{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} module Agda.TypeChecking.Monad.Base where import Prelude hiding (null) import qualified Control.Concurrent as C import qualified Control.Exception as E #if __GLASGOW_HASKELL__ >= 800 import qualified Control.Monad.Fail as Fail #endif import Control.Monad.State import Control.Monad.Reader import Control.Monad.Writer hiding ((<>)) import Control.Monad.Trans.Maybe import Control.Applicative hiding (empty) import Data.Function import Data.Int import Data.IntMap (IntMap) import qualified Data.IntMap as IntMap import qualified Data.List as List import Data.Maybe import Data.Map (Map) import qualified Data.Map as Map -- hiding (singleton, null, empty) import Data.Monoid ( Monoid, mempty, mappend ) import Data.Sequence (Seq) import Data.Set (Set) import qualified Data.Set as Set -- hiding (singleton, null, empty) import Data.Semigroup ( Semigroup, (<>), Any(..) ) import Data.Data (Data, toConstr) import Data.Foldable (Foldable) import Data.String import Data.Text.Lazy (Text) import qualified Data.Text.Lazy as T import Data.Traversable import Data.IORef import qualified System.Console.Haskeline as Haskeline import Agda.Benchmarking (Benchmark, Phase) import Agda.Syntax.Concrete (TopLevelModuleName) import Agda.Syntax.Common import qualified Agda.Syntax.Concrete as C import Agda.Syntax.Concrete.Definitions (NiceDeclaration, DeclarationWarning, declarationWarningName) import qualified Agda.Syntax.Abstract as A import Agda.Syntax.Abstract (AllNames) import Agda.Syntax.Internal as I import Agda.Syntax.Internal.Pattern () import Agda.Syntax.Internal.Generic (TermLike(..)) import Agda.Syntax.Literal import Agda.Syntax.Parser (PM(..), ParseWarning, runPMIO) import Agda.Syntax.Parser.Monad (parseWarningName) import Agda.Syntax.Treeless (Compiled) import Agda.Syntax.Fixity import Agda.Syntax.Position import Agda.Syntax.Scope.Base import qualified Agda.Syntax.Info as Info import Agda.TypeChecking.CompiledClause import Agda.TypeChecking.Coverage.SplitTree import Agda.TypeChecking.Positivity.Occurrence import Agda.TypeChecking.Free.Lazy (Free(freeVars'), bind', bind) import Agda.Termination.CutOff import {-# SOURCE #-} Agda.Compiler.Backend -- import {-# SOURCE #-} Agda.Interaction.FindFile import Agda.Interaction.Options import Agda.Interaction.Options.Warnings import Agda.Interaction.Response (InteractionOutputCallback, defaultInteractionOutputCallback, Response(..)) import Agda.Interaction.Highlighting.Precise (CompressedFile, HighlightingInfo) import Agda.Interaction.Library import Agda.Utils.Except ( Error(strMsg) , ExceptT , MonadError(catchError, throwError) , runExceptT , mapExceptT ) import Agda.Utils.Benchmark (MonadBench(..)) import Agda.Utils.FileName import Agda.Utils.HashMap (HashMap) import qualified Agda.Utils.HashMap as HMap import Agda.Utils.Hash import Agda.Utils.Lens import Agda.Utils.List import Agda.Utils.ListT import Agda.Utils.Monad import Agda.Utils.NonemptyList import Agda.Utils.Null import Agda.Utils.Permutation import Agda.Utils.Pretty hiding ((<>)) import qualified Agda.Utils.Pretty as P import Agda.Utils.Singleton import Agda.Utils.Functor import Agda.Utils.Function import Agda.Utils.WithDefault ( collapseDefault ) #include "undefined.h" import Agda.Utils.Impossible --------------------------------------------------------------------------- -- * Type checking state --------------------------------------------------------------------------- data TCState = TCSt { stPreScopeState :: !PreScopeState -- ^ The state which is frozen after scope checking. , stPostScopeState :: !PostScopeState -- ^ The state which is modified after scope checking. , stPersistentState :: !PersistentTCState -- ^ State which is forever, like a diamond. } class Monad m => ReadTCState m where getTCState :: m TCState withTCState :: (TCState -> TCState) -> m a -> m a instance ReadTCState m => ReadTCState (MaybeT m) where getTCState = lift getTCState withTCState = mapMaybeT . withTCState instance ReadTCState m => ReadTCState (ListT m) where getTCState = lift getTCState withTCState f = ListT . withTCState f . runListT instance ReadTCState m => ReadTCState (ExceptT err m) where getTCState = lift getTCState withTCState = mapExceptT . withTCState instance ReadTCState m => ReadTCState (ReaderT r m) where getTCState = lift getTCState withTCState = mapReaderT . withTCState instance (Monoid w, ReadTCState m) => ReadTCState (WriterT w m) where getTCState = lift getTCState withTCState = mapWriterT . withTCState instance ReadTCState m => ReadTCState (StateT s m) where getTCState = lift getTCState withTCState = mapStateT . withTCState instance Show TCState where show _ = "TCSt{}" data PreScopeState = PreScopeState { stPreTokens :: !CompressedFile -- from lexer -- ^ Highlighting info for tokens (but not those tokens for -- which highlighting exists in 'stSyntaxInfo'). , stPreImports :: !Signature -- XX populated by scopec hecker -- ^ Imported declared identifiers. -- Those most not be serialized! , stPreImportedModules :: !(Set ModuleName) -- imports logic , stPreModuleToSource :: !ModuleToSource -- imports , stPreVisitedModules :: !VisitedModules -- imports , stPreScope :: !ScopeInfo -- generated by scope checker, current file: which modules you have, public definitions, current file, maps concrete names to abstract names. , stPrePatternSyns :: !A.PatternSynDefns -- ^ Pattern synonyms of the current file. Serialized. , stPrePatternSynImports :: !A.PatternSynDefns -- ^ Imported pattern synonyms. Must not be serialized! , stPreGeneralizedVars :: !(Maybe (Set QName)) -- ^ Collected generalizable variables; used during scope checking of terms , stPrePragmaOptions :: !PragmaOptions -- ^ Options applying to the current file. @OPTIONS@ -- pragmas only affect this field. , stPreImportedBuiltins :: !(BuiltinThings PrimFun) , stPreImportedDisplayForms :: !DisplayForms -- ^ Display forms added by someone else to imported identifiers , stPreImportedInstanceDefs :: !InstanceTable , stPreForeignCode :: !(Map BackendName [ForeignCode]) -- ^ @{-\# FOREIGN \#-}@ code that should be included in the compiled output. -- Does not include code for imported modules. , stPreFreshInteractionId :: !InteractionId , stPreImportedUserWarnings :: !(Map A.QName String) -- ^ Imported @UserWarning@s, not to be stored in the @Interface@ , stPreLocalUserWarnings :: !(Map A.QName String) -- ^ Locally defined @UserWarning@s, to be stored in the @Interface@ } type DisambiguatedNames = IntMap A.QName data PostScopeState = PostScopeState { stPostSyntaxInfo :: !CompressedFile -- ^ Highlighting info. , stPostDisambiguatedNames :: !DisambiguatedNames -- ^ Disambiguation carried out by the type checker. -- Maps position of first name character to disambiguated @'A.QName'@ -- for each @'A.AmbiguousQName'@ already passed by the type checker. , stPostMetaStore :: !MetaStore , stPostInteractionPoints :: !InteractionPoints -- scope checker first , stPostAwakeConstraints :: !Constraints , stPostSleepingConstraints :: !Constraints , stPostDirty :: !Bool -- local -- ^ Dirty when a constraint is added, used to prevent pointer update. -- Currently unused. , stPostOccursCheckDefs :: !(Set QName) -- local -- ^ Definitions to be considered during occurs check. -- Initialized to the current mutual block before the check. -- During occurs check, we remove definitions from this set -- as soon we have checked them. , stPostSignature :: !Signature -- ^ Declared identifiers of the current file. -- These will be serialized after successful type checking. , stPostModuleCheckpoints :: !(Map ModuleName CheckpointId) -- ^ For each module remember the checkpoint corresponding to the orignal -- context of the module parameters. , stPostImportsDisplayForms :: !DisplayForms -- ^ Display forms we add for imported identifiers , stPostCurrentModule :: !(Maybe ModuleName) -- ^ The current module is available after it has been type -- checked. , stPostInstanceDefs :: !TempInstanceTable , stPostConcreteNames :: !(Map Name [C.Name]) -- ^ Map keeping track of concrete names assigned to each abstract name -- (can be more than one name in case the first one is shadowed) , stPostShadowingNames :: !(Map Name [Name]) -- ^ Map keeping track of which names could maybe be shadowed by -- another name , stPostStatistics :: !Statistics -- ^ Counters to collect various statistics about meta variables etc. -- Only for current file. , stPostTCWarnings :: ![TCWarning] , stPostMutualBlocks :: !(Map MutualId MutualBlock) , stPostLocalBuiltins :: !(BuiltinThings PrimFun) , stPostFreshMetaId :: !MetaId , stPostFreshMutualId :: !MutualId , stPostFreshProblemId :: !ProblemId , stPostFreshCheckpointId :: !CheckpointId , stPostFreshInt :: !Int , stPostFreshNameId :: !NameId , stPostAreWeCaching :: !Bool , stPostConsideringInstance :: !Bool } -- | A mutual block of names in the signature. data MutualBlock = MutualBlock { mutualInfo :: Info.MutualInfo -- ^ The original info of the mutual block. , mutualNames :: Set QName } deriving (Show, Eq) instance Null MutualBlock where empty = MutualBlock empty empty -- | A part of the state which is not reverted when an error is thrown -- or the state is reset. data PersistentTCState = PersistentTCSt { stDecodedModules :: DecodedModules , stPersistentOptions :: CommandLineOptions , stInteractionOutputCallback :: InteractionOutputCallback -- ^ Callback function to call when there is a response -- to give to the interactive frontend. -- See the documentation of 'InteractionOutputCallback'. , stBenchmark :: !Benchmark -- ^ Structure to track how much CPU time was spent on which Agda phase. -- Needs to be a strict field to avoid space leaks! , stAccumStatistics :: !Statistics -- ^ Should be strict field. , stLoadedFileCache :: !(Maybe LoadedFileCache) -- ^ Cached typechecking state from the last loaded file. -- Should be Nothing when checking imports. , stPersistBackends :: [Backend] -- ^ Current backends with their options } data LoadedFileCache = LoadedFileCache { lfcCached :: !CachedTypeCheckLog , lfcCurrent :: !CurrentTypeCheckLog } -- | A log of what the type checker does and states after the action is -- completed. The cached version is stored first executed action first. type CachedTypeCheckLog = [(TypeCheckAction, PostScopeState)] -- | Like 'CachedTypeCheckLog', but storing the log for an ongoing type -- checking of a module. Stored in reverse order (last performed action -- first). type CurrentTypeCheckLog = [(TypeCheckAction, PostScopeState)] -- | A complete log for a module will look like this: -- -- * 'Pragmas' -- -- * 'EnterSection', entering the main module. -- -- * 'Decl'/'EnterSection'/'LeaveSection', for declarations and nested -- modules -- -- * 'LeaveSection', leaving the main module. data TypeCheckAction = EnterSection !Info.ModuleInfo !ModuleName !A.Telescope | LeaveSection !ModuleName | Decl !A.Declaration -- ^ Never a Section or ScopeDecl | Pragmas !PragmaOptions -- | Empty persistent state. initPersistentState :: PersistentTCState initPersistentState = PersistentTCSt { stPersistentOptions = defaultOptions , stDecodedModules = Map.empty , stInteractionOutputCallback = defaultInteractionOutputCallback , stBenchmark = empty , stAccumStatistics = Map.empty , stLoadedFileCache = Nothing , stPersistBackends = [] } -- | Empty state of type checker. initPreScopeState :: PreScopeState initPreScopeState = PreScopeState { stPreTokens = mempty , stPreImports = emptySignature , stPreImportedModules = Set.empty , stPreModuleToSource = Map.empty , stPreVisitedModules = Map.empty , stPreScope = emptyScopeInfo , stPrePatternSyns = Map.empty , stPrePatternSynImports = Map.empty , stPreGeneralizedVars = mempty , stPrePragmaOptions = defaultInteractionOptions , stPreImportedBuiltins = Map.empty , stPreImportedDisplayForms = HMap.empty , stPreImportedInstanceDefs = Map.empty , stPreForeignCode = Map.empty , stPreFreshInteractionId = 0 , stPreImportedUserWarnings = Map.empty , stPreLocalUserWarnings = Map.empty } initPostScopeState :: PostScopeState initPostScopeState = PostScopeState { stPostSyntaxInfo = mempty , stPostDisambiguatedNames = IntMap.empty , stPostMetaStore = IntMap.empty , stPostInteractionPoints = Map.empty , stPostAwakeConstraints = [] , stPostSleepingConstraints = [] , stPostDirty = False , stPostOccursCheckDefs = Set.empty , stPostSignature = emptySignature , stPostModuleCheckpoints = Map.empty , stPostImportsDisplayForms = HMap.empty , stPostCurrentModule = Nothing , stPostInstanceDefs = (Map.empty , Set.empty) , stPostConcreteNames = Map.empty , stPostShadowingNames = Map.empty , stPostStatistics = Map.empty , stPostTCWarnings = [] , stPostMutualBlocks = Map.empty , stPostLocalBuiltins = Map.empty , stPostFreshMetaId = 0 , stPostFreshMutualId = 0 , stPostFreshProblemId = 1 , stPostFreshCheckpointId = 1 , stPostFreshInt = 0 , stPostFreshNameId = NameId 0 0 , stPostAreWeCaching = False , stPostConsideringInstance = False } initState :: TCState initState = TCSt { stPreScopeState = initPreScopeState , stPostScopeState = initPostScopeState , stPersistentState = initPersistentState } -- * st-prefixed lenses ------------------------------------------------------------------------ stTokens :: Lens' CompressedFile TCState stTokens f s = f (stPreTokens (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreTokens = x}} stImports :: Lens' Signature TCState stImports f s = f (stPreImports (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreImports = x}} stImportedModules :: Lens' (Set ModuleName) TCState stImportedModules f s = f (stPreImportedModules (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreImportedModules = x}} stModuleToSource :: Lens' ModuleToSource TCState stModuleToSource f s = f (stPreModuleToSource (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreModuleToSource = x}} stVisitedModules :: Lens' VisitedModules TCState stVisitedModules f s = f (stPreVisitedModules (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreVisitedModules = x}} stScope :: Lens' ScopeInfo TCState stScope f s = f (stPreScope (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreScope = x}} stPatternSyns :: Lens' A.PatternSynDefns TCState stPatternSyns f s = f (stPrePatternSyns (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPrePatternSyns = x}} stPatternSynImports :: Lens' A.PatternSynDefns TCState stPatternSynImports f s = f (stPrePatternSynImports (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPrePatternSynImports = x}} stGeneralizedVars :: Lens' (Maybe (Set QName)) TCState stGeneralizedVars f s = f (stPreGeneralizedVars (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreGeneralizedVars = x}} stPragmaOptions :: Lens' PragmaOptions TCState stPragmaOptions f s = f (stPrePragmaOptions (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPrePragmaOptions = x}} stImportedBuiltins :: Lens' (BuiltinThings PrimFun) TCState stImportedBuiltins f s = f (stPreImportedBuiltins (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreImportedBuiltins = x}} stForeignCode :: Lens' (Map BackendName [ForeignCode]) TCState stForeignCode f s = f (stPreForeignCode (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreForeignCode = x}} stFreshInteractionId :: Lens' InteractionId TCState stFreshInteractionId f s = f (stPreFreshInteractionId (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreFreshInteractionId = x}} stImportedUserWarnings :: Lens' (Map A.QName String) TCState stImportedUserWarnings f s = f (stPreImportedUserWarnings (stPreScopeState s)) <&> \ x -> s {stPreScopeState = (stPreScopeState s) {stPreImportedUserWarnings = x}} stLocalUserWarnings :: Lens' (Map A.QName String) TCState stLocalUserWarnings f s = f (stPreLocalUserWarnings (stPreScopeState s)) <&> \ x -> s {stPreScopeState = (stPreScopeState s) {stPreLocalUserWarnings = x}} getUserWarnings :: MonadTCState m => m (Map A.QName String) getUserWarnings = do iuw <- useTC stImportedUserWarnings luw <- useTC stLocalUserWarnings return $ iuw `Map.union` luw stBackends :: Lens' [Backend] TCState