRange (Clause' a) where getRange (Clause lhs _ rhs ds catchall) = getRange (lhs, rhs, ds) instance HasRange RHS where getRange AbsurdRHS = noRange getRange (RHS e _) = getRange e getRange (WithRHS _ e cs) = fuseRange e cs getRange (RewriteRHS xes _ rhs wh) = getRange (map snd xes, rhs, wh) instance HasRange WhereDeclarations where getRange (WhereDecls _ ds) = getRange ds instance HasRange LetBinding where getRange (LetBind i _ _ _ _ ) = getRange i getRange (LetPatBind i _ _ ) = getRange i getRange (LetApply i _ _ _ _ ) = getRange i getRange (LetOpen i _ _ ) = getRange i getRange (LetDeclaredVariable x) = getRange x -- setRange for patterns applies the range to the outermost pattern constructor instance SetRange (Pattern' a) where setRange r (VarP x) = VarP (setRange r x) setRange r (ConP i ns as) = ConP (setRange r i) ns as setRange r (ProjP _ o ns) = ProjP (PatRange r) o ns setRange r (DefP _ ns as) = DefP (PatRange r) ns as -- (setRange r n) as setRange r (WildP _) = WildP (PatRange r) setRange r (AsP _ n p) = AsP (PatRange r) (setRange r n) p setRange r (DotP _ e) = DotP (PatRange r) e setRange r (AbsurdP _) = AbsurdP (PatRange r) setRange r (LitP l) = LitP (setRange r l) setRange r (PatternSynP _ n as) = PatternSynP (PatRange r) n as setRange r (RecP i as) = RecP (PatRange r) as setRange r (EqualP _ es) = EqualP (PatRange r) es setRange r (WithP i p) = WithP (setRange r i) p instance KillRange LamBinding where killRange (DomainFree x) = killRange1 DomainFree x killRange (DomainFull b) = killRange1 DomainFull b instance KillRange GeneralizeTelescope where killRange (GeneralizeTel s tel) = GeneralizeTel s (killRange tel) instance KillRange DataDefParams where killRange (DataDefParams s tel) = DataDefParams s (killRange tel) instance KillRange TypedBinding where killRange (TBind r xs e) = killRange3 TBind r xs e killRange (TLet r lbs) = killRange2 TLet r lbs instance KillRange Expr where killRange (Var x) = killRange1 Var x killRange (Def x) = killRange1 Def x killRange (Proj o x) = killRange1 (Proj o) x killRange (Con x) = killRange1 Con x killRange (Lit l) = killRange1 Lit l killRange (QuestionMark i ii) = killRange2 QuestionMark i ii killRange (Underscore i) = killRange1 Underscore i killRange (Dot i e) = killRange2 Dot i e killRange (App i e1 e2) = killRange3 App i e1 e2 killRange (WithApp i e es) = killRange3 WithApp i e es killRange (Lam i b e) = killRange3 Lam i b e killRange (AbsurdLam i h) = killRange2 AbsurdLam i h killRange (ExtendedLam i n d ps) = killRange4 ExtendedLam i n d ps killRange (Pi i a b) = killRange3 Pi i a b killRange (Generalized s x) = killRange1 (Generalized s) x killRange (Fun i a b) = killRange3 Fun i a b killRange (Set i n) = killRange2 Set i n killRange (Prop i n) = killRange2 Prop i n killRange (Let i ds e) = killRange3 Let i ds e killRange (Rec i fs) = killRange2 Rec i fs killRange (RecUpdate i e fs) = killRange3 RecUpdate i e fs killRange (ETel tel) = killRange1 ETel tel killRange (ScopedExpr s e) = killRange1 (ScopedExpr s) e killRange (QuoteGoal i x e) = killRange3 QuoteGoal i x e killRange (QuoteContext i) = killRange1 QuoteContext i killRange (Quote i) = killRange1 Quote i killRange (QuoteTerm i) = killRange1 QuoteTerm i killRange (Unquote i) = killRange1 Unquote i killRange (Tactic i e xs ys) = killRange4 Tactic i e xs ys killRange (DontCare e) = killRange1 DontCare e killRange (PatternSyn x) = killRange1 PatternSyn x killRange (Macro x) = killRange1 Macro x instance KillRange Declaration where killRange (Axiom p i a b c d ) = killRange4 (\i a c d -> Axiom p i a b c d) i a c d killRange (Generalize s i j x e ) = killRange4 (Generalize s) i j x e killRange (Field i a b ) = killRange3 Field i a b