stBackends f s = f (stPersistBackends (stPersistentState s)) <&> \x -> s {stPersistentState = (stPersistentState s) {stPersistBackends = x}} stFreshNameId :: Lens' NameId TCState stFreshNameId f s = f (stPostFreshNameId (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostFreshNameId = x}} stSyntaxInfo :: Lens' CompressedFile TCState stSyntaxInfo f s = f (stPostSyntaxInfo (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostSyntaxInfo = x}} stDisambiguatedNames :: Lens' DisambiguatedNames TCState stDisambiguatedNames f s = f (stPostDisambiguatedNames (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostDisambiguatedNames = x}} stMetaStore :: Lens' MetaStore TCState stMetaStore f s = f (stPostMetaStore (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostMetaStore = x}} stInteractionPoints :: Lens' InteractionPoints TCState stInteractionPoints f s = f (stPostInteractionPoints (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostInteractionPoints = x}} stAwakeConstraints :: Lens' Constraints TCState stAwakeConstraints f s = f (stPostAwakeConstraints (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostAwakeConstraints = x}} stSleepingConstraints :: Lens' Constraints TCState stSleepingConstraints f s = f (stPostSleepingConstraints (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostSleepingConstraints = x}} stDirty :: Lens' Bool TCState stDirty f s = f (stPostDirty (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostDirty = x}} stOccursCheckDefs :: Lens' (Set QName) TCState stOccursCheckDefs f s = f (stPostOccursCheckDefs (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostOccursCheckDefs = x}} stSignature :: Lens' Signature TCState stSignature f s = f (stPostSignature (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostSignature = x}} stModuleCheckpoints :: Lens' (Map ModuleName CheckpointId) TCState stModuleCheckpoints f s = f (stPostModuleCheckpoints (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostModuleCheckpoints = x}} stImportsDisplayForms :: Lens' DisplayForms TCState stImportsDisplayForms f s = f (stPostImportsDisplayForms (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostImportsDisplayForms = x}} stImportedDisplayForms :: Lens' DisplayForms TCState stImportedDisplayForms f s = f (stPreImportedDisplayForms (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreImportedDisplayForms = x}} stCurrentModule :: Lens' (Maybe ModuleName) TCState stCurrentModule f s = f (stPostCurrentModule (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostCurrentModule = x}} stImportedInstanceDefs :: Lens' InstanceTable TCState stImportedInstanceDefs f s = f (stPreImportedInstanceDefs (stPreScopeState s)) <&> \x -> s {stPreScopeState = (stPreScopeState s) {stPreImportedInstanceDefs = x}} stInstanceDefs :: Lens' TempInstanceTable TCState stInstanceDefs f s = f (stPostInstanceDefs (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostInstanceDefs = x}} stConcreteNames :: Lens' (Map Name [C.Name]) TCState stConcreteNames f s = f (stPostConcreteNames (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostConcreteNames = x}} stShadowingNames :: Lens' (Map Name [Name]) TCState stShadowingNames f s = f (stPostShadowingNames (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostShadowingNames = x}} stStatistics :: Lens' Statistics TCState stStatistics f s = f (stPostStatistics (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostStatistics = x}} stTCWarnings :: Lens' [TCWarning] TCState stTCWarnings f s = f (stPostTCWarnings (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostTCWarnings = x}} stMutualBlocks :: Lens' (Map MutualId MutualBlock) TCState stMutualBlocks f s = f (stPostMutualBlocks (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostMutualBlocks = x}} stLocalBuiltins :: Lens' (BuiltinThings PrimFun) TCState stLocalBuiltins f s = f (stPostLocalBuiltins (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostLocalBuiltins = x}} stFreshMetaId :: Lens' MetaId TCState stFreshMetaId f s = f (stPostFreshMetaId (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostFreshMetaId = x}} stFreshMutualId :: Lens' MutualId TCState stFreshMutualId f s = f (stPostFreshMutualId (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostFreshMutualId = x}} stFreshProblemId :: Lens' ProblemId TCState stFreshProblemId f s = f (stPostFreshProblemId (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostFreshProblemId = x}} stFreshCheckpointId :: Lens' CheckpointId TCState stFreshCheckpointId f s = f (stPostFreshCheckpointId (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostFreshCheckpointId = x}} stFreshInt :: Lens' Int TCState stFreshInt f s = f (stPostFreshInt (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostFreshInt = x}} -- use @areWeCaching@ from the Caching module instead. stAreWeCaching :: Lens' Bool TCState stAreWeCaching f s = f (stPostAreWeCaching (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostAreWeCaching = x}} stConsideringInstance :: Lens' Bool TCState stConsideringInstance f s = f (stPostConsideringInstance (stPostScopeState s)) <&> \x -> s {stPostScopeState = (stPostScopeState s) {stPostConsideringInstance = x}} stBuiltinThings :: TCState -> BuiltinThings PrimFun stBuiltinThings s = (s^.stLocalBuiltins) `Map.union` (s^.stImportedBuiltins) -- * Fresh things ------------------------------------------------------------------------ class Enum i => HasFresh i where freshLens :: Lens' i TCState nextFresh' :: i -> i nextFresh' = succ nextFresh :: HasFresh i => TCState -> (i, TCState) nextFresh s = let !c = s^.freshLens in (c, set freshLens (nextFresh' c) s) fresh :: (HasFresh i, MonadTCState m) => m i fresh = do !s <- getTC let (!c , !s') = nextFresh s putTC s' return c instance HasFresh MetaId where freshLens = stFreshMetaId instance HasFresh MutualId where freshLens = stFreshMutualId instance HasFresh InteractionId where freshLens = stFreshInteractionId instance HasFresh NameId where freshLens = stFreshNameId -- nextFresh increments the current fresh name by 2 so @NameId@s used -- before caching starts do not overlap with the ones used after. nextFresh' = succ . succ instance HasFresh Int where freshLens = stFreshInt newtype ProblemId = ProblemId Nat deriving (Data, Eq, Ord, Enum, Real, Integral, Num) -- TODO: 'Show' should output Haskell-parseable representations. -- The following instance is deprecated, and Pretty[TCM] should be used -- instead. Later, simply derive Show for this type. -- ASR (28 December 2014). This instance is not used anymore (module -- the test suite) when reporting errors. See Issue 1293. -- This particular Show instance is ok because of the Num instance. instance Show ProblemId where show (ProblemId n) = show n instance Pretty ProblemId where pretty (ProblemId n) = pretty n instance HasFresh ProblemId where freshLens = stFreshProblemId newtype CheckpointId = CheckpointId Int deriving (Data, Eq, Ord, Enum, Real, Integral, Num) instance Show CheckpointId where show (CheckpointId n) = show n instance Pretty CheckpointId where pretty (CheckpointId n) = pretty n instance HasFresh CheckpointId where freshLens = stFreshCheckpointId freshName :: MonadTCState m => Range -> String -> m Name freshName r s = do i <- fresh return $ mkName r i s freshNoName :: MonadTCState m => Range -> m Name freshNoName r = do i <- fresh return $ Name i (C.NoName noRange i) r noFixity' False freshNoName_ :: MonadTCState m => m Name freshNoName_ = freshNoName noRange freshRecordName :: MonadTCState m => m Name freshRecordName = do i <- fresh return $ Name i (C.Name noRange C.NotInScope [C.Id "r"]) noRange noFixity' True -- | Create a fresh name from @a@. class FreshName a where freshName_ :: MonadTCState m => a -> m Name instance FreshName (Range, String) where freshName_ = uncurry freshName instance FreshName String where freshName_ = freshName noRange instance FreshName Range where freshName_ = freshNoName instance FreshName () where freshName_ () = freshNoName_ --------------------------------------------------------------------------- -- ** Managing file names --------------------------------------------------------------------------- -- | Maps top-level module names to the corresponding source file -- names. type ModuleToSource = Map TopLevelModuleName AbsolutePath -- | Maps source file names to the corresponding top-level module -- names. type SourceToModule = Map AbsolutePath TopLevelModuleName -- | Creates a 'SourceToModule' map based on 'stModuleToSource'. -- -- O(n log n). -- -- For a single reverse lookup in 'stModuleToSource', -- rather use 'lookupModuleFromSourse'. sourceToModule :: TCM SourceToModule sourceToModule = Map.fromList . List.map (\(m, f) -> (f, m)) . Map.toList <$> useTC stModuleToSource -- | Lookup an 'AbsolutePath' in 'sourceToModule'. -- -- O(n). lookupModuleFromSource :: AbsolutePath -> TCM (Maybe TopLevelModuleName) lookupModuleFromSource f = fmap fst . List.find ((f ==) . snd) . Map.toList <$> useTC stModuleToSource --------------------------------------------------------------------------- -- ** Interface --------------------------------------------------------------------------- data ModuleInfo = ModuleInfo { miInterface :: Interface , miWarnings :: Bool -- ^ 'True' if warnings were encountered when the module was type -- checked. , miPrimitive :: Bool -- ^ 'True' if the module is a primitive module, which should always -- be importable. } -- Note that the use of 'C.TopLevelModuleName' here is a potential -- performance problem, because these names do not contain unique -- identifiers. type VisitedModules = Map C.TopLevelModuleName ModuleInfo type DecodedModules = Map C.TopLevelModuleName Interface data ForeignCode = ForeignCode Range String deriving Show data Interface = Interface { iSourceHash :: Hash -- ^ Hash of the source code. , iSource :: Text -- ^ The source code. The source code is stored so that the HTML -- and LaTeX backends can generate their output without having to -- re-read the (possibly out of date) source code. , iFileType :: FileType -- ^ Source file type, determined from the file extension , iImportedModules :: [(ModuleName, Hash)] -- ^ Imported modules and their hashes. , iModuleName :: ModuleName -- ^ Module name of this interface. , iScope :: Map ModuleName Scope -- ^ Scope defined by this module. -- -- Andreas, AIM XX: Too avoid duplicate serialization, this field is -- not serialized, so if you deserialize an interface, @iScope@ -- will be empty. -- But 'constructIScope' constructs 'iScope' from 'iInsideScope'. , iInsideScope :: ScopeInfo -- ^ Scope after we loaded this interface. -- Used in 'Agda.Interaction.BasicOps.AtTopLevel' -- and 'Agda.Interaction.CommandLine.interactionLoop'. , iSignature :: Signature , iDisplayForms :: DisplayForms -- ^ Display forms added for imported identifiers. , iUserWarnings :: Map A.QName String -- ^ User warnings for imported identifiers , iBuiltin :: BuiltinThings (String, QName) , iForeignCode :: Map BackendName [ForeignCode] , iHighlighting :: HighlightingInfo , iPragmaOptions :: [OptionsPragma] -- ^ Pragma options set in the file. , iOptionsUsed :: PragmaOptions -- ^ Options/features used when checking the file (can be different -- from options set directly in the file). , iPatternSyns :: A.PatternSynDefns , iWarnings :: [TCWarning] } deriving Show instance Pretty Interface where pretty (Interface sourceH source fileT importedM moduleN scope insideS signature display userwarn builtin foreignCode highlighting pragmaO oUsed patternS warnings) = hang "Interface" 2 $ vcat [ "source hash:" <+> (pretty . show) sourceH , "source:" $$ nest 2 (text $ T.unpack source) , "file type:" <+> (pretty . show) fileT , "imported modules:" <+> (pretty . show) importedM , "module name:" <+> pretty moduleN , "scope:" <+> (pretty . show) scope , "inside scope:" <+> (pretty . show) insideS , "signature:" <+> (pretty . show) signature , "display:" <+> (pretty . show) display , "user warnings:" <+> (pretty . show) userwarn , "builtin:" <+> (pretty . show) builtin , "Foreign code:" <+> (pretty . show) foreignCode , "highlighting:" <+> (pretty . show) highlighting , "pragma options:" <+> (pretty . show) pragmaO , "options used:" <+> (pretty . show) oUsed , "pattern syns:" <+> (pretty . show) patternS , "warnings:" <+> (pretty . show) warnings ] -- | Combines the source hash and the (full) hashes of the imported modules. iFullHash :: Interface -> Hash iFullHash i = combineHashes $ iSourceHash i : List.map snd (iImportedModules i) --------------------------------------------------------------------------- -- ** Closure --------------------------------------------------------------------------- data Closure a = Closure { clSignature :: Signature , clEnv :: TCEnv , clScope :: ScopeInfo , clModuleCheckpoints :: Map ModuleName CheckpointId , clValue :: a } deriving (Data, Functor, Foldable) instance Show a => Show (Closure a) where show cl = "Closure { clValue = " ++ show (clValue cl) ++ " }" instance HasRange a => HasRange (Closure a) where getRange = getRange . clValue buildClosure :: a -> TCM (Closure a) buildClosure x = do env <- askTC sig <- useTC stSignature scope <- useTC stScope cps <- useTC stModuleCheckpoints return $ Closure sig env scope cps x --------------------------------------------------------------------------- -- ** Constraints --------------------------------------------------------------------------- type Constraints = [ProblemConstraint] data ProblemConstraint = PConstr { constraintProblems :: Set ProblemId , theConstraint :: Closure Constraint } deriving (Data, Show) instance HasRange ProblemConstraint where getRange = getRange . theConstraint data Constraint = ValueCmp Comparison Type Term Term | ValueCmpOnFace Comparison Term Type Term Term | ElimCmp [Polarity] [IsForced] Type Term [Elim] [Elim] | TypeCmp Comparison Type Type | TelCmp Type Type Comparison Telescope Telescope -- ^ the two types are for the error message only | SortCmp Comparison Sort Sort | LevelCmp Comparison Level Level -- | ShortCut MetaId Term Type -- -- ^ A delayed instantiation. Replaces @ValueCmp@ in 'postponeTypeCheckingProblem'. | HasBiggerSort Sort | HasPTSRule Sort (Abs Sort) | UnBlock MetaId | Guarded Constraint ProblemId | IsEmpty Range Type -- ^ The range is the one of the absurd pattern. | CheckSizeLtSat Term -- ^ Check that the 'Term' is either not a SIZELT or a non-empty SIZELT. | FindInstance MetaId (Maybe MetaId) (Maybe [Candidate]) -- ^ the first argument is the instance argument, the second one is the meta -- on which the constraint may be blocked on and the third one is the list -- of candidates (or Nothing if we haven’t determined the list of -- candidates yet) | CheckFunDef Delayed Info.DefInfo QName [A.Clause] | UnquoteTactic (Maybe MetaId) Term Term Type -- ^ First argument is computation and the others are hole and goal type deriving (Data, Show) instance HasRange Constraint where getRange (IsEmpty r t) = r getRange _ = noRange {- no Range instances for Term, Type, Elm, Tele, Sort, Level, MetaId getRange (ValueCmp cmp a u v) = getRange (a,u,v) getRange (ElimCmp pol a v es es') = getRange (a,v,es,es') getRange (TypeCmp cmp a b) = getRange (a,b) getRange (TelCmp a b cmp tel tel') = getRange (a,b,tel,tel') getRange (SortCmp cmp s s') = getRange (s,s') getRange (LevelCmp cmp l l') = getRange (l,l') getRange (UnBlock x) = getRange x getRange (Guarded c pid) = getRange c getRange (FindInstance x cands) = getRange x -} instance Free Constraint where freeVars' c = case c of ValueCmp _ t u v -> freeVars' (t, (u, v)) ValueCmpOnFace _ p t u v -> freeVars' (p, (t, (u, v))) ElimCmp _ _ t u es es' -> freeVars' ((t, u), (es, es')) TypeCmp _ t t' -> freeVars' (t, t') TelCmp _ _ _ tel tel' -> freeVars' (tel, tel') SortCmp _ s s' -> freeVars' (s, s') LevelCmp _ l l' -> freeVars' (l, l') UnBlock _ -> mempty Guarded c _ -> freeVars' c IsEmpty _ t -> freeVars' t CheckSizeLtSat u -> freeVars' u FindInstance _ _ cs -> freeVars' cs CheckFunDef _ _ _ _ -> mempty HasBiggerSort s -> freeVars' s HasPTSRule s1 s2 -> freeVars' (s1 , s2) UnquoteTactic _ t h g -> freeVars' (t, (h, g)) instance TermLike Constraint where foldTerm f = \case ValueCmp _ t u v -> foldTerm f (t, u, v) ValueCmpOnFace _ p t u v -> foldTerm f (p, t, u, v) ElimCmp _ _ t u es es' -> foldTerm f (t, u, es, es') TypeCmp _ t t' -> foldTerm f (t, t') LevelCmp _ l l' -> foldTerm f (l, l') IsEmpty _ t -> foldTerm f t CheckSizeLtSat u -> foldTerm f u UnquoteTactic _ t h g -> foldTerm f (t, h, g) Guarded c _ -> foldTerm f c TelCmp _ _ _ tel1 tel2 -> foldTerm f (tel1, tel2) SortCmp _ s1 s2 -> foldTerm f (s1, s2) UnBlock _ -> mempty FindInstance _ _ _ -> mempty CheckFunDef _ _ _ _ -> mempty HasBiggerSort s -> foldTerm f s HasPTSRule s1 s2 -> foldTerm f (s1, s2) traverseTermM f c = __IMPOSSIBLE__ -- Not yet implemented data Comparison = CmpEq | CmpLeq deriving (Eq, Data, Show) instance Pretty Comparison where pretty CmpEq = "=" pretty CmpLeq = "=<" -- | An extension of 'Comparison' to @>=@. data CompareDirection = DirEq | DirLeq | DirGeq deriving (Eq, Show) instance Pretty CompareDirection where pretty = text . \case DirEq -> "=" DirLeq -> "=<" DirGeq -> ">=" -- | Embed 'Comparison' into 'CompareDirection'. fromCmp :: Comparison -> CompareDirection fromCmp CmpEq = DirEq fromCmp CmpLeq = DirLeq -- | Flip the direction of comparison. flipCmp :: CompareDirection -> CompareDirection flipCmp DirEq = DirEq flipCmp DirLeq = DirGeq flipCmp DirGeq = DirLeq -- | Turn a 'Comparison' function into a 'CompareDirection' function. -- -- Property: @dirToCmp f (fromCmp cmp) = f cmp@ dirToCmp :: (Comparison -> a -> a -> c) -> CompareDirection -> a -> a -> c dirToCmp cont DirEq = cont CmpEq dirToCmp cont DirLeq = cont CmpLeq dirToCmp cont DirGeq = flip $ cont CmpLeq --------------------------------------------------------------------------- -- * Open things --------------------------------------------------------------------------- -- | A thing tagged with the context it came from. data Open a = OpenThing { openThingCheckpoint :: CheckpointId, openThing :: a } deriving (Data, Show, Functor, Foldable, Traversable) instance Decoration Open where traverseF f (OpenThing cp x) = OpenThing cp <$> f x --------------------------------------------------------------------------- -- * Judgements -- -- Used exclusively for typing of meta variables. --------------------------------------------------------------------------- -- | Parametrized since it is used without MetaId when creating a new meta. data Judgement a = HasType { jMetaId :: a, jMetaType :: Type } | IsSort { jMetaId :: a, jMetaType :: Type } -- Andreas, 2011-04-26: type needed for higher-order sort metas instance Show a => Show (Judgement a) where show (HasType a t) = show a ++ " : " ++ show t show (IsSort a t) = show a ++ " :sort " ++ show t ----------------------------------------------------------------------------- -- ** Generalizable variables ----------------------------------------------------------------------------- data DoGeneralize = YesGeneralize | NoGeneralize deriving (Eq, Ord, Show, Data) -- | The value of a generalizable variable. This is created to be a -- generalizable meta before checking the type to be generalized. data GeneralizedValue = GeneralizedValue { genvalCheckpoint :: CheckpointId , genvalTerm :: Term , genvalType :: Type } deriving (Show, Data) --------------------------------------------------------------------------- -- ** Meta variables --------------------------------------------------------------------------- data MetaVariable = MetaVar { mvInfo :: MetaInfo , mvPriority :: MetaPriority -- ^ some metavariables are more eager to be instantiated , mvPermutation :: Permutation -- ^ a metavariable doesn't have to depend on all variables -- in the context, this "permutation" will throw away the -- ones it does not depend on , mvJudgement :: Judgement MetaId , mvInstantiation :: MetaInstantiation , mvListeners :: Set Listener -- ^ meta variables scheduled for eta-expansion but blocked by this one , mvFrozen :: Frozen -- ^ are we past the point where we can instantiate this meta variable? } data Listener = EtaExpand MetaId | CheckConstraint Nat ProblemConstraint instance Eq Listener where EtaExpand x == EtaExpand y = x == y CheckConstraint x _ == CheckConstraint y _ = x == y _ == _ = False instance Ord Listener where EtaExpand x `compare` EtaExpand y = x `compare` y CheckConstraint x _ `compare` CheckConstraint y _ = x `compare` y EtaExpand{} `compare` CheckConstraint{} = LT CheckConstraint{} `compare` EtaExpand{} = GT -- | Frozen meta variable cannot be instantiated by unification. -- This serves to prevent the completion of a definition by its use -- outside of the current block. -- (See issues 118, 288, 399). data Frozen = Frozen -- ^ Do not instantiate. | Instantiable deriving (Eq, Show) data MetaInstantiation = InstV [Arg String] Term -- ^ solved by term (abstracted over some free variables) | Open -- ^ unsolved | OpenInstance -- ^ open, to be instantiated by instance search | BlockedConst Term -- ^ solution blocked by unsolved constraints | PostponedTypeCheckingProblem (Closure TypeCheckingProblem) (TCM Bool) -- | Solving a 'CheckArgs' constraint may or may not check the target type. If -- it did, it returns a handle to any unsolved constraints. data CheckedTarget = CheckedTarget (Maybe ProblemId) | NotCheckedTarget data TypeCheckingProblem = CheckExpr Comparison A.Expr Type | CheckArgs ExpandHidden Range [NamedArg A.Expr] Type Type ([Maybe Range] -> Elims -> Type -> CheckedTarget -> TCM Term) | CheckProjAppToKnownPrincipalArg Comparison A.Expr ProjOrigin (NonemptyList QName) A.Args Type Int Term Type | CheckLambda Comparison (Arg ([WithHiding Name], Maybe Type)) A.Expr Type -- ^ @(λ (xs : t₀) → e) : t@ -- This is not an instance of 'CheckExpr' as the domain type -- has already been checked. -- For example, when checking -- @(λ (x y : Fin _) → e) : (x : Fin n) → ?@ -- we want to postpone @(λ (y : Fin n) → e) : ?@ where @Fin n@ -- is a 'Type' rather than an 'A.Expr'. | DoQuoteTerm Comparison Term Type -- ^ Quote the given term and check type against `Term` instance Show MetaInstantiation where show (InstV tel t) = "InstV " ++ show tel ++ " (" ++ show t ++ ")" show Open = "Open" show OpenInstance = "OpenInstance" show (BlockedConst t) = "BlockedConst (" ++ show t ++ ")" show (PostponedTypeCheckingProblem{}) = "PostponedTypeCheckingProblem (...)" -- | Meta variable priority: -- When we have an equation between meta-variables, which one -- should be instantiated? -- -- Higher value means higher priority to be instantiated. newtype MetaPriority = MetaPriority Int deriving (Eq , Ord , Show) data RunMetaOccursCheck = RunMetaOccursCheck | DontRunMetaOccursCheck deriving (Eq , Ord , Show) -- | @MetaInfo@ is cloned from one meta to the next during pruning. data MetaInfo = MetaInfo { miClosRange :: Closure Range -- TODO: Not so nice. But we want both to have the environment of the meta (Closure) and its range. -- , miRelevance :: Relevance -- ^ Created in irrelevant position? , miMetaOccursCheck :: RunMetaOccursCheck -- ^ Run the extended occurs check that goes in definitions? , miNameSuggestion :: MetaNameSuggestion -- ^ Used for printing. -- @Just x@ if meta-variable comes from omitted argument with name @x@. , miGeneralizable :: Arg DoGeneralize -- ^ Should this meta be generalized if unsolved? If so, at what ArgInfo? } -- | Name suggestion for meta variable. Empty string means no suggestion. type MetaNameSuggestion = String -- | For printing, we couple a meta with its name suggestion. data NamedMeta = NamedMeta { nmSuggestion :: MetaNameSuggestion , nmid :: MetaId } instance Pretty NamedMeta where pretty (NamedMeta "" x) = pretty x pretty (NamedMeta "_" x) = pretty x pretty (NamedMeta s x) = text $ "_" ++ s ++ prettyShow x type MetaStore = IntMap MetaVariable instance HasRange MetaInfo where getRange = clValue . miClosRange instance HasRange MetaVariable where getRange m = getRange $ getMetaInfo m instance SetRange MetaInfo where setRange r m = m { miClosRange = (miClosRange m) { clValue = r }} instance SetRange MetaVariable where setRange r m = m { mvInfo = setRange r (mvInfo m) } normalMetaPriority :: MetaPriority normalMetaPriority = MetaPriority 0 lowMetaPriority :: MetaPriority lowMetaPriority = MetaPriority (-10) highMetaPriority :: MetaPriority highMetaPriority = MetaPriority 10 getMetaInfo :: MetaVariable -> Closure Range getMetaInfo = miClosRange . mvInfo getMetaScope :: MetaVariable -> ScopeInfo getMetaScope m = clScope $ getMetaInfo m getMetaEnv :: MetaVariable -> TCEnv getMetaEnv m = clEnv $ getMetaInfo m getMetaSig :: MetaVariable -> Signature getMetaSig m = clSignature $ getMetaInfo m getMetaRelevance :: MetaVariable -> Relevance getMetaRelevance = envRelevance . getMetaEnv getMetaModality :: MetaVariable -> Modality getMetaModality = envModality . getMetaEnv -- Lenses metaFrozen :: Lens' Frozen MetaVariable metaFrozen f mv = f (mvFrozen mv) <&> \ x -> mv { mvFrozen = x } --------------------------------------------------------------------------- -- ** Interaction meta variables --------------------------------------------------------------------------- -- | Interaction points are created by the scope checker who sets the range. -- The meta variable is created by the type checker and then hooked up to the -- interaction point. data InteractionPoint = InteractionPoint { ipRange :: Range -- ^ The position of the interaction point. , ipMeta :: Maybe MetaId -- ^ The meta variable, if any, holding the type etc. , ipSolved:: Bool -- ^ Has this interaction point already been solved? , ipClause:: IPClause -- ^ The clause of the interaction point (if any). -- Used for case splitting. } instance Eq InteractionPoint where (==) = (==) `on` ipMeta -- | Data structure managing the interaction points. -- -- We never remove interaction points from this map, only set their -- 'ipSolved' to @True@. (Issue #2368) type InteractionPoints = Map InteractionId InteractionPoint -- | Which clause is an interaction point located in? data IPClause = IPClause { ipcQName :: QName -- ^ The name of the function. , ipcClauseNo :: Int -- ^ The number of the clause of this function. , ipcClause :: A.RHS -- ^ The original AST clause rhs. } | IPNoClause -- ^ The interaction point is not in the rhs of a clause. deriving Data instance Eq IPClause where IPNoClause == IPNoClause = True IPClause x i _ == IPClause x' i' _ = x == x' && i == i' _ == _ = False --------------------------------------------------------------------------- -- ** Signature --------------------------------------------------------------------------- data Signature = Sig { _sigSections :: Sections , _sigDefinitions :: Definitions , _sigRewriteRules:: RewriteRuleMap -- ^ The rewrite rules defined in this file. } deriving (Data, Show) sigSections :: Lens' Sections Signature sigSections f s = f (_sigSections s) <&> \x -> s {_sigSections = x} sigDefinitions :: Lens' Definitions Signature sigDefinitions f s = f (_sigDefinitions s) <&> \x -> s {_sigDefinitions = x} sigRewriteRules :: Lens' RewriteRuleMap Signature sigRewriteRules f s = f (_sigRewriteRules s) <&> \x -> s {_sigRewriteRules = x} type Sections = Map ModuleName Section type Definitions = HashMap QName Definition type RewriteRuleMap = HashMap QName RewriteRules type DisplayForms = HashMap QName [LocalDisplayForm] newtype Section = Section { _secTelescope :: Telescope } deriving (Data, Show) instance Pretty Section where pretty = pretty . _secTelescope secTelescope :: Lens' Telescope Section secTelescope f s = f (_secTelescope s) <&> \x -> s {_secTelescope = x} emptySignature :: Signature emptySignature = Sig Map.empty HMap.empty HMap.empty -- | A @DisplayForm@ is in essence a rewrite rule -- @ -- q ts --> dt -- @ -- for a defined symbol (could be a constructor as well) @q@. -- The right hand side is a 'DisplayTerm' which is used to -- 'reify' to a more readable 'Abstract.Syntax'. -- -- The patterns @ts@ are just terms, but @var 0@ is interpreted -- as a hole. Each occurrence of @var 0@ is a new hole (pattern var). -- For each *occurrence* of @var0@ the rhs @dt@ has a free variable. -- These are instantiated when matching a display form against a -- term @q vs@ succeeds. data DisplayForm = Display { dfFreeVars :: Nat -- ^ Number @n@ of free variables in 'dfRHS'. , dfPats :: Elims -- ^ Left hand side patterns, where @var 0@ stands for a pattern -- variable. There should be @n@ occurrences of @var0@ in -- 'dfPats'. -- The 'ArgInfo' is ignored in these patterns. , dfRHS :: DisplayTerm -- ^ Right hand side, with @n@ free variables. } deriving (Data, Show) type LocalDisplayForm = Open DisplayForm -- | A structured presentation of a 'Term' for reification into -- 'Abstract.Syntax'. data DisplayTerm = DWithApp DisplayTerm [DisplayTerm] Elims -- ^ @(f vs | ws) es@. -- The first 'DisplayTerm' is the parent function @f@ with its args @vs@. -- The list of 'DisplayTerm's are the with expressions @ws@. -- The 'Elims' are additional arguments @es@ -- (possible in case the with-application is of function type) -- or projections (if it is of record type). | DCon ConHead ConInfo [Arg DisplayTerm] -- ^ @c vs@. | DDef QName [Elim' DisplayTerm] -- ^ @d vs@. | DDot Term -- ^ @.v@. | DTerm Term -- ^ @v@. deriving (Data, Show) instance Free DisplayForm where freeVars' (Display n ps t) = bind (freeVars' ps) `mappend` bind' n (freeVars' t) instance Free DisplayTerm where freeVars' (DWithApp t ws es) = freeVars' (t, (ws, es)) freeVars' (DCon _ _ vs) = freeVars' vs freeVars' (DDef _ es) = freeVars' es freeVars' (DDot v) = freeVars' v freeVars' (DTerm v) = freeVars' v instance Pretty DisplayTerm where prettyPrec p v = case v of DTerm v -> prettyPrec p v DDot v -> "." P.