killRange (Mutual i a ) = killRange2 Mutual i a killRange (Section i a b c ) = killRange4 Section i a b c killRange (Apply i a b c d ) = killRange5 Apply i a b c d killRange (Import i a b ) = killRange3 Import i a b killRange (Primitive i a b ) = killRange3 Primitive i a b killRange (Pragma i a ) = Pragma (killRange i) a killRange (Open i x dir ) = killRange3 Open i x dir killRange (ScopedDecl a d ) = killRange1 (ScopedDecl a) d killRange (FunDef i a b c ) = killRange4 FunDef i a b c killRange (DataSig i a b c ) = killRange4 DataSig i a b c killRange (DataDef i a b c d ) = killRange5 DataDef i a b c d killRange (RecSig i a b c ) = killRange4 RecSig i a b c killRange (RecDef i a b c d e f g h) = killRange9 RecDef i a b c d e f g h killRange (PatternSynDef x xs p ) = killRange3 PatternSynDef x xs p killRange (UnquoteDecl mi i x e ) = killRange4 UnquoteDecl mi i x e killRange (UnquoteDef i x e ) = killRange3 UnquoteDef i x e instance KillRange ModuleApplication where killRange (SectionApp a b c ) = killRange3 SectionApp a b c killRange (RecordModuleInstance a) = killRange1 RecordModuleInstance a instance KillRange ScopeCopyInfo where killRange (ScopeCopyInfo a b) = killRange2 ScopeCopyInfo a b instance KillRange e => KillRange (Pattern' e) where killRange (VarP x) = killRange1 VarP x killRange (ConP i a b) = killRange3 ConP i a b killRange (ProjP i o a) = killRange3 ProjP i o a killRange (DefP i a b) = killRange3 DefP i a b killRange (WildP i) = killRange1 WildP i killRange (AsP i a b) = killRange3 AsP i a b killRange (DotP i a) = killRange2 DotP i a killRange (AbsurdP i) = killRange1 AbsurdP i killRange (LitP l) = killRange1 LitP l killRange (PatternSynP i a p) = killRange3 PatternSynP i a p killRange (RecP i as) = killRange2 RecP i as killRange (EqualP i es) = killRange2 EqualP i es killRange (WithP i p) = killRange2 WithP i p instance KillRange SpineLHS where killRange (SpineLHS i a b) = killRange3 SpineLHS i a b instance KillRange LHS where killRange (LHS i a) = killRange2 LHS i a instance KillRange e => KillRange (LHSCore' e) where killRange (LHSHead a b) = killRange2 LHSHead a b killRange (LHSProj a b c) = killRange3 LHSProj a b c killRange (LHSWith a b c) = killRange3 LHSWith a b c instance KillRange a => KillRange (Clause' a) where killRange (Clause lhs spats rhs ds catchall) = killRange5 Clause lhs spats rhs ds catchall instance KillRange ProblemEq where killRange (ProblemEq p v a) = killRange3 ProblemEq p v a instance KillRange RHS where killRange AbsurdRHS = AbsurdRHS killRange (RHS e c) = killRange2 RHS e c killRange (WithRHS q e cs) = killRange3 WithRHS q e cs killRange (RewriteRHS xes spats rhs wh) = killRange4 RewriteRHS xes spats rhs wh instance KillRange WhereDeclarations where killRange (WhereDecls a b) = killRange2 WhereDecls a b instance KillRange LetBinding where killRange (LetBind i info a b c) = killRange5 LetBind i info a b c killRange (LetPatBind i a b ) = killRange3 LetPatBind i a b killRange (LetApply i a b c d ) = killRange5 LetApply i a b c d killRange (LetOpen i x dir ) = killRange3 LetOpen i x dir killRange (LetDeclaredVariable x) = killRange1 LetDeclaredVariable x -- See Agda.Utils.GeniPlate: -- Does not descend into ScopeInfo and renaming maps, for instance. instanceUniverseBiT' [] [t| (Declaration, QName) |] instanceUniverseBiT' [] [t| (Declaration, AmbiguousQName) |] instanceUniverseBiT' [] [t| (Declaration, Expr) |] instanceUniverseBiT' [] [t| (Declaration, LetBinding) |] instanceUniverseBiT' [] [t| (Declaration, LamBinding) |] instanceUniverseBiT' [] [t| (Declaration, TypedBinding) |] instanceUniverseBiT' [] [t| (Declaration, Pattern) |] instanceUniverseBiT' [] [t| (Declaration, Pattern' Void) |] instanceUniverseBiT' [] [t| (Declaration, Declaration) |] instanceUniverseBiT' [] [t| (Declaration, ModuleName) |] instanceUniverseBiT' [] [t| (Declaration, ModuleInfo) |] instanceUniverseBiT' [] [t| (Declaration, NamedArg