<> prettyPrec 10 v DDef f es -> pretty f `pApp` es DCon c _ vs -> pretty (conName c) `pApp` map Apply vs DWithApp h ws es -> mparens (p > 0) (sep [ pretty h , nest 2 $ fsep [ "|" <+> pretty w | w <- ws ] ]) `pApp` es where pApp d els = mparens (not (null els) && p > 9) $ sep [d, nest 2 $ fsep (map (prettyPrec 10) els)] -- | By default, we have no display form. defaultDisplayForm :: QName -> [LocalDisplayForm] defaultDisplayForm c = [] defRelevance :: Definition -> Relevance defRelevance = getRelevance . defArgInfo -- | Non-linear (non-constructor) first-order pattern. data NLPat = PVar !Int [Arg Int] -- ^ Matches anything (modulo non-linearity) that only contains bound -- variables that occur in the given arguments. | PWild -- ^ Matches anything (e.g. irrelevant terms). | PDef QName PElims -- ^ Matches @f es@ | PLam ArgInfo (Abs NLPat) -- ^ Matches @λ x → t@ | PPi (Dom NLPType) (Abs NLPType) -- ^ Matches @(x : A) → B@ | PBoundVar {-# UNPACK #-} !Int PElims -- ^ Matches @x es@ where x is a lambda-bound variable | PTerm Term -- ^ Matches the term modulo β (ideally βη). deriving (Data, Show) type PElims = [Elim' NLPat] data NLPType = NLPType { nlpTypeLevel :: NLPat -- always PWild or PVar (with all bound variables in scope) , nlpTypeUnEl :: NLPat } deriving (Data, Show) type RewriteRules = [RewriteRule] -- | Rewrite rules can be added independently from function clauses. data RewriteRule = RewriteRule { rewName :: QName -- ^ Name of rewrite rule @q : Γ → f ps ≡ rhs@ -- where @≡@ is the rewrite relation. , rewContext :: Telescope -- ^ @Γ@. , rewHead :: QName -- ^ @f@. , rewPats :: PElims -- ^ @Γ ⊢ f ps : t@. , rewRHS :: Term -- ^ @Γ ⊢ rhs : t@. , rewType :: Type -- ^ @Γ ⊢ t@. } deriving (Data, Show) data Definition = Defn { defArgInfo :: ArgInfo -- ^ Hiding should not be used. , defName :: QName , defType :: Type -- ^ Type of the lifted definition. , defPolarity :: [Polarity] -- ^ Variance information on arguments of the definition. -- Does not include info for dropped parameters to -- projection(-like) functions and constructors. , defArgOccurrences :: [Occurrence] -- ^ Positivity information on arguments of the definition. -- Does not include info for dropped parameters to -- projection(-like) functions and constructors. -- Sometimes Agda looks up 'Occurrence's in these lists based on -- their position, so one might consider replacing the list -- with, say, an 'IntMap'. However, presumably these lists tend -- to be short, in which case 'IntMap's could be slower than -- lists. For instance, at one point the longest list -- encountered for the standard library (in serialised -- interfaces) had length 27. Distribution: -- -- Length, number of lists -- ----------------------- -- -- 0, 2444 -- 1, 721 -- 2, 433 -- 3, 668 -- 4, 602 -- 5, 624 -- 6, 626 -- 7, 484 -- 8, 375 -- 9, 264 -- 10, 305 -- 11, 188 -- 12, 171 -- 13, 108 -- 14, 84 -- 15, 80 -- 16, 38 -- 17, 23 -- 18, 16 -- 19, 8 -- 20, 7 -- 21, 5 -- 22, 2 -- 23, 3 -- 27, 1 , defArgGeneralizable :: NumGeneralizableArgs -- ^ How many arguments should be generalised. , defGeneralizedParams :: [Maybe Name] -- ^ Gives the name of the (bound variable) parameter for named generalized -- parameters. This is needed to bring it into scope when type checking -- the data/record definition corresponding to a type with generalized -- parameters. , defDisplay :: [LocalDisplayForm] , defMutual :: MutualId , defCompiledRep :: CompiledRepresentation , defInstance :: Maybe QName -- ^ @Just q@ when this definition is an instance of class q , defCopy :: Bool -- ^ Has this function been created by a module -- instantiation? , defMatchable :: Bool -- ^ Is the def matched against in a rewrite rule? , defNoCompilation :: Bool -- ^ should compilers skip this? Used for e.g. cubical's comp , defInjective :: Bool -- ^ Should the def be treated as injective by the pattern matching unifier? , theDef :: Defn } deriving (Data, Show) data NumGeneralizableArgs = NoGeneralizableArgs | SomeGeneralizableArgs Int -- ^ When lambda-lifting new args are generalizable if -- 'SomeGeneralizableArgs', also when the number is zero. deriving (Data, Show) theDefLens :: Lens' Defn Definition theDefLens f d = f (theDef d) <&> \ df -> d { theDef = df } -- | Create a definition with sensible defaults. defaultDefn :: ArgInfo -> QName -> Type -> Defn -> Definition defaultDefn info x t def = Defn { defArgInfo = info , defName = x , defType = t , defPolarity = [] , defArgOccurrences = [] , defArgGeneralizable = NoGeneralizableArgs , defGeneralizedParams = [] , defDisplay = defaultDisplayForm x , defMutual = 0 , defCompiledRep = noCompiledRep , defInstance = Nothing , defCopy = False , defMatchable = False , defNoCompilation = False , defInjective = False , theDef = def } -- | Polarity for equality and subtype checking. data Polarity = Covariant -- ^ monotone | Contravariant -- ^ antitone | Invariant -- ^ no information (mixed variance) | Nonvariant -- ^ constant deriving (Data, Show, Eq) instance Pretty Polarity where pretty = text . \case Covariant -> "+" Contravariant -> "-" Invariant -> "*" Nonvariant -> "_" -- | Information about whether an argument is forced by the type of a function. data IsForced = Forced | NotForced deriving (Data, Show, Eq) -- | The backends are responsible for parsing their own pragmas. data CompilerPragma = CompilerPragma Range String deriving (Data, Show, Eq) instance HasRange CompilerPragma where getRange (CompilerPragma r _) = r type BackendName = String jsBackendName, ghcBackendName :: BackendName jsBackendName = "JS" ghcBackendName = "GHC" type CompiledRepresentation = Map BackendName [CompilerPragma] noCompiledRep :: CompiledRepresentation noCompiledRep = Map.empty -- A face represented as a list of equality constraints. -- (r,False) ↦ (r = i0) -- (r,True ) ↦ (r = i1) type Face = [(Term,Bool)] -- | An alternative representation of partial elements in a telescope: -- Γ ⊢ λ Δ. [φ₁ u₁, ... , φₙ uₙ] : Δ → PartialP (∨_ᵢ φᵢ) T -- see cubicaltt paper (however we do not store the type T). data System = System { systemTel :: Telescope -- ^ the telescope Δ, binding vars for the clauses, Γ ⊢ Δ , systemClauses :: [(Face,Term)] -- ^ a system [φ₁ u₁, ... , φₙ uₙ] where Γ, Δ ⊢ φᵢ and Γ, Δ, φᵢ ⊢ uᵢ } deriving (Data, Show) -- | Additional information for extended lambdas. data ExtLamInfo = ExtLamInfo { extLamModule :: ModuleName -- ^ For complicated reasons the scope checker decides the QName of a -- pattern lambda, and thus its module. We really need to decide the -- module during type checking though, since if the lambda appears in a -- refined context the module picked by the scope checker has very much -- the wrong parameters. , extLamSys :: !(Maybe System) } deriving (Data, Show) modifySystem :: (System -> System) -> ExtLamInfo -> ExtLamInfo modifySystem f e = let !e' = e { extLamSys = f <$> extLamSys e } in e' -- | Additional information for projection 'Function's. data Projection = Projection { projProper :: Maybe QName -- ^ @Nothing@ if only projection-like, @Just r@ if record projection. -- The @r@ is the name of the record type projected from. -- This field is updated by module application. , projOrig :: QName -- ^ The original projection name -- (current name could be from module application). , projFromType :: Arg QName -- ^ Type projected from. Original record type if @projProper = Just{}@. -- Also stores @ArgInfo@ of the principal argument. -- This field is unchanged by module application. , projIndex :: Int -- ^ Index of the record argument. -- Start counting with 1, because 0 means that -- it is already applied to the record value. -- This can happen in module instantiation, but -- then either the record value is @var 0@, or @funProjection == Nothing@. , projLams :: ProjLams -- ^ Term @t@ to be be applied to record parameters and record value. -- The parameters will be dropped. -- In case of a proper projection, a postfix projection application -- will be created: @t = \ pars r -> r .p@ -- (Invariant: the number of abstractions equals 'projIndex'.) -- In case of a projection-like function, just the function symbol -- is returned as 'Def': @t = \ pars -> f@. } deriving (Data, Show) -- | Abstractions to build projection function (dropping parameters). newtype ProjLams = ProjLams { getProjLams :: [Arg ArgName] } deriving (Data, Show, Null) -- | Building the projection function (which drops the parameters). projDropPars :: Projection -> ProjOrigin -> Term -- Proper projections: projDropPars (Projection Just{} d _ _ lams) o = case initLast $ getProjLams lams of Nothing -> Def d [] Just (pars, Arg i y) -> let core = Lam i $ Abs y $ Var 0 [Proj o d] in List.foldr (\ (Arg ai x) -> Lam ai . NoAbs x) core pars -- Projection-like functions: projDropPars (Projection Nothing _ _ _ lams) o | null lams = __IMPOSSIBLE__ projDropPars (Projection Nothing d _ _ lams) o = List.foldr (\ (Arg ai x) -> Lam ai . NoAbs x) (Def d []) $ init $ getProjLams lams -- | The info of the principal (record) argument. projArgInfo :: Projection -> ArgInfo projArgInfo (Projection _ _ _ _ lams) = maybe __IMPOSSIBLE__ getArgInfo $ lastMaybe $ getProjLams lams -- | Should a record type admit eta-equality? data EtaEquality = Specified { theEtaEquality :: !HasEta } -- ^ User specifed 'eta-equality' or 'no-eta-equality'. | Inferred { theEtaEquality :: !HasEta } -- ^ Positivity checker inferred whether eta is safe. deriving (Data, Show, Eq) -- | Make sure we do not overwrite a user specification. setEtaEquality :: EtaEquality -> HasEta -> EtaEquality setEtaEquality e@Specified{} _ = e setEtaEquality _ b = Inferred b data FunctionFlag = FunStatic -- ^ Should calls to this function be normalised at compile-time? | FunInline -- ^ Should calls to this function be inlined by the compiler? | FunMacro -- ^ Is this function a macro? deriving (Data, Eq, Ord, Enum, Show) data CompKit = CompKit { nameOfHComp :: Maybe QName , nameOfTransp :: Maybe QName } deriving (Data, Eq, Ord, Show) emptyCompKit :: CompKit emptyCompKit = CompKit Nothing Nothing data Defn = Axiom -- ^ Postulate | DataOrRecSig { datarecPars :: Int } -- ^ Data or record type signature that doesn't yet have a definition | GeneralizableVar -- ^ Generalizable variable (introduced in `generalize` block) | AbstractDefn Defn -- ^ Returned by 'getConstInfo' if definition is abstract. | Function { funClauses :: [Clause] , funCompiled :: Maybe CompiledClauses -- ^ 'Nothing' while function is still type-checked. -- @Just cc@ after type and coverage checking and -- translation to case trees. , funSplitTree :: Maybe SplitTree -- ^ The split tree constructed by the coverage -- checker. Needed to re-compile the clauses after -- forcing translation. , funTreeless :: Maybe Compiled -- ^ Intermediate representation for compiler backends. , funCovering :: [Closure Clause] -- ^ Covering clauses computed by coverage checking. -- Erased by (IApply) confluence checking(?) , funInv :: FunctionInverse , funMutual :: Maybe [QName] -- ^ Mutually recursive functions, @data@s and @record@s. -- Does include this function. -- Empty list if not recursive. -- @Nothing@ if not yet computed (by positivity checker). , funAbstr :: IsAbstract , funDelayed :: Delayed -- ^ Are the clauses of this definition delayed? , funProjection :: Maybe Projection -- ^ Is it a record projection? -- If yes, then return the name of the record type and index of -- the record argument. Start counting with 1, because 0 means that -- it is already applied to the record. (Can happen in module -- instantiation.) This information is used in the termination -- checker. , funFlags :: Set FunctionFlag , funTerminates :: Maybe Bool -- ^ Has this function been termination checked? Did it pass? , funExtLam :: Maybe ExtLamInfo -- ^ Is this function generated from an extended lambda? -- If yes, then return the number of hidden and non-hidden lambda-lifted arguments , funWith :: Maybe QName -- ^ Is this a generated with-function? If yes, then what's the -- name of the parent function. , funCopatternLHS :: Bool -- ^ Is this a function defined by copatterns? } | Datatype { dataPars :: Nat -- ^ Number of parameters. , dataIxs :: Nat -- ^ Number of indices. , dataInduction :: Induction -- ^ @data@ or @codata@ (legacy). , dataClause :: (Maybe Clause) -- ^ This might be in an instantiated module. , dataCons :: [QName] -- ^ Constructor names , ordered according to the order of their definition. , dataSort :: Sort , dataMutual :: Maybe [QName] -- ^ Mutually recursive functions, @data@s and @record@s. -- Does include this data type. -- Empty if not recursive. -- @Nothing@ if not yet computed (by positivity checker). , dataAbstr :: IsAbstract , dataPathCons :: [QName] -- ^ Path constructor names (subset of dataCons) } | Record { recPars :: Nat -- ^ Number of parameters. , recClause :: Maybe Clause -- ^ Was this record type created by a module application? -- If yes, the clause is its definition (linking back to the original record type). , recConHead :: ConHead -- ^ Constructor name and fields. , recNamedCon :: Bool -- ^ Does this record have a @constructor@? , recFields :: [Arg QName] -- ^ The record field names. , recTel :: Telescope -- ^ The record field telescope. (Includes record parameters.) -- Note: @TelV recTel _ == telView' recConType@. -- Thus, @recTel@ is redundant. , recMutual :: Maybe [QName] -- ^ Mutually recursive functions, @data@s and @record@s. -- Does include this record. -- Empty if not recursive. -- @Nothing@ if not yet computed (by positivity checker). , recEtaEquality' :: EtaEquality -- ^ Eta-expand at this record type? -- @False@ for unguarded recursive records and coinductive records -- unless the user specifies otherwise. , recInduction :: Maybe Induction -- ^ 'Inductive' or 'CoInductive'? Matters only for recursive records. -- 'Nothing' means that the user did not specify it, which is an error -- for recursive records. , recAbstr :: IsAbstract , recComp :: CompKit } | Constructor { conPars :: Int -- ^ Number of parameters. , conArity :: Int -- ^ Number of arguments (excluding parameters). , conSrcCon :: ConHead -- ^ Name of (original) constructor and fields. (This might be in a module instance.) , conData :: QName -- ^ Name of datatype or record type. , conAbstr :: IsAbstract , conInd :: Induction -- ^ Inductive or coinductive? , conComp :: (CompKit, Maybe [QName]) -- ^ (cubical composition, projections) , conForced :: [IsForced] -- ^ Which arguments are forced (i.e. determined by the type of the constructor)? , conErased :: [Bool] -- ^ Which arguments are erased at runtime (computed during compilation to treeless) } | Primitive { primAbstr :: IsAbstract , primName :: String , primClauses :: [Clause] -- ^ 'null' for primitive functions, @not null@ for builtin functions. , primInv :: FunctionInverse -- ^ Builtin functions can have inverses. For instance, natural number addition. , primCompiled :: Maybe CompiledClauses -- ^ 'Nothing' for primitive functions, -- @'Just' something@ for builtin functions. } -- ^ Primitive or builtin functions. deriving (Data, Show) instance Pretty Definition where pretty Defn{..} = "Defn {" vcat [ "defArgInfo =" pshow defArgInfo , "defName =" pretty defName , "defType =" pretty defType , "defPolarity =" pshow defPolarity , "defArgOccurrences =" pshow defArgOccurrences , "defGeneralizedParams =" pshow defGeneralizedParams , "defDisplay =" pshow defDisplay -- TODO: pretty DisplayForm , "defMutual =" pshow defMutual , "defCompiledRep =" pshow defCompiledRep , "defInstance =" pshow defInstance , "defCopy =" pshow defCopy , "defMatchable =" pshow defMatchable , "defInjective =" pshow defInjective , "theDef =" pretty theDef ] <+> "}" instance Pretty Defn where pretty Axiom = "Axiom" pretty (DataOrRecSig n) = "DataOrRecSig" <+> pretty n pretty GeneralizableVar{} = "GeneralizableVar" pretty (AbstractDefn def) = "AbstractDefn" parens (pretty def) pretty Function{..} = "Function {" vcat [ "funClauses =" vcat (map pretty funClauses) , "funCompiled =" pshow funCompiled , "funSplitTree =" pshow funSplitTree , "funTreeless =" pshow funTreeless , "funInv =" pshow funInv , "funMutual =" pshow funMutual , "funAbstr =" pshow funAbstr , "funDelayed =" pshow funDelayed , "funProjection =" pshow funProjection , "funFlags =" pshow funFlags , "funTerminates =" pshow funTerminates , "funWith =" pshow funWith , "funCopatternLHS =" pshow funCopatternLHS ] "}" pretty Datatype{..} = "Datatype {" vcat [ "dataPars =" pshow dataPars , "dataIxs =" pshow dataIxs , "dataInduction =" pshow dataInduction , "dataClause =" pretty dataClause , "dataCons =" pshow dataCons , "dataSort =" pretty dataSort , "dataMutual =" pshow dataMutual , "dataAbstr =" pshow dataAbstr ] "}" pretty Record{..} = "Record {" vcat [ "recPars =" pshow recPars , "recClause =" pretty recClause , "recConHead =" pshow recConHead , "recNamedCon =" pshow recNamedCon , "recFields =" pshow recFields , "recTel =" pretty recTel , "recMutual =" pshow recMutual , "recEtaEquality' =" pshow recEtaEquality' , "recInduction =" pshow recInduction , "recAbstr =" pshow recAbstr ] "}" pretty Constructor{..} = "Constructor {" vcat [ "conPars =" pshow conPars , "conArity =" pshow conArity , "conSrcCon =" pshow conSrcCon , "conData =" pshow conData , "conAbstr =" pshow conAbstr , "conInd =" pshow conInd , "conErased =" pshow conErased ] "}" pretty Primitive{..} = "Primitive {" vcat [ "primAbstr =" pshow primAbstr , "primName =" pshow primName , "primClauses =" pshow primClauses , "primCompiled =" pshow primCompiled ] "}" -- | Is the record type recursive? recRecursive :: Defn -> Bool recRecursive (Record { recMutual = Just qs }) = not $ null qs recRecursive _ = __IMPOSSIBLE__ recEtaEquality :: Defn -> HasEta recEtaEquality = theEtaEquality . recEtaEquality' -- | A template for creating 'Function' definitions, with sensible defaults. emptyFunction :: Defn emptyFunction = Function { funClauses = [] , funCompiled = Nothing , funSplitTree = Nothing , funTreeless = Nothing , funInv = NotInjective , funMutual = Nothing , funAbstr = ConcreteDef , funDelayed = NotDelayed , funProjection = Nothing , funFlags = Set.empty , funTerminates = Nothing , funExtLam = Nothing , funWith = Nothing , funCopatternLHS = False , funCovering = [] } funFlag :: FunctionFlag -> Lens' Bool Defn funFlag flag f def@Function{ funFlags = flags } = f (Set.member flag flags) <&> \ b -> def{ funFlags = (if b then Set.insert else Set.delete) flag flags } funFlag _ f def = f False <&> const def funStatic, funInline, funMacro :: Lens' Bool Defn funStatic = funFlag FunStatic funInline = funFlag FunInline funMacro = funFlag FunMacro isMacro :: Defn -> Bool isMacro = (^. funMacro) -- | Checking whether we are dealing with a function yet to be defined. isEmptyFunction :: Defn -> Bool isEmptyFunction def = case def of Function { funClauses = [] } -> True _ -> False isCopatternLHS :: [Clause] -> Bool isCopatternLHS = List.any (List.any (isJust . A.isProjP) . namedClausePats) recCon :: Defn -> QName recCon Record{ recConHead } = conName recConHead recCon _ = __IMPOSSIBLE__ defIsRecord :: Defn -> Bool defIsRecord Record{} = True defIsRecord _ = False defIsDataOrRecord :: Defn -> Bool defIsDataOrRecord Record{} = True defIsDataOrRecord Datatype{} = True defIsDataOrRecord _ = False defConstructors :: Defn -> [QName] defConstructors Datatype{dataCons = cs} = cs defConstructors Record{recConHead = c} = [conName c] defConstructors _ = __IMPOSSIBLE__ newtype Fields = Fields [(C.Name, Type)] deriving Null -- | Did we encounter a simplifying reduction? -- In terms of CIC, that would be a iota-reduction. -- In terms of Agda, this is a constructor or literal -- pattern that matched. -- Just beta-reduction (substitution) or delta-reduction -- (unfolding of definitions) does not count as simplifying? data Simplification = YesSimplification | NoSimplification deriving (Data, Eq, Show) instance Null Simplification where empty = NoSimplification null = (== NoSimplification) instance Semigroup Simplification where YesSimplification <> _ = YesSimplification NoSimplification <> s = s instance Monoid Simplification where mempty = NoSimplification mappend = (<>) data Reduced no yes = NoReduction no | YesReduction Simplification yes deriving Functor -- | Three cases: 1. not reduced, 2. reduced, but blocked, 3. reduced, not blocked. data IsReduced = NotReduced | Reduced (Blocked ()) data MaybeReduced a = MaybeRed { isReduced :: IsReduced , ignoreReduced :: a } deriving (Functor) instance IsProjElim e => IsProjElim (MaybeReduced e) where isProjElim = isProjElim . ignoreReduced type MaybeReducedArgs = [MaybeReduced (Arg Term)] type MaybeReducedElims = [MaybeReduced Elim] notReduced :: a -> MaybeReduced a notReduced x = MaybeRed NotReduced x reduced :: Blocked (Arg Term) -> MaybeReduced (Arg Term) reduced b = case b of NotBlocked _ (Arg _ (MetaV x _)) -> MaybeRed (Reduced $ Blocked x ()) v _ -> MaybeRed (Reduced $ () <$ b) v where v = ignoreBlocking b -- | Controlling 'reduce'. data AllowedReduction = ProjectionReductions -- ^ (Projection and) projection-like functions may be reduced. | InlineReductions -- ^ Functions marked INLINE may be reduced. | CopatternReductions -- ^ Copattern definitions may be reduced. | FunctionReductions -- ^ Non-recursive functions and primitives may be reduced. | RecursiveReductions -- ^ Even recursive functions may be reduced. | LevelReductions -- ^ Reduce @'Level'@ terms. | UnconfirmedReductions -- ^ Functions whose termination has not (yet) been confirmed. | NonTerminatingReductions -- ^ Functions that have failed termination checking. deriving (Show, Eq, Ord, Enum, Bounded, Data) type AllowedReductions = [AllowedReduction] -- | Not quite all reductions (skip non-terminating reductions) allReductions :: AllowedReductions allReductions = [minBound..pred maxBound] data PrimFun = PrimFun { primFunName :: QName , primFunArity :: Arity , primFunImplementation :: [Arg Term] -> Int -> ReduceM (Reduced MaybeReducedArgs Term) } primFun :: QName -> Arity -> ([Arg Term] -> ReduceM (Reduced MaybeReducedArgs Term)) -> PrimFun primFun q ar imp = PrimFun q ar (\ args _ -> imp args) defClauses :: Definition -> [Clause] defClauses Defn{theDef = Function{funClauses = cs}} = cs defClauses Defn{theDef = Primitive{primClauses = cs}} = cs defClauses Defn{theDef = Datatype{dataClause = Just c}} = [c] defClauses Defn{theDef = Record{recClause = Just c}} = [c] defClauses _ = [] defCompiled :: Definition -> Maybe CompiledClauses defCompiled Defn{theDef = Function {funCompiled = mcc}} = mcc defCompiled Defn{theDef = Primitive{primCompiled = mcc}} = mcc defCompiled _ = Nothing defParameters :: Definition -> Maybe Nat defParameters Defn{theDef = Datatype{dataPars = n}} = Just n defParameters Defn{theDef = Record {recPars = n}} = Just n defParameters _ = Nothing defInverse :: Definition -> FunctionInverse defInverse Defn{theDef = Function { funInv = inv }} = inv defInverse Defn{theDef = Primitive{ primInv = inv }} = inv defInverse _ = NotInjective defCompilerPragmas :: BackendName -> Definition -> [CompilerPragma] defCompilerPragmas b = reverse . fromMaybe [] . Map.lookup b . defCompiledRep -- reversed because we add new pragmas to the front of the list -- | Are the clauses of this definition delayed? defDelayed :: Definition -> Delayed defDelayed Defn{theDef = Function{funDelayed = d}} = d defDelayed _ = NotDelayed -- | Has the definition failed the termination checker? defNonterminating :: Definition -> Bool defNonterminating Defn{theDef = Function{funTerminates = Just False}} = True defNonterminating _ = False -- | Has the definition not termination checked or did the check fail? defTerminationUnconfirmed :: Definition -> Bool defTerminationUnconfirmed Defn{theDef = Function{funTerminates = Just True}} = False defTerminationUnconfirmed Defn{theDef = Function{funTerminates = _ }} = True defTerminationUnconfirmed _ = False defAbstract :: Definition -> IsAbstract defAbstract d = case theDef d of Axiom{} -> ConcreteDef DataOrRecSig{} -> ConcreteDef GeneralizableVar{} -> ConcreteDef AbstractDefn{} -> AbstractDef Function{funAbstr = a} -> a Datatype{dataAbstr = a} -> a Record{recAbstr = a} -> a Constructor{conAbstr = a} -> a Primitive{primAbstr = a} -> a defForced :: Definition -> [IsForced] defForced d = case theDef d of Constructor{conForced = fs} -> fs Axiom{} -> [] DataOrRecSig{} -> [] GeneralizableVar{} -> [] AbstractDefn{} -> [] Function{} -> [] Datatype{} -> [] Record{} -> [] Primitive{} -> [] --------------------------------------------------------------------------- -- ** Injectivity --------------------------------------------------------------------------- type FunctionInverse = FunctionInverse' Clause type InversionMap c = Map TermHead [c] data FunctionInverse' c = NotInjective | Inverse (InversionMap c) deriving (Data, Show, Functor) data TermHead = SortHead | PiHead | ConsHead QName | VarHead Nat | UnknownHead deriving (Data, Eq, Ord, Show) instance Pretty TermHead where pretty = \ case SortHead -> "SortHead" PiHead -> "PiHead" ConsHead q -> "ConsHead" <+> pretty q VarHead i -> text ("VarHead " ++ show i) UnknownHead -> "UnknownHead" --------------------------------------------------------------------------- -- ** Mutual blocks --------------------------------------------------------------------------- newtype MutualId = MutId Int32 deriving (Data, Eq, Ord, Show, Num, Enum) --------------------------------------------------------------------------- -- ** Statistics --------------------------------------------------------------------------- type Statistics = Map String Integer --------------------------------------------------------------------------- -- ** Trace --------------------------------------------------------------------------- data Call = CheckClause Type A.SpineClause | CheckPattern A.Pattern Telescope Type | CheckLetBinding A.LetBinding | InferExpr A.Expr | CheckExprCall Comparison A.Expr Type | CheckDotPattern A.Expr Term | CheckPatternShadowing A.SpineClause | CheckProjection Range QName Type | IsTypeCall A.Expr Sort | IsType_ A.Expr | InferVar Name | InferDef QName | CheckArguments Range [NamedArg A.Expr] Type (Maybe Type) | CheckTargetType Range Type Type | CheckDataDef Range QName [A.LamBinding] [A.Constructor] | CheckRecDef Range QName [A.LamBinding] [A.Constructor] | CheckConstructor QName Telescope Sort A.Constructor | CheckConstructorFitsIn QName Type Sort | CheckFunDefCall Range QName [A.Clause] | CheckPragma Range A.Pragma | CheckPrimitive Range QName A.Expr | CheckIsEmpty Range Type | CheckWithFunctionType Type | CheckSectionApplication Range ModuleName A.ModuleApplication | CheckNamedWhere ModuleName | ScopeCheckExpr C.Expr | ScopeCheckDeclaration NiceDeclaration | ScopeCheckLHS C.QName C.Pattern | NoHighlighting | ModuleContents -- ^ Interaction command: show module contents. | SetRange Range -- ^ used by 'setCurrentRange' deriving Data instance Pretty Call where pretty CheckClause{} = "CheckClause" pretty CheckPattern{} = "CheckPattern" pretty InferExpr{} = "InferExpr" pretty CheckExprCall{} = "CheckExprCall" pretty CheckLetBinding{} = "CheckLetBinding" pretty CheckProjection{} = "CheckProjection" pretty IsTypeCall{} = "IsTypeCall" pretty IsType_{} = "IsType_" pretty InferVar{} = "InferVar" pretty InferDef{} = "InferDef" pretty CheckArguments{} = "CheckArguments" pretty CheckTargetType{} = "CheckTargetType" pretty CheckDataDef{} = "CheckDataDef" pretty CheckRecDef{} = "CheckRecDef" pretty CheckConstructor{} = "CheckConstructor" pretty CheckConstructorFitsIn{} = "CheckConstructorFitsIn" pretty CheckFunDefCall{} = "CheckFunDefCall" pretty CheckPragma{} = "CheckPragma" pretty CheckPrimitive{} = "CheckPrimitive" pretty CheckWithFunctionType{} = "CheckWithFunctionType" pretty CheckNamedWhere{} = "CheckNamedWhere" pretty ScopeCheckExpr{} = "ScopeCheckExpr" pretty ScopeCheckDeclaration{} = "ScopeCheckDeclaration" pretty ScopeCheckLHS{} = "ScopeCheckLHS" pretty CheckDotPattern{} = "CheckDotPattern" pretty CheckPatternShadowing{} = "CheckPatternShadowing" pretty SetRange{} = "SetRange" pretty CheckSectionApplication{} = "CheckSectionApplication" pretty CheckIsEmpty{} = "CheckIsEmpty" pretty NoHighlighting{} = "NoHighlighting" pretty ModuleContents{} = "ModuleContents" instance HasRange Call where getRange (CheckClause _ c) = getRange c getRange (CheckPattern p _ _) = getRange p getRange (InferExpr e) = getRange e getRange (CheckExprCall _ e _) = getRange e getRange (CheckLetBinding b) = getRange b getRange (CheckProjection r _ _) = r getRange (IsTypeCall e s) = getRange e getRange (IsType_ e) = getRange e getRange (InferVar x) = getRange x getRange (InferDef f) = getRange f getRange (CheckArguments r _ _ _) = r getRange (CheckTargetType r _ _) = r getRange (CheckDataDef i _ _ _) = getRange i getRange (CheckRecDef i _ _ _) = getRange i getRange (CheckConstructor _ _ _ c) = getRange c getRange (CheckConstructorFitsIn c _ _) = getRange c getRange (CheckFunDefCall i _ _) = getRange i getRange (CheckPragma r _) = r getRange (CheckPrimitive i _ _) = getRange i getRange CheckWithFunctionType{} = noRange getRange (CheckNamedWhere m) = getRange m getRange (ScopeCheckExpr e) = getRange e getRange (ScopeCheckDeclaration d) = getRange d getRange (ScopeCheckLHS _ p) = getRange p getRange (CheckDotPattern e _) = getRange e getRange (CheckPatternShadowing c) = getRange c getRange (SetRange r) = r getRange (CheckSectionApplication r _ _) = r getRange (CheckIsEmpty r _) = r getRange NoHighlighting = noRange getRange ModuleContents = noRange --------------------------------------------------------------------------- -- ** Instance table --------------------------------------------------------------------------- -- | The instance table is a @Map@ associating to every name of -- record/data type/postulate its list of instances type InstanceTable = Map QName (Set QName) -- | When typechecking something of the following form: -- -- instance -- x : _ -- x = y -- -- it's not yet known where to add @x@, so we add it to a list of -- unresolved instances and we'll deal with it later. type TempInstanceTable = (InstanceTable , Set QName) --------------------------------------------------------------------------- -- ** Builtin things --------------------------------------------------------------------------- data BuiltinDescriptor = BuiltinData (TCM Type) [String] | BuiltinDataCons (TCM Type) | BuiltinPrim String (Term -> TCM ()) | BuiltinPostulate Relevance (TCM Type) | BuiltinUnknown (Maybe (TCM Type)) (Term -> Type -> TCM ()) -- ^ Builtin of any kind. -- Type can be checked (@Just t@) or inferred (@Nothing@). -- The second argument is the hook for the verification function. data BuiltinInfo = BuiltinInfo { builtinName :: String , builtinDesc :: BuiltinDescriptor } type BuiltinThings pf = Map String (Builtin pf) data Builtin pf = Builtin Term | Prim pf deriving (Show, Functor, Foldable, Traversable) --------------------------------------------------------------------------- -- * Highlighting levels --------------------------------------------------------------------------- -- | How much highlighting should be sent to the user interface? data HighlightingLevel = None | NonInteractive | Interactive -- ^ This includes both non-interactive highlighting and -- interactive highlighting of the expression that is currently -- being type-checked. deriving (Eq, Ord, Show, Read, Data) -- | How should highlighting be sent to the user interface? data HighlightingMethod = Direct -- ^ Via stdout. | Indirect -- ^ Both via files and via stdout. deriving (Eq, Show, Read, Data) -- | @ifTopLevelAndHighlightingLevelIs l b m@ runs @m@ when we're -- type-checking the top-level module and either the highlighting -- level is /at least/ @l@ or @b@ is 'True'. ifTopLevelAndHighlightingLevelIsOr :: MonadTCM tcm => HighlightingLevel -> Bool -> tcm () -> tcm () ifTopLevelAndHighlightingLevelIsOr l b m = do e <- askTC when (envModuleNestingLevel e == 0 && (envHighlightingLevel e >= l || b)) m -- | @ifTopLevelAndHighlightingLevelIs l m@ runs @m@ when we're -- type-checking the top-level module and the highlighting level is -- /at least/ @l@. ifTopLevelAndHighlightingLevelIs :: MonadTCM tcm => HighlightingLevel -> tcm () -> tcm () ifTopLevelAndHighlightingLevelIs l = ifTopLevelAndHighlightingLevelIsOr l False --------------------------------------------------------------------------- -- * Type checking environment --------------------------------------------------------------------------- data TCEnv = TCEnv { envContext :: Context , envLetBindings :: LetBindings , envCurrentModule :: ModuleName , envCurrentPath :: Maybe AbsolutePath -- ^ The path to the file that is currently being -- type-checked. 