LHSCore) |] instanceUniverseBiT' [] [t| (Declaration, NamedArg BindName) |] instanceUniverseBiT' [] [t| (Declaration, NamedArg Expr) |] instanceUniverseBiT' [] [t| (Declaration, NamedArg Pattern) |] ------------------------------------------------------------------------ -- Queries ------------------------------------------------------------------------ -- | Extracts all the names which are declared in a 'Declaration'. -- This does not include open public or let expressions, but it does -- include local modules, where clauses and the names of extended -- lambdas. class AllNames a where allNames :: a -> Seq QName instance AllNames a => AllNames [a] where allNames = Fold.foldMap allNames instance AllNames a => AllNames (Maybe a) where allNames = Fold.foldMap allNames instance AllNames a => AllNames (Arg a) where allNames = Fold.foldMap allNames instance AllNames a => AllNames (Named name a) where allNames = Fold.foldMap allNames instance (AllNames a, AllNames b) => AllNames (a,b) where allNames (a,b) = allNames a >< allNames b instance AllNames QName where allNames q = Seq.singleton q instance AllNames Declaration where allNames (Axiom _ _ _ _ q _) = Seq.singleton q allNames (Generalize _ _ _ q _) = Seq.singleton q allNames (Field _ q _) = Seq.singleton q allNames (Primitive _ q _) = Seq.singleton q allNames (Mutual _ defs) = allNames defs allNames (DataSig _ q _ _) = Seq.singleton q allNames (DataDef _ q _ _ decls) = q <| allNames decls allNames (RecSig _ q _ _) = Seq.singleton q allNames (RecDef _ q _ _ _ c _ _ decls) = q <| allNames c >< allNames decls allNames (PatternSynDef q _ _) = Seq.singleton q allNames (UnquoteDecl _ _ qs _) = Seq.fromList qs allNames (UnquoteDef _ qs _) = Seq.fromList qs allNames (FunDef _ q _ cls) = q <| allNames cls allNames (Section _ _ _ decls) = allNames decls allNames Apply{} = Seq.empty allNames Import{} = Seq.empty allNames Pragma{} = Seq.empty allNames Open{} = Seq.empty allNames (ScopedDecl _ decls) = allNames decls instance AllNames Clause where allNames cl = allNames (clauseRHS cl, clauseWhereDecls cl) instance AllNames RHS where allNames (RHS e _) = allNames e allNames AbsurdRHS{} = Seq.empty allNames (WithRHS q _ cls) = q <| allNames cls allNames (RewriteRHS qes _ rhs cls) = Seq.fromList (map fst qes) >< allNames rhs >< allNames cls instance AllNames WhereDeclarations where allNames (WhereDecls _ ds) = allNames ds instance AllNames Expr where allNames Var{} = Seq.empty allNames Def{} = Seq.empty allNames Proj{} = Seq.empty allNames Con{} = Seq.empty allNames Lit{} = Seq.empty allNames QuestionMark{} = Seq.empty allNames Underscore{} = Seq.empty allNames (Dot _ e) = allNames e allNames (App _ e1 e2) = allNames e1 >< allNames e2 allNames (WithApp _ e es) = allNames e >< allNames es allNames (Lam _ b e) = allNames b >< allNames e allNames AbsurdLam{} = Seq.empty allNames (ExtendedLam _ _ q cls) = q <| allNames cls allNames (Pi _ tel e) = allNames tel >< allNames e allNames (Generalized s e) = Seq.fromList (Set.toList s) >< allNames e -- TODO: or just (allNames e)? allNames (Fun _ e1 e2) = allNames e1 >< allNames e2 allNames Set{} = Seq.empty allNames Prop{} = Seq.empty allNames (Let _ lbs e) = allNames lbs >< allNames e allNames ETel{} = __IMPOSSIBLE__ allNames (Rec _ fields) = allNames [ a ^. exprFieldA | Left a <- fields ] allNames (RecUpdate _ e fs) = allNames e >< allNames (map (view exprFieldA) fs) allNames (ScopedExpr _ e) = allNames e allNames (QuoteGoal _ _ e) = allNames e allNames (QuoteContext _) = Seq.empty allNames Quote{} = Seq.empty allNames QuoteTerm{} = Seq.empty allNames Unquote{} = Seq.empty allNames (Tactic _ e xs ys) = allNames e >< allNames xs >< allNames ys allNames DontCare{} = Seq.empty allNames PatternSyn{} = Seq.empty allNames Macro{} = Seq.empty instance AllNames LamBinding where allNames DomainFree{} = Seq.empty allNames (DomainFull binds) = allNames binds instance AllNames TypedBinding where allNames (TBind _ _ e) = allNames e allNames (TLet _ lbs) = allNames lbs instance AllNames LetBinding where allNames (LetBind _ _ _ e1 e2) = allNames e1 >< allNames e2 allNames (LetPatBind _ _ e) = allNames e allNames (LetApply _ _ app _ _) = allNames app allNames LetOpen{} = Seq.empty allNames (LetDeclaredVariable _) = Seq.empty instance AllNames ModuleApplication where allNames (SectionApp bindss _ es) = allNames bindss >< allNames es allNames RecordModuleInstance{} = Seq.empty -- | The name defined by the given axiom. -- -- Precondition: The declaration has to be a (scoped) 'Axiom'. axiomName :: Declaration -> QName axiomName (Axiom _ _ _ _ q _) = q axiomName (ScopedDecl _ (d:_)) = axiomName d axiomName _ = __IMPOSSIBLE__ -- | Are we in an abstract block? -- -- In that case some definition is abstract. class AnyAbstract a where anyAbstract :: a -> Bool instance AnyAbstract a => AnyAbstract [a] where anyAbstract = Fold.any anyAbstract instance AnyAbstract Declaration where anyAbstract (Axiom _ i _ _ _ _) = defAbstract i == AbstractDef anyAbstract (Field i _ _) = defAbstract i == AbstractDef anyAbstract (Mutual _ ds) = anyAbstract ds anyAbstract (ScopedDecl _ ds) = anyAbstract ds anyAbstract (Section _ _ _ ds) = anyAbstract ds anyAbstract (FunDef i _ _ _) = defAbstract i == AbstractDef anyAbstract (DataDef i _ _ _ _) = defAbstract i == AbstractDef anyAbstract (RecDef i _ _ _ _ _ _ _ _) = defAbstract i == AbstractDef anyAbstract (DataSig i _ _ _) = defAbstract i == AbstractDef anyAbstract (RecSig i _ _ _) = defAbstract i == AbstractDef anyAbstract _ = __IMPOSSIBLE__ class NameToExpr a where nameExpr :: a -> Expr -- | Turn an 'AbstractName' to an expression. instance NameToExpr AbstractName where nameExpr d = mk (anameKind d) $ anameName d where mk DefName x = Def x mk GeneralizeName x = Def x mk DisallowedGeneralizeName x = Def x mk FldName x = Proj ProjSystem $ unambiguous x mk ConName x = Con $ unambiguous x mk PatternSynName x = PatternSyn $ unambiguous x mk MacroName x = Macro x mk QuotableName x = App (defaultAppInfo r) (Quote i) (defaultNamedArg $ Def x) where i = ExprRange r r = getRange x -- | Assumes name is not 'UnknownName'. instance NameToExpr ResolvedName where nameExpr = \case VarName x _ -> Var x DefinedName _ x -> nameExpr x -- Can be 'DefName', 'MacroName', 'QuotableName'. FieldName xs -> Proj ProjSystem . AmbQ . fmap anameName $ xs ConstructorName xs -> Con . AmbQ . fmap anameName $ xs PatternSynResName xs -> PatternSyn . AmbQ . fmap anameName $ xs UnknownName -> __IMPOSSIBLE__ app :: Expr -> [NamedArg Expr] -> Expr app = foldl (App defaultAppInfo_) mkLet :: ExprInfo -> [LetBinding] -> Expr -> Expr mkLet i [] e = e mkLet i ds e = Let i ds e patternToExpr :: Pattern -> Expr patternToExpr (VarP x) = Var (unBind x) patternToExpr (ConP _ c ps) = Con c `app` map (fmap (fmap patternToExpr)) ps patternToExpr (ProjP _ o ds) = Proj o ds patternToExpr (DefP _ fs ps) = Def (headAmbQ fs) `app` map (fmap (fmap patternToExpr)) ps patternToExpr (WildP _) = Underscore emptyMetaInfo patternToExpr (AsP _ _ p) = patternToExpr p patternToExpr (DotP _ e) = e patternToExpr (AbsurdP _) = Underscore emptyMetaInfo -- TODO: could this happen? patternToExpr (LitP l) = Lit l patternToExpr (PatternSynP _ c