'Nothing' if we do not have a file -- (like in interactive mode see @CommandLine@). , envAnonymousModules :: [(ModuleName, Nat)] -- ^ anonymous modules and their number of free variables , envImportPath :: [C.TopLevelModuleName] -- ^ to detect import cycles , envMutualBlock :: Maybe MutualId -- ^ the current (if any) mutual block , envTerminationCheck :: TerminationCheck () -- ^ are we inside the scope of a termination pragma , envSolvingConstraints :: Bool -- ^ Are we currently in the process of solving active constraints? , envCheckingWhere :: Bool -- ^ Have we stepped into the where-declarations of a clause? -- Everything under a @where@ will be checked with this flag on. , envWorkingOnTypes :: Bool -- ^ Are we working on types? Turned on by 'workOnTypes'. , envAssignMetas :: Bool -- ^ Are we allowed to assign metas? , envActiveProblems :: Set ProblemId , envAbstractMode :: AbstractMode -- ^ When checking the typesignature of a public definition -- or the body of a non-abstract definition this is true. -- To prevent information about abstract things leaking -- outside the module. , envModality :: Modality -- ^ 'Relevance' component: -- Are we checking an irrelevant argument? (=@Irrelevant@) -- Then top-level irrelevant declarations are enabled. -- Other value: @Relevant@, then only relevant decls. are available. -- -- 'Quantity' component: -- Are we checking a runtime-irrelevant thing? (='Quantity0') -- Then runtime-irrelevant things are usable. -- Other value: @Quantity1@, runtime relevant. -- @Quantityω@ is not allowed here, see Bob Atkey, LiCS 2018. , envDisplayFormsEnabled :: Bool -- ^ Sometimes we want to disable display forms. , envRange :: Range , envHighlightingRange :: Range -- ^ Interactive highlighting uses this range rather -- than 'envRange'. , envClause :: IPClause -- ^ What is the current clause we are type-checking? -- Will be recorded in interaction points in this clause. , envCall :: Maybe (Closure Call) -- ^ what we're doing at the moment , envHighlightingLevel :: HighlightingLevel -- ^ Set to 'None' when imported modules are -- type-checked. , envHighlightingMethod :: HighlightingMethod , envModuleNestingLevel :: !Int -- ^ This number indicates how far away from the -- top-level module Agda has come when chasing -- modules. The level of a given module is not -- necessarily the same as the length, in the module -- dependency graph, of the shortest path from the -- top-level module; it depends on in which order -- Agda chooses to chase dependencies. , envExpandLast :: ExpandHidden -- ^ When type-checking an alias f=e, we do not want -- to insert hidden arguments in the end, because -- these will become unsolved metas. , envAppDef :: Maybe QName -- ^ We are reducing an application of this function. -- (For debugging of incomplete matches only.) , envSimplification :: Simplification -- ^ Did we encounter a simplification (proper match) -- during the current reduction process? , envAllowedReductions :: AllowedReductions , envInjectivityDepth :: Int -- ^ Injectivity can cause non-termination for unsolvable contraints -- (#431, #3067). Keep a limit on the nesting depth of injectivity -- uses. , envCompareBlocked :: Bool -- ^ Can we compare blocked things during conversion? -- No by default. -- Yes for rewriting feature. , envPrintDomainFreePi :: Bool -- ^ When @True@, types will be omitted from printed pi types if they -- can be inferred. , envPrintMetasBare :: Bool -- ^ When @True@, throw away meta numbers and meta elims. -- This is used for reifying terms for feeding into the -- user's source code, e.g., for the interaction tactics @solveAll@. , envInsideDotPattern :: Bool -- ^ Used by the scope checker to make sure that certain forms -- of expressions are not used inside dot patterns: extended -- lambdas and let-expressions. , envUnquoteFlags :: UnquoteFlags , envInstanceDepth :: !Int -- ^ Until we get a termination checker for instance search (#1743) we -- limit the search depth to ensure termination. , envIsDebugPrinting :: Bool , envPrintingPatternLambdas :: [QName] -- ^ #3004: pattern lambdas with copatterns may refer to themselves. We -- don't have a good story for what to do in this case, but at least -- printing shouldn't loop. Here we keep track of which pattern lambdas -- we are currently in the process of printing. , envCallByNeed :: Bool -- ^ Use call-by-need evaluation for reductions. , envCurrentCheckpoint :: CheckpointId -- ^ Checkpoints track the evolution of the context as we go -- under binders or refine it by pattern matching. , envCheckpoints :: Map CheckpointId Substitution -- ^ Keeps the substitution from each previous checkpoint to -- the current context. , envGeneralizeMetas :: DoGeneralize -- ^ Should new metas generalized over. , envGeneralizedVars :: Map QName GeneralizedValue -- ^ Values for used generalizable variables. , envCheckOptionConsistency :: Bool -- ^ Do we check that options in imported files are -- consistent with each other? } deriving Data initEnv :: TCEnv initEnv = TCEnv { envContext = [] , envLetBindings = Map.empty , envCurrentModule = noModuleName , envCurrentPath = Nothing , envAnonymousModules = [] , envImportPath = [] , envMutualBlock = Nothing , envTerminationCheck = TerminationCheck , envSolvingConstraints = False , envCheckingWhere = False , envActiveProblems = Set.empty , envWorkingOnTypes = False , envAssignMetas = True , envAbstractMode = ConcreteMode -- Andreas, 2013-02-21: This was 'AbstractMode' until now. -- However, top-level checks for mutual blocks, such as -- constructor-headedness, should not be able to look into -- abstract definitions unless abstract themselves. -- (See also discussion on issue 796.) -- The initial mode should be 'ConcreteMode', ensuring you -- can only look into abstract things in an abstract -- definition (which sets 'AbstractMode'). , envModality = Modality Relevant Quantity1 , envDisplayFormsEnabled = True , envRange = noRange , envHighlightingRange = noRange , envClause = IPNoClause , envCall = Nothing , envHighlightingLevel = None , envHighlightingMethod = Indirect , envModuleNestingLevel = -1 , envExpandLast = ExpandLast , envAppDef = Nothing , envSimplification = NoSimplification , envAllowedReductions = allReductions , envInjectivityDepth = 0 , envCompareBlocked = False , envPrintDomainFreePi = False , envPrintMetasBare = False , envInsideDotPattern = False , envUnquoteFlags = defaultUnquoteFlags , envInstanceDepth = 0 , envIsDebugPrinting = False , envPrintingPatternLambdas = [] , envCallByNeed = True , envCurrentCheckpoint = 0 , envCheckpoints = Map.singleton 0 IdS , envGeneralizeMetas = NoGeneralize , envGeneralizedVars = Map.empty , envCheckOptionConsistency = True } -- | Project 'Relevance' component of 'TCEnv'. envRelevance :: TCEnv -> Relevance envRelevance = modRelevance . envModality data UnquoteFlags = UnquoteFlags { _unquoteNormalise :: Bool } deriving Data defaultUnquoteFlags :: UnquoteFlags defaultUnquoteFlags = UnquoteFlags { _unquoteNormalise = False } unquoteNormalise :: Lens' Bool UnquoteFlags unquoteNormalise f e = f (_unquoteNormalise e) <&> \ x -> e { _unquoteNormalise = x } eUnquoteNormalise :: Lens' Bool TCEnv eUnquoteNormalise = eUnquoteFlags . unquoteNormalise -- * e-prefixed lenses ------------------------------------------------------------------------ eContext :: Lens' Context TCEnv eContext f e = f (envContext e) <&> \ x -> e { envContext = x } eLetBindings :: Lens' LetBindings TCEnv eLetBindings f e = f (envLetBindings e) <&> \ x -> e { envLetBindings = x } eCurrentModule :: Lens' ModuleName TCEnv eCurrentModule f e = f (envCurrentModule e) <&> \ x -> e { envCurrentModule = x } eCurrentPath :: Lens' (Maybe AbsolutePath) TCEnv eCurrentPath f e = f (envCurrentPath e) <&> \ x -> e { envCurrentPath = x } eAnonymousModules :: Lens' [(ModuleName, Nat)] TCEnv eAnonymousModules f e = f (envAnonymousModules e) <&> \ x -> e { envAnonymousModules = x } eImportPath :: Lens' [C.TopLevelModuleName] TCEnv eImportPath f e = f (envImportPath e) <&> \ x -> e { envImportPath = x } eMutualBlock :: Lens' (Maybe MutualId) TCEnv eMutualBlock f e = f (envMutualBlock e) <&> \ x -> e { envMutualBlock = x } eTerminationCheck :: Lens' (TerminationCheck ()) TCEnv eTerminationCheck f e = f (envTerminationCheck e) <&> \ x -> e { envTerminationCheck = x } eSolvingConstraints :: Lens' Bool TCEnv eSolvingConstraints f e = f (envSolvingConstraints e) <&> \ x -> e { envSolvingConstraints = x } eCheckingWhere :: Lens' Bool TCEnv eCheckingWhere f e = f (envCheckingWhere e) <&> \ x -> e { envCheckingWhere = x } eWorkingOnTypes :: Lens' Bool TCEnv eWorkingOnTypes f e = f (envWorkingOnTypes e) <&> \ x -> e { envWorkingOnTypes = x } eAssignMetas :: Lens' Bool TCEnv eAssignMetas f e = f (envAssignMetas e) <&> \ x -> e { envAssignMetas = x } eActiveProblems :: Lens' (Set ProblemId) TCEnv eActiveProblems f e = f (envActiveProblems e) <&> \ x -> e { envActiveProblems = x } eAbstractMode :: Lens' AbstractMode TCEnv eAbstractMode f e = f (envAbstractMode e) <&> \ x -> e { envAbstractMode = x } eModality :: Lens' Modality TCEnv eModality f e = f (envModality e) <&> \ x -> e { envModality = x } eRelevance :: Lens' Relevance TCEnv eRelevance = eModality . lModRelevance eQuantity :: Lens' Quantity TCEnv eQuantity = eModality . lModQuantity eDisplayFormsEnabled :: Lens' Bool TCEnv eDisplayFormsEnabled f e = f (envDisplayFormsEnabled e) <&> \ x -> e { envDisplayFormsEnabled = x } eRange :: Lens' Range TCEnv eRange f e = f (envRange e) <&> \ x -> e { envRange = x } eHighlightingRange :: Lens' Range TCEnv eHighlightingRange f e = f (envHighlightingRange e) <&> \ x -> e { envHighlightingRange = x } eCall :: Lens' (Maybe (Closure Call)) TCEnv eCall f e = f (envCall e) <&> \ x -> e { envCall = x } eHighlightingLevel :: Lens' HighlightingLevel TCEnv eHighlightingLevel f e = f (envHighlightingLevel e) <&> \ x -> e { envHighlightingLevel = x } eHighlightingMethod :: Lens' HighlightingMethod TCEnv eHighlightingMethod f e = f (envHighlightingMethod e) <&> \ x -> e { envHighlightingMethod = x } eModuleNestingLevel :: Lens' Int TCEnv eModuleNestingLevel f e = f (envModuleNestingLevel e) <&> \ x -> e { envModuleNestingLevel = x } eExpandLast :: Lens' ExpandHidden TCEnv eExpandLast f e = f (envExpandLast e) <&> \ x -> e { envExpandLast = x } eAppDef :: Lens' (Maybe QName) TCEnv eAppDef f e = f (envAppDef e) <&> \ x -> e { envAppDef = x } eSimplification :: Lens' Simplification TCEnv eSimplification f e = f (envSimplification e) <&> \ x -> e { envSimplification = x } eAllowedReductions :: Lens' AllowedReductions TCEnv eAllowedReductions f e = f (envAllowedReductions e) <&> \ x -> e { envAllowedReductions = x } eInjectivityDepth :: Lens' Int TCEnv eInjectivityDepth f e = f (envInjectivityDepth e) <&> \ x -> e { envInjectivityDepth = x } eCompareBlocked :: Lens' Bool TCEnv eCompareBlocked f e = f (envCompareBlocked e) <&> \ x -> e { envCompareBlocked = x } ePrintDomainFreePi :: Lens' Bool TCEnv ePrintDomainFreePi f e = f (envPrintDomainFreePi e) <&> \ x -> e { envPrintDomainFreePi = x } eInsideDotPattern :: Lens' Bool TCEnv eInsideDotPattern f e = f (envInsideDotPattern e) <&> \ x -> e { envInsideDotPattern = x } eUnquoteFlags :: Lens' UnquoteFlags TCEnv eUnquoteFlags f e = f (envUnquoteFlags e) <&> \ x -> e { envUnquoteFlags = x } eInstanceDepth :: Lens' Int TCEnv eInstanceDepth f e = f (envInstanceDepth e) <&> \ x -> e { envInstanceDepth = x } eIsDebugPrinting :: Lens' Bool TCEnv eIsDebugPrinting f e = f (envIsDebugPrinting e) <&> \ x -> e { envIsDebugPrinting = x } ePrintingPatternLambdas :: Lens' [QName] TCEnv ePrintingPatternLambdas f e = f (envPrintingPatternLambdas e) <&> \ x -> e { envPrintingPatternLambdas = x } eCallByNeed :: Lens' Bool TCEnv eCallByNeed f e = f (envCallByNeed e) <&> \ x -> e { envCallByNeed = x } eCurrentCheckpoint :: Lens' CheckpointId TCEnv eCurrentCheckpoint f e = f (envCurrentCheckpoint e) <&> \ x -> e { envCurrentCheckpoint = x } eCheckpoints :: Lens' (Map CheckpointId Substitution) TCEnv eCheckpoints f e = f (envCheckpoints e) <&> \ x -> e { envCheckpoints = x } eGeneralizeMetas :: Lens' DoGeneralize TCEnv eGeneralizeMetas f e = f (envGeneralizeMetas e) <&> \ x -> e { envGeneralizeMetas = x } eGeneralizedVars :: Lens' (Map QName GeneralizedValue) TCEnv eGeneralizedVars f e = f (envGeneralizedVars e) <&> \ x -> e { envGeneralizedVars = x } --------------------------------------------------------------------------- -- ** Context --------------------------------------------------------------------------- -- | The @Context@ is a stack of 'ContextEntry's. type Context = [ContextEntry] type ContextEntry = Dom (Name, Type) --------------------------------------------------------------------------- -- ** Let bindings --------------------------------------------------------------------------- type LetBindings = Map Name (Open (Term, Dom Type)) --------------------------------------------------------------------------- -- ** Abstract mode --------------------------------------------------------------------------- data AbstractMode = AbstractMode -- ^ Abstract things in the current module can be accessed. | ConcreteMode -- ^ No abstract things can be accessed. | IgnoreAbstractMode -- ^ All abstract things can be accessed. deriving (Data, Show, Eq) aDefToMode :: IsAbstract -> AbstractMode aDefToMode AbstractDef = AbstractMode aDefToMode ConcreteDef = ConcreteMode aModeToDef :: AbstractMode -> IsAbstract aModeToDef AbstractMode = AbstractDef aModeToDef ConcreteMode = ConcreteDef aModeToDef _ = __IMPOSSIBLE__ --------------------------------------------------------------------------- -- ** Insertion of implicit arguments --------------------------------------------------------------------------- data ExpandHidden = ExpandLast -- ^ Add implicit arguments in the end until type is no longer hidden 'Pi'. | DontExpandLast -- ^ Do not append implicit arguments. deriving (Eq, Data) -- | A candidate solution for an instance meta is a term with its type. -- It may be the case that the candidate is not fully applied yet or -- of the wrong type, hence the need for the type. data Candidate = Candidate { candidateTerm :: Term , candidateType :: Type , candidateOverlappable :: Bool } deriving (Show, Data) instance Free Candidate where freeVars' (Candidate t u _) = freeVars' (t, u) --------------------------------------------------------------------------- -- * Type checking warnings (aka non-fatal errors) --------------------------------------------------------------------------- -- | A non-fatal error is an error which does not prevent us from -- checking the document further and interacting with the user. data Warning = NicifierIssue DeclarationWarning | TerminationIssue [TerminationError] | UnreachableClauses QName [[NamedArg DeBruijnPattern]] | CoverageIssue QName [(Telescope, [NamedArg DeBruijnPattern])] -- ^ `CoverageIssue f pss` means that `pss` are not covered in `f` | CoverageNoExactSplit QName [Clause] | NotStrictlyPositive QName (Seq OccursWhere) | UnsolvedMetaVariables [Range] -- ^ Do not use directly with 'warning' | UnsolvedInteractionMetas [Range] -- ^ Do not use directly with 'warning' | UnsolvedConstraints Constraints -- ^ Do not use directly with 'warning' | CantGeneralizeOverSorts [MetaId] | AbsurdPatternRequiresNoRHS [NamedArg DeBruijnPattern] | OldBuiltin String String -- ^ In `OldBuiltin old new`, the BUILTIN old has been replaced by new | EmptyRewritePragma -- ^ If the user wrote just @{-\# REWRITE \#-}@. | IllformedAsClause String -- ^ If the user wrote something other than an unqualified name -- in the @as@ clause of an @import@ statement. -- The 'String' gives optionally extra explanation. | UselessPublic -- ^ If the user opens a module public before the module header. -- (See issue #2377.) | UselessInline QName | WrongInstanceDeclaration | InstanceWithExplicitArg QName -- ^ An instance was declared with an implicit argument, which means it -- will never actually be considered by instance search. | InstanceNoOutputTypeName Doc -- ^ The type of an instance argument doesn't end in a named or -- variable type, so it will never be considered by instance search. | InstanceArgWithExplicitArg Doc -- ^ As InstanceWithExplicitArg, but for local bindings rather than -- top-level instances. | InversionDepthReached QName -- ^ The --inversion-max-depth was reached. -- Generic warnings for one-off things | GenericWarning Doc -- ^ Harmless generic warning (not an error) | GenericNonFatalError Doc -- ^ Generic error which doesn't abort proceedings (not a warning) -- Safe flag errors | SafeFlagPostulate C.Name | SafeFlagPragma [String] | SafeFlagNonTerminating | SafeFlagTerminating | SafeFlagWithoutKFlagPrimEraseEquality | WithoutKFlagPrimEraseEquality | SafeFlagNoPositivityCheck | SafeFlagPolarity | SafeFlagNoUniverseCheck | ParseWarning ParseWarning | LibraryWarning LibWarning | DeprecationWarning String String String -- ^ `DeprecationWarning old new version`: -- `old` is deprecated, use `new` instead. This will be an error in Agda `version`. | UserWarning String -- ^ User-defined warning (e.g. to mention that a name is deprecated) | ModuleDoesntExport C.QName [C.ImportedName] -- ^ Some imported names are not actually exported by the source module | InfectiveImport String ModuleName -- ^ Importing a file using an infective option into one which doesn't | CoInfectiveImport String ModuleName -- ^ Importing a file not using a coinfective option from one which does deriving (Show , Data) warningName :: Warning -> WarningName warningName w = case w of -- special cases NicifierIssue dw -> declarationWarningName dw ParseWarning pw -> parseWarningName pw LibraryWarning lw -> libraryWarningName lw -- typechecking errors CantGeneralizeOverSorts{} -> CantGeneralizeOverSorts_ AbsurdPatternRequiresNoRHS{} -> AbsurdPatternRequiresNoRHS_ CoverageIssue{} -> CoverageIssue_ CoverageNoExactSplit{} -> CoverageNoExactSplit_ DeprecationWarning{} -> DeprecationWarning_ EmptyRewritePragma -> EmptyRewritePragma_ IllformedAsClause{} -> IllformedAsClause_ WrongInstanceDeclaration{} -> WrongInstanceDeclaration_ InstanceWithExplicitArg{} -> InstanceWithExplicitArg_ InstanceNoOutputTypeName{} -> InstanceNoOutputTypeName_ InstanceArgWithExplicitArg{} -> InstanceArgWithExplicitArg_ GenericNonFatalError{} -> GenericNonFatalError_ GenericWarning{} -> GenericWarning_ InversionDepthReached{} -> InversionDepthReached_ ModuleDoesntExport{} -> ModuleDoesntExport_ NotStrictlyPositive{} -> NotStrictlyPositive_ OldBuiltin{} -> OldBuiltin_ SafeFlagNoPositivityCheck -> SafeFlagNoPositivityCheck_ SafeFlagNonTerminating -> SafeFlagNonTerminating_ SafeFlagNoUniverseCheck -> SafeFlagNoUniverseCheck_ SafeFlagPolarity -> SafeFlagPolarity_ SafeFlagPostulate{} -> SafeFlagPostulate_ SafeFlagPragma{} -> SafeFlagPragma_ SafeFlagWithoutKFlagPrimEraseEquality -> SafeFlagWithoutKFlagPrimEraseEquality_ WithoutKFlagPrimEraseEquality -> WithoutKFlagPrimEraseEquality_ SafeFlagTerminating -> SafeFlagTerminating_ TerminationIssue{} -> TerminationIssue_ UnreachableClauses{} -> UnreachableClauses_ UnsolvedInteractionMetas{} -> UnsolvedInteractionMetas_ UnsolvedConstraints{} -> UnsolvedConstraints_ UnsolvedMetaVariables{} -> UnsolvedMetaVariables_ UselessInline{} -> UselessInline_ UselessPublic -> UselessPublic_ UserWarning{} -> UserWarning_ InfectiveImport{} -> InfectiveImport_ CoInfectiveImport{} -> CoInfectiveImport_ data TCWarning = TCWarning { tcWarningRange :: Range -- ^ Range where the warning was raised , tcWarning :: Warning -- ^ The warning itself , tcWarningPrintedWarning :: Doc -- ^ The warning printed in the state and environment where it was raised , tcWarningCached :: Bool -- ^ Should the warning be affected by caching. } deriving Show tcWarningOrigin :: TCWarning -> SrcFile tcWarningOrigin = rangeFile . tcWarningRange instance HasRange TCWarning where getRange = tcWarningRange -- used for merging lists of warnings instance Eq TCWarning where x == y = equalHeadConstructors (tcWarning x) (tcWarning y) && getRange x == getRange y equalHeadConstructors :: Warning -> Warning -> Bool equalHeadConstructors = (==) `on` toConstr getPartialDefs :: ReadTCState tcm => tcm [QName] getPartialDefs = do tcst <- getTCState return $ mapMaybe (extractQName . tcWarning) $ tcst ^. stTCWarnings where extractQName :: Warning -> Maybe QName extractQName (CoverageIssue f _) = Just f extractQName _ = Nothing --------------------------------------------------------------------------- -- * Type checking errors --------------------------------------------------------------------------- -- | Information about a call. data CallInfo = CallInfo { callInfoTarget :: QName -- ^ Target function name. , callInfoRange :: Range -- ^ Range of the target function. , callInfoCall :: Closure Term -- ^ To be formatted representation of the call. } deriving (Data, Show) -- no Eq, Ord instances: too expensive! (see issues 851, 852) -- | We only 'show' the name of the callee. instance Pretty CallInfo where pretty = pretty . callInfoTarget instance AllNames CallInfo where allNames = singleton . callInfoTarget -- UNUSED, but keep! -- -- | Call pathes are sequences of 'CallInfo's starting from a 'callSource'. -- data CallPath = CallPath -- { callSource :: QName -- -- ^ The originator of the first call. -- , callInfos :: [CallInfo] -- -- ^ The calls, in order from source to final target. -- } -- deriving (Show) -- -- | 'CallPath'es can be connected, but there is no empty callpath. -- -- Thus, they form a semigroup, but we choose to abuse 'Monoid'. -- instance Monoid CallPath where -- mempty = __IMPOSSIBLE__ -- mappend (CallPath src cs) (CallPath _ cs') = CallPath src $ cs ++ cs' -- | Information about a mutual block which did not pass the -- termination checker. data TerminationError = TerminationError { termErrFunctions :: [QName] -- ^ The functions which failed to check. (May not include -- automatically generated functions.) , termErrCalls :: [CallInfo] -- ^ The problematic call sites. } deriving (Data, Show) -- | Error when splitting a pattern variable into possible constructor patterns. data SplitError = NotADatatype (Closure Type) -- ^ Neither data type nor record. | IrrelevantDatatype (Closure Type) -- ^ Data type, but in irrelevant position. | ErasedDatatype (Closure Type) -- ^ Data type, but in erased position. | CoinductiveDatatype (Closure Type) -- ^ Split on codata not allowed. -- UNUSED, but keep! -- -- | NoRecordConstructor Type -- ^ record type, but no constructor | UnificationStuck { cantSplitConName :: QName -- ^ Constructor. , cantSplitTel :: Telescope -- ^ Context for indices. , cantSplitConIdx :: Args -- ^ Inferred indices (from type of constructor). , cantSplitGivenIdx :: Args -- ^ Expected indices (from checking pattern). , cantSplitFailures :: [UnificationFailure] -- ^ Reason(s) why unification got stuck. } | CosplitCatchall -- ^ Copattern split with a catchall | CosplitNoTarget -- ^ We do not know the target type of the clause. | CosplitNoRecordType (Closure Type) -- ^ Target type is not a record type. | CannotCreateMissingClause QName (Telescope,[NamedArg DeBruijnPattern]) Doc (Closure (Abs Type)) | GenericSplitError String deriving (Show) data NegativeUnification = UnifyConflict Telescope Term Term | UnifyCycle Telescope Int Term deriving (Show) data UnificationFailure = UnifyIndicesNotVars Telescope Type Term Term Args -- ^ Failed to apply injectivity to constructor of indexed datatype | UnifyRecursiveEq Telescope Type Int Term -- ^ Can't solve equation because variable occurs in (type of) lhs | UnifyReflexiveEq Telescope Type Term -- ^ Can't solve reflexive equation because --without-K is enabled deriving (Show) data UnquoteError = BadVisibility String (Arg I.Term) | ConInsteadOfDef QName String String | DefInsteadOfCon QName String String | NonCanonical String I.Term | BlockedOnMeta TCState MetaId | UnquotePanic String deriving (Show) data TypeError = InternalError String | NotImplemented String | NotSupported String | CompilationError String | PropMustBeSingleton | DataMustEndInSort Term {- UNUSED | DataTooManyParameters -- ^ In @data D xs where@ the number of parameters @xs@ does not fit the -- the parameters given in the forward declaraion @data D Gamma : T@. -} | ShouldEndInApplicationOfTheDatatype Type -- ^ The target of a constructor isn't an application of its -- datatype. The 'Type' records what it does target. | ShouldBeAppliedToTheDatatypeParameters Term Term -- ^ The target of a constructor isn't its datatype applied to -- something that isn't the parameters. First term is the correct -- target and the second term is the actual target. | ShouldBeApplicationOf Type QName -- ^ Expected a type to be an application of a particular datatype. | ConstructorPatternInWrongDatatype QName QName -- ^ constructor, datatype | CantResolveOverloadedConstructorsTargetingSameDatatype QName [QName] -- ^ Datatype, constructors. | DoesNotConstructAnElementOf QName Type -- ^ constructor, type | WrongHidingInLHS -- ^ The left hand side of a function definition has a hidden argument -- where a non-hidden was expected. | WrongHidingInLambda Type -- ^ Expected a non-hidden function and found a hidden lambda. | WrongHidingInApplication Type -- ^ A function is applied to a hidden argument where a non-hidden was expected. | WrongNamedArgument (NamedArg A.Expr) -- ^ A function is applied to a hidden named argument it does not have. | WrongIrrelevanceInLambda -- ^ Wrong user-given relevance annotation in lambda. | WrongQuantityInLambda -- ^ Wrong user-given quantity annotation in lambda. | HidingMismatch Hiding Hiding -- ^ The given hiding does not correspond to the expected hiding. | RelevanceMismatch Relevance Relevance -- ^ The given relevance does not correspond to the expected relevane. | UninstantiatedDotPattern A.Expr | ForcedConstructorNotInstantiated A.Pattern | IlltypedPattern A.Pattern Type | IllformedProjectionPattern A.Pattern | CannotEliminateWithPattern (NamedArg A.Pattern) Type | WrongNumberOfConstructorArguments QName Nat Nat | ShouldBeEmpty Type [DeBruijnPattern] | ShouldBeASort Type -- ^ The given type should have been a sort. | ShouldBePi Type -- ^ The given type should have been a pi. | ShouldBePath Type | ShouldBeRecordType Type | ShouldBeRecordPattern DeBruijnPattern | NotAProjectionPattern (NamedArg A.Pattern) | NotAProperTerm | InvalidTypeSort Sort -- ^ This sort is not a type expression. | InvalidType Term -- ^ This term is not a type expression. | FunctionTypeInSizeUniv Term -- ^ This term, a function type constructor, lives in -- @SizeUniv@, which is not allowed. | SplitOnIrrelevant (Dom Type) -- UNUSED: -- | SplitOnErased (Dom Type) | SplitOnNonVariable Term Type | DefinitionIsIrrelevant QName | VariableIsIrrelevant Name | VariableIsErased Name -- | UnequalLevel Comparison Term Term -- UNUSED | UnequalTerms Comparison Term Term Type | UnequalTypes Comparison Type Type -- | UnequalTelescopes Comparison Telescope Telescope -- UNUSED | UnequalRelevance Comparison Term Term -- ^ The two function types have different relevance. | UnequalHiding Term Term -- ^ The two function types have different hiding. | UnequalSorts Sort Sort | UnequalBecauseOfUniverseConflict Comparison Term Term | NotLeqSort Sort Sort | MetaCannotDependOn MetaId [Nat] Nat -- ^ The arguments are the meta variable, the parameters it can -- depend on and the paratemeter that it wants to depend on. | MetaOccursInItself MetaId | MetaIrrelevantSolution MetaId Term | GenericError String | GenericDocError Doc | BuiltinMustBeConstructor String A.Expr | NoSuchBuiltinName String | DuplicateBuiltinBinding String Term Term | NoBindingForBuiltin String | NoSuchPrimitiveFunction String | DuplicatePrimitiveBinding String QName QName | ShadowedModule C.Name [A.ModuleName] | BuiltinInParameterisedModule String | IllegalLetInTelescope C.TypedBinding | NoRHSRequiresAbsurdPattern [NamedArg A.Pattern] | TooManyFields QName [C.Name] [C.Name] -- ^ Record type, fields not supplied by user, non-fields not supplied. | DuplicateFields [C.Name] | DuplicateConstructors [C.Name] | WithOnFreeVariable A.Expr Term | UnexpectedWithPatterns [A.Pattern] | WithClausePatternMismatch A.Pattern (NamedArg DeBruijnPattern) | FieldOutsideRecord | ModuleArityMismatch A.ModuleName Telescope [NamedArg A.Expr] | GeneralizeCyclicDependency | GeneralizeUnsolvedMeta -- Coverage errors -- UNUSED: | IncompletePatternMatching Term [Elim] -- can only happen if coverage checking is switched off | SplitError SplitError | ImpossibleConstructor QName NegativeUnification -- Positivity errors | TooManyPolarities QName Int -- Import errors | LocalVsImportedModuleClash ModuleName | SolvedButOpenHoles -- ^ Some interaction points (holes) have not been filled by user. -- There are not 'UnsolvedMetas' since unification solved them. -- This is an error, since interaction points are never filled -- without user interaction. | CyclicModuleDependency [C.TopLevelModuleName] | FileNotFound C.TopLevelModuleName [AbsolutePath] | OverlappingProjects AbsolutePath C.TopLevelModuleName C.TopLevelModuleName | AmbiguousTopLevelModuleName C.TopLevelModuleName [AbsolutePath] | ModuleNameUnexpected C.TopLevelModuleName C.TopLevelModuleName -- ^ Found module name, expected module name. | ModuleNameDoesntMatchFileName C.TopLevelModuleName [AbsolutePath] | ClashingFileNamesFor ModuleName [AbsolutePath] | ModuleDefinedInOtherFile C.TopLevelModuleName AbsolutePath AbsolutePath -- ^ Module name, file from which it was loaded, file which -- the include path says contains the module. -- Scope errors | BothWithAndRHS | AbstractConstructorNotInScope A.QName | NotInScope [C.QName] | NoSuchModule C.QName | AmbiguousName C.QName (NonemptyList A.QName) | AmbiguousModule C.QName (NonemptyList A.ModuleName) | ClashingDefinition C.QName A.QName | ClashingModule A.ModuleName A.ModuleName | ClashingImport C.Name A.QName | ClashingModuleImport C.Name A.ModuleName | PatternShadowsConstructor C.Name A.QName | DuplicateImports C.QName [C.ImportedName] | InvalidPattern C.Pattern | RepeatedVariablesInPattern [C.Name] | GeneralizeNotSupportedHere A.QName | MultipleFixityDecls [(C.Name, [Fixity'])] | MultiplePolarityPragmas [C.Name] -- Concrete to Abstract errors | NotAModuleExpr C.Expr -- ^ The expr was used in the right hand side of an implicit module -- definition, but it wasn't of the form @m Delta@. | NotAnExpression C.Expr | NotAValidLetBinding NiceDeclaration | NotValidBeforeField NiceDeclaration | NothingAppliedToHiddenArg C.Expr | NothingAppliedToInstanceArg C.Expr -- Pattern synonym errors | BadArgumentsToPatternSynonym A.AmbiguousQName | TooFewArgumentsToPatternSynonym A.AmbiguousQName | CannotResolveAmbiguousPatternSynonym (NonemptyList (A.QName, A.PatternSynDefn)) | UnusedVariableInPatternSynonym -- Operator errors | NoParseForApplication [C.Expr] | AmbiguousParseForApplication [C.Expr] [C.Expr] | NoParseForLHS LHSOrPatSyn C.Pattern | AmbiguousParseForLHS LHSOrPatSyn C.Pattern [C.Pattern] | OperatorInformation [NotationSection] TypeError {- UNUSED | NoParseForPatternSynonym C.Pattern | AmbiguousParseForPatternSynonym C.Pattern [C.Pattern] -} -- Usage errors -- Instance search errors | InstanceNoCandidate Type [(Term, TCErr)] -- Reflection errors | UnquoteFailed UnquoteError | DeBruijnIndexOutOfScope Nat Telescope [Name] -- Language option errors | NeedOptionCopatterns | NeedOptionRewriting | NeedOptionProp -- Failure associated to warnings | NonFatalErrors [TCWarning] -- Instance search errors | InstanceSearchDepthExhausted Term Type Int | TriedToCopyConstrainedPrim QName deriving Show -- | Distinguish error message when parsing lhs or pattern synonym, resp. data LHSOrPatSyn = IsLHS | IsPatSyn deriving (Eq, Show) -- | Type-checking errors. data TCErr = TypeError { tcErrState :: TCState -- ^ The state in which the error was raised. , tcErrClosErr :: Closure TypeError -- ^ The environment in which the error as raised plus the error. } | Exception Range Doc | IOException TCState Range E.IOException -- ^ The first argument is the state in which the error was -- raised. | PatternErr -- ^ The exception which is usually caught. -- Raised for pattern violations during unification ('assignV') -- but also in other situations where we want to backtrack. instance Error TCErr where strMsg = Exception noRange . text . strMsg instance Show TCErr where show (TypeError _ e) = show (envRange $ clEnv e) ++ ": " ++ show (clValue e) show (Exception r d) = show r ++ ": " ++ render d show (IOException _ r e) = show r ++ ": " ++ show e show PatternErr{} = "Pattern violation (you shouldn't see this)" instance HasRange TCErr where getRange (TypeError _ cl) = envRange $ clEnv cl getRange (Exception r _) = r getRange (IOException s r _) = r getRange PatternErr{} = noRange instance E.Exception TCErr ----------------------------------------------------------------------------- -- * Accessing options ----------------------------------------------------------------------------- class (Functor m, Applicative m, Monad m) => HasOptions m where -- | Returns the pragma options which are currently in effect. pragmaOptions :: m PragmaOptions -- | Returns the command line options which are currently in effect. commandLineOptions :: m CommandLineOptions instance MonadIO m => HasOptions (TCMT m) where pragmaOptions = useTC stPragmaOptions commandLineOptions = do p <- useTC stPragmaOptions cl <- stPersistentOptions . stPersistentState <$> getTC return $ cl { optPragmaOptions = p } instance HasOptions m => HasOptions (ExceptT e m) where pragmaOptions = lift pragmaOptions commandLineOptions = lift commandLineOptions instance HasOptions m => HasOptions (ListT m) where pragmaOptions = lift pragmaOptions commandLineOptions = lift commandLineOptions instance HasOptions m => HasOptions (MaybeT m) where pragmaOptions = lift pragmaOptions commandLineOptions = lift commandLineOptions instance HasOptions m => HasOptions (ReaderT r m) where pragmaOptions = lift pragmaOptions commandLineOptions = lift commandLineOptions instance HasOptions m => HasOptions (StateT s m) where pragmaOptions = lift pragmaOptions commandLineOptions = lift commandLineOptions instance (HasOptions m, Monoid w) => HasOptions (WriterT w m) where pragmaOptions = lift pragmaOptions commandLineOptions = lift commandLineOptions -- Ternary options are annoying to deal with so we provide auxiliary -- definitions using @collapseDefault@. sizedTypesOption :: HasOptions m => m Bool sizedTypesOption = collapseDefault . optSizedTypes <$> pragmaOptions guardednessOption :: HasOptions m => m Bool guardednessOption = collapseDefault . optGuardedness <$> pragmaOptions withoutKOption :: HasOptions m => m Bool withoutKOption = collapseDefault . optWithoutK <$> pragmaOptions ----------------------------------------------------------------------------- -- * The reduce monad ----------------------------------------------------------------------------- -- | Environment of the reduce monad. data ReduceEnv = ReduceEnv { redEnv :: TCEnv -- ^ Read only access to environment. , redSt :: TCState -- ^ Read only access to state (signature, metas...). } mapRedEnv :: (TCEnv -> TCEnv) -> ReduceEnv -> ReduceEnv mapRedEnv f s = s { redEnv = f (redEnv s) } mapRedSt :: (TCState -> TCState) -> ReduceEnv -> ReduceEnv mapRedSt f s = s { redSt = f (redSt s) } mapRedEnvSt :: (TCEnv -> TCEnv) -> (TCState -> TCState) -> ReduceEnv -> ReduceEnv mapRedEnvSt f g (ReduceEnv e s) = ReduceEnv (f e) (g s) -- Lenses reduceEnv :: Lens' TCEnv ReduceEnv reduceEnv f s = f (redEnv s) <&> \ e -> s { redEnv = e } reduceSt :: Lens' TCState ReduceEnv reduceSt f s = f (redSt s) <&> \ e -> s { redSt = e } newtype ReduceM a = ReduceM { unReduceM :: ReduceEnv -> a } -- deriving (Functor, Applicative, Monad) onReduceEnv :: (ReduceEnv -> ReduceEnv) -> ReduceM a -> ReduceM a onReduceEnv f (ReduceM m) = ReduceM (m . f) fmapReduce :: (a -> b) -> ReduceM a -> ReduceM b fmapReduce f (ReduceM m) = ReduceM $ \ e -> f $! m e {-# INLINE fmapReduce #-} apReduce :: ReduceM (a -> b) -> ReduceM a -> ReduceM b apReduce (ReduceM f) (ReduceM x) = ReduceM $ \ e -> f e $! x e {-# INLINE apReduce #-} bindReduce :: ReduceM a -> (a -> ReduceM b) -> ReduceM b bindReduce (ReduceM m) f = ReduceM $ \ e -> unReduceM (f $! m e) e {-# INLINE bindReduce #-} instance Functor ReduceM where fmap = fmapReduce instance Applicative ReduceM where pure x = ReduceM (const x) (<*>) = apReduce instance Monad ReduceM where return = pure (>>=) = bindReduce (>>) = (*>) #if __GLASGOW_HASKELL__ >= 800 fail = Fail.fail instance Fail.MonadFail ReduceM where fail = error #endif instance ReadTCState ReduceM where getTCState = ReduceM redSt withTCState f = onReduceEnv $ mapRedSt f runReduceM :: ReduceM a -> TCM a runReduceM m = do e <- askTC s <- getTC return $! unReduceM m (ReduceEnv e s) runReduceF :: (a -> ReduceM b) -> TCM (a -> b) runReduceF f = do e <- askTC s <- getTC return $ \x -> unReduceM (f x) (ReduceEnv e s) instance MonadTCEnv ReduceM where askTC = ReduceM redEnv localTC = onReduceEnv . mapRedEnv useR :: (ReadTCState m) => Lens' a TCState -> m a useR l = (^.l) <$> getTCState askR :: ReduceM ReduceEnv askR = ReduceM ask localR :: (ReduceEnv -> ReduceEnv) -> ReduceM a -> ReduceM a localR f = ReduceM . local f . unReduceM instance HasOptions ReduceM where pragmaOptions = useR stPragmaOptions commandLineOptions = do p <- useR stPragmaOptions cl <- stPersistentOptions . stPersistentState <$> getTCState return $ cl{ optPragmaOptions = p } class ( Applicative m , MonadTCEnv m , ReadTCState m , HasOptions m ) => MonadReduce m where liftReduce :: ReduceM a -> m a instance MonadReduce m => MonadReduce (MaybeT m) where liftReduce = lift . liftReduce instance MonadReduce m => MonadReduce (ListT m) where liftReduce = lift . liftReduce instance MonadReduce m => MonadReduce (ExceptT err m) where liftReduce = lift . liftReduce instance MonadReduce m => MonadReduce (ReaderT r m) where liftReduce = lift . liftReduce instance (Monoid w, MonadReduce m) => MonadReduce (WriterT w m) where liftReduce = lift . liftReduce instance MonadReduce m => MonadReduce (StateT w m) where liftReduce = lift . liftReduce instance MonadReduce ReduceM where liftReduce = id --------------------------------------------------------------------------- -- * Monad with read-only 'TCEnv' --------------------------------------------------------------------------- -- | @MonadTCEnv@ made into its own dedicated service class. -- This allows us to use 'MonadReader' for 'ReaderT' extensions of @TCM@. class Monad m => MonadTCEnv m where askTC :: m TCEnv localTC :: (TCEnv -> TCEnv) -> m a -> m a instance MonadTCEnv m => MonadTCEnv (MaybeT m) where askTC = lift askTC localTC = mapMaybeT . localTC instance MonadTCEnv m => MonadTCEnv (ListT m) where askTC = lift askTC localTC = mapListT . localTC instance MonadTCEnv m => MonadTCEnv (ExceptT err m) where askTC = lift askTC localTC = mapExceptT . localTC instance MonadTCEnv m => MonadTCEnv (ReaderT r m) where askTC = lift askTC localTC = mapReaderT . localTC instance (Monoid w, MonadTCEnv m) => MonadTCEnv (WriterT w m) where askTC = lift askTC localTC = mapWriterT . localTC instance MonadTCEnv m => MonadTCEnv (StateT s m) where askTC = lift askTC localTC = mapStateT . localTC asksTC :: MonadTCEnv m => (TCEnv -> a) -> m a asksTC f = f <$> askTC viewTC :: MonadTCEnv m => Lens' a TCEnv -> m a viewTC l = asksTC (^. l) -- | Modify the lens-indicated part of the @TCEnv@ in a subcomputation. locallyTC :: MonadTCEnv m => Lens' a TCEnv -> (a -> a) -> m b -> m b locallyTC l = localTC . over l --------------------------------------------------------------------------- -- * Monad with mutable 'TCState' --------------------------------------------------------------------------- -- | @MonadTCState@ made into its own dedicated service class. -- This allows us to use 'MonadState' for 'StateT' extensions of @TCM@. class Monad m => MonadTCState m where getTC :: m TCState putTC :: TCState -> m () modifyTC :: (TCState -> TCState) -> m () {-# MINIMAL getTC, (putTC | modifyTC) #-} putTC = modifyTC . const modifyTC f = putTC . f =<< getTC instance MonadTCState m => MonadTCState (MaybeT m) where getTC = lift getTC putTC = lift . putTC modifyTC = lift . modifyTC instance MonadTCState m => MonadTCState (ListT m) where getTC = lift getTC putTC = lift . putTC modifyTC = lift . modifyTC instance MonadTCState m => MonadTCState (ExceptT err m) where getTC = lift getTC putTC = lift . putTC modifyTC = lift . modifyTC instance MonadTCState m => MonadTCState (ReaderT r m) where getTC = lift getTC putTC = lift . putTC modifyTC = lift . modifyTC instance (Monoid w, MonadTCState m) => MonadTCState (WriterT w m) where getTC = lift getTC putTC = lift . putTC modifyTC = lift . modifyTC instance MonadTCState m => MonadTCState (StateT s m) where getTC = lift getTC putTC = lift . putTC modifyTC = lift . modifyTC -- ** @TCState@ accessors (no lenses) getsTC :: MonadTCState m => (TCState -> a) -> m a getsTC f = f <$> getTC -- | A variant of 'modifyTC' in which the computation is strict in the -- new state. modifyTC' :: MonadTCState m => (TCState -> TCState) -> m () modifyTC' f = do s' <- getTC putTC $! f s' -- SEE TC.Monad.State -- -- | Restore the 'TCState' after computation. -- localTCState :: MonadTCState m => m a -> m a -- localTCState = bracket_ getTC putTC -- ** @TCState@ accessors via lenses useTC :: MonadTCState m => Lens' a TCState -> m a useTC l = do !x <- getsTC (^. l) return x infix 4 `setTCLens` -- | Overwrite the part of the 'TCState' focused on by the lens. setTCLens :: MonadTCState m => Lens' a TCState -> a -> m () setTCLens l = modifyTC . set l -- | Modify the part of the 'TCState' focused on by the lens. modifyTCLens :: MonadTCState m => Lens' a TCState -> (a -> a) -> m () modifyTCLens l = modifyTC . over l -- | Modify a part of the state monadically. modifyTCLensM :: MonadTCState m => Lens' a TCState -> (a -> m a) -> m () modifyTCLensM l f = putTC =<< l f =<< getTC -- | Modify the lens-indicated part of the 'TCState' locally. locallyTCState :: MonadTCState m => Lens' a TCState -> (a -> a) -> m b -> m b locallyTCState l f k = do old <- useTC l modifyTCLens l f x <- k setTCLens l old return x --------------------------------------------------------------------------- -- * Type checking monad transformer --------------------------------------------------------------------------- -- | The type checking monad transformer. -- Adds readonly 'TCEnv' and mutable 'TCState'. newtype TCMT m a = TCM { unTCM :: IORef TCState -> TCEnv -> m a } instance MonadIO m => MonadTCEnv (TCMT m) where askTC = TCM $ \ _ e -> return e localTC f (TCM m) = TCM $ \ s e -> m s (f e) instance MonadIO m => MonadTCState (TCMT m) where getTC = TCM $ \ r _e -> liftIO (readIORef r) putTC s = TCM $ \ r _e -> liftIO (writeIORef r s) type TCM = TCMT IO class ( Applicative tcm, MonadIO tcm , MonadTCEnv tcm , MonadTCState tcm , HasOptions tcm ) => MonadTCM tcm where liftTCM :: TCM a -> tcm a instance MonadIO m => ReadTCState (TCMT m) where getTCState = getTC withTCState f m = __IMPOSSIBLE__ -- should probably not be used instance MonadError TCErr (TCMT IO) where throwError = liftIO . E.throwIO catchError m h = TCM $ \r e -> do oldState <- liftIO (readIORef r) unTCM m r e `E.catch` \err -> do -- Reset the state, but do not forget changes to the persistent -- component. Not for pattern violations. case err of PatternErr -> return () _ -> liftIO $ do newState <- readIORef r writeIORef r $ oldState { stPersistentState = stPersistentState newState } unTCM (h err) r e instance MonadIO m => MonadReduce (TCMT m) where liftReduce = liftTCM . runReduceM instance (IsString a, MonadIO m) => IsString (TCMT m a) where fromString s = return (fromString s) -- | Interaction monad. type IM = TCMT (Haskeline.InputT IO) runIM :: IM a -> TCM a runIM = mapTCMT (Haskeline.runInputT Haskeline.defaultSettings) instance MonadError TCErr IM where throwError = liftIO . E.throwIO catchError m h = mapTCMT liftIO $ runIM m `catchError` (runIM . h) -- | Preserve the state of the failing computation. catchError_ :: TCM a -> (TCErr -> TCM a) -> TCM a catchError_ m h = TCM $ \r e -> unTCM m r e `E.catch` \err -> unTCM (h err) r e -- | Execute a finalizer even when an exception is thrown. -- Does not catch any errors. -- In case both the regular computation and the finalizer -- throw an exception, the one of the finalizer is propagated. finally_ :: TCM a -> TCM b -> TCM a finally_ m f = do x <- m `catchError_` \ err -> f >> throwError err _ <- f return x {-# SPECIALIZE INLINE mapTCMT :: (forall a. IO a -> IO a) -> TCM a -> TCM a #-} mapTCMT :: (forall a. m a -> n a) -> TCMT m a -> TCMT n a mapTCMT f (TCM m) = TCM $ \s e -> f (m s e) pureTCM :: MonadIO m => (TCState -> TCEnv -> a) -> TCMT m a pureTCM f = TCM $ \r e -> do s <- liftIO $ readIORef r return (f s e) {-# RULES "liftTCM/id" liftTCM = id #-} instance MonadIO m => MonadTCM (TCMT m) where liftTCM = mapTCMT liftIO instance MonadTCM tcm => MonadTCM (MaybeT tcm) where liftTCM = lift . liftTCM instance MonadTCM tcm => MonadTCM (ListT tcm) where liftTCM = lift . liftTCM instance MonadTCM tcm => MonadTCM (ExceptT err tcm) where liftTCM = lift . liftTCM instance (Monoid w, MonadTCM tcm) => MonadTCM (WriterT w tcm) where liftTCM = lift . liftTCM instance (MonadTCM tcm) => MonadTCM (StateT s tcm) where liftTCM = lift . liftTCM instance (MonadTCM tcm) => MonadTCM (ReaderT r tcm) where liftTCM = lift . liftTCM instance MonadTrans TCMT where lift m = TCM $ \_ _ -> m -- We want a special monad implementation of fail. instance MonadIO m => Monad (TCMT m) where return = pure (>>=) = bindTCMT (>>) = (*>) #if __GLASGOW_HASKELL__ < 800 fail = internalError #else fail = Fail.fail instance MonadIO m => Fail.MonadFail (TCMT m) where fail = internalError #endif -- One goal of the definitions and pragmas below is to inline the -- monad operations as much as possible. This doesn't seem to have a -- large effect on the performance of the normal executable, but (at -- least on one machine/configuration) it has a massive effect on the -- performance of the profiling executable [1], and reduces the time -- attributed to bind from over 90% to about 25%. -- -- [1] When compiled with -auto-all and run with -p: roughly 750% -- faster for one example. returnTCMT :: MonadIO m => a -> TCMT m a returnTCMT = \x -> TCM $ \_ _ -> return x {-# INLINE returnTCMT #-} bindTCMT :: MonadIO m => TCMT m a -> (a -> TCMT m b) -> TCMT m b bindTCMT = \(TCM m) k -> TCM $ \r e -> m r e >>= \x -> unTCM (k x) r e {-# INLINE bindTCMT #-} thenTCMT :: MonadIO m => TCMT m a -> TCMT m b -> TCMT m b thenTCMT = \(TCM m1) (TCM m2) -> TCM $ \r e -> m1 r e >> m2 r e {-# INLINE thenTCMT #-} instance MonadIO m => Functor (TCMT m) where fmap = fmapTCMT fmapTCMT :: MonadIO m => (a -> b) -> TCMT m a -> TCMT m b fmapTCMT = \f (TCM m) -> TCM $ \r e -> liftM f (m r e) {-# INLINE fmapTCMT #-} instance MonadIO m => Applicative (TCMT m) where pure = returnTCMT (<*>) = apTCMT apTCMT :: MonadIO m => TCMT m (a -> b) -> TCMT m a -> TCMT m b apTCMT = \(TCM mf) (TCM m) -> TCM $ \r e -> ap (mf r e) (m r e) {-# INLINE apTCMT #-} instance MonadIO m => MonadIO (TCMT m) where liftIO m = TCM $ \s e -> do let r = envRange e liftIO $ wrap s r $ do x <- m x `seq` return x where wrap s r m = E.catch m $ \e -> do s <- readIORef s E.throwIO $ IOException s r e -- | We store benchmark statistics in an IORef. -- This enables benchmarking pure computation, see -- "Agda.Benchmarking". instance MonadBench Phase TCM where getBenchmark = liftIO $ getBenchmark putBenchmark = liftIO . putBenchmark finally = finally_ instance Null (TCM Doc) where empty = return empty null = __IMPOSSIBLE__ -- | Short-cutting disjunction forms a monoid. instance Semigroup (TCM Any) where ma <> mb = Any <$> do (getAny <$> ma) `or2M` (getAny <$> mb) instance Monoid (TCM Any) where mempty = return mempty mappend = (<>) patternViolation :: TCM a patternViolation = throwError PatternErr internalError :: MonadTCM tcm => String -> tcm a internalError s = typeError $ InternalError s genericError :: MonadTCM tcm => String -> tcm a genericError = typeError . GenericError {-# SPECIALIZE genericDocError :: Doc -> TCM a #-} genericDocError :: MonadTCM tcm => Doc -> tcm a genericDocError = typeError . GenericDocError {-# SPECIALIZE typeError :: TypeError -> TCM a #-} typeError :: MonadTCM tcm => TypeError -> tcm a typeError err = liftTCM $ throwError =<< typeError_ err {-# SPECIALIZE typeError_ :: TypeError -> TCM TCErr #-} typeError_ :: MonadTCM tcm => TypeError -> tcm TCErr typeError_ err = liftTCM $ TypeError <$> getTC <*> buildClosure err -- | Running the type checking monad (most general form). {-# SPECIALIZE runTCM :: TCEnv -> TCState -> TCM a -> IO (a, TCState) #-} runTCM :: MonadIO m => TCEnv -> TCState -> TCMT m a -> m (a, TCState) runTCM e s m = do r <- liftIO $ newIORef s a <- unTCM m r e s <- liftIO $ readIORef r return (a, s) -- | Running the type checking monad on toplevel (with initial state). runTCMTop :: TCM a -> IO (Either TCErr a) runTCMTop m = (Right <$> runTCMTop' m) `E.catch` (return . Left) runTCMTop' :: MonadIO m => TCMT m a -> m a runTCMTop' m = do r <- liftIO $ newIORef initState unTCM m r initEnv -- | 'runSafeTCM' runs a safe 'TCM' action (a 'TCM' action which cannot fail) -- in the initial environment. runSafeTCM :: TCM a -> TCState -> IO (a, TCState) runSafeTCM m st = runTCM initEnv st m `E.catch` (\ (e :: TCErr) -> __IMPOSSIBLE__) -- runSafeTCM m st = either__IMPOSSIBLE__ return <$> do -- -- Errors must be impossible. -- runTCM $ do -- putTC st -- a <- m -- st <- getTC -- return (a, st) -- | Runs the given computation in a separate thread, with /a copy/ of -- the current state and environment. -- -- Note that Agda sometimes uses actual, mutable state. If the -- computation given to @forkTCM@ tries to /modify/