ps) = PatternSyn c `app` (map . fmap . fmap) patternToExpr ps patternToExpr (RecP _ as) = Rec exprNoRange $ map (Left . fmap patternToExpr) as patternToExpr EqualP{} = __IMPOSSIBLE__ -- Andrea TODO: where is this used? patternToExpr (WithP r p) = __IMPOSSIBLE__ type PatternSynDefn = ([Arg Name], Pattern' Void) type PatternSynDefns = Map QName PatternSynDefn lambdaLiftExpr :: [Name] -> Expr -> Expr lambdaLiftExpr [] e = e lambdaLiftExpr (n:ns) e = Lam exprNoRange (DomainFree $ defaultNamedArg $ BindName n) $ lambdaLiftExpr ns e class SubstExpr a where substExpr :: [(Name, Expr)] -> a -> a instance SubstExpr a => SubstExpr [a] where substExpr = fmap . substExpr instance SubstExpr a => SubstExpr (Arg a) where substExpr = fmap . substExpr instance SubstExpr a => SubstExpr (Named name a) where substExpr = fmap . substExpr instance (SubstExpr a, SubstExpr b) => SubstExpr (a, b) where substExpr s (x, y) = (substExpr s x, substExpr s y) instance (SubstExpr a, SubstExpr b) => SubstExpr (Either a b) where substExpr s (Left x) = Left (substExpr s x) substExpr s (Right y) = Right (substExpr s y) instance SubstExpr C.Name where substExpr _ = id instance SubstExpr ModuleName where substExpr _ = id instance SubstExpr Assign where substExpr s (FieldAssignment n x) = FieldAssignment n (substExpr s x) instance SubstExpr Expr where substExpr s e = case e of Var n -> fromMaybe e (lookup n s) Def _ -> e Proj{} -> e Con _ -> e Lit _ -> e QuestionMark{} -> e Underscore _ -> e Dot i e -> Dot i (substExpr s e) App i e e' -> App i (substExpr s e) (substExpr s e') WithApp i e es -> WithApp i (substExpr s e) (substExpr s es) Lam i lb e -> Lam i lb (substExpr s e) AbsurdLam i h -> e ExtendedLam i di n cs -> __IMPOSSIBLE__ -- Maybe later... Pi i t e -> Pi i (substExpr s t) (substExpr s e) Generalized ns e -> Generalized ns (substExpr s e) Fun i ae e -> Fun i (substExpr s ae) (substExpr s e) Set i n -> e Prop i n -> e Let i ls e -> Let i (substExpr s ls) (substExpr s e) ETel t -> e Rec i nes -> Rec i (substExpr s nes) RecUpdate i e nes -> RecUpdate i (substExpr s e) (substExpr s nes) -- XXX: Do we need to do more with ScopedExprs? ScopedExpr si e -> ScopedExpr si (substExpr s e) QuoteGoal i n e -> QuoteGoal i n (substExpr s e) QuoteContext i -> e Quote i -> e QuoteTerm i -> e Unquote i -> e Tactic i e xs ys -> Tactic i (substExpr s e) (substExpr s xs) (substExpr s ys) DontCare e -> DontCare (substExpr s e) PatternSyn{} -> e Macro{} -> e instance SubstExpr LetBinding where substExpr s lb = case lb of LetBind i r n e e' -> LetBind i r n (substExpr s e) (substExpr s e') LetPatBind i p e -> LetPatBind i p (substExpr s e) -- Andreas, 2012-06-04: what about the pattern p _ -> lb -- Nicolas, 2013-11-11: what about "LetApply" there is experessions in there instance SubstExpr TypedBinding where substExpr s tb = case tb of TBind r ns e -> TBind r ns $ substExpr s e TLet r lbs -> TLet r $ substExpr s lbs -- TODO: more informative failure insertImplicitPatSynArgs :: HasRange a => (Range -> a) -> Range -> [Arg Name] -> [NamedArg a] -> Maybe ([(Name, a)], [Arg Name]) insertImplicitPatSynArgs wild r ns as = matchArgs r ns as where matchNextArg r n as@(~(a : as')) | matchNext n as = return (namedArg a, as') | visible n = Nothing | otherwise = return (wild r, as) matchNext _ [] = False matchNext n (a:as) = sameHiding n a && matchName where x = unranged $ C.nameToRawName $ nameConcrete $ unArg n matchName = maybe True (== x) (nameOf $ unArg a) matchArgs r [] [] = return ([], []) matchArgs r [] as = Nothing matchArgs r (n:ns) [] | visible n = return ([], n : ns) -- under-applied matchArgs r (n:ns) as = do (p, as) <- matchNextArg r n as first ((unArg n, p) :) <$> matchArgs (getRange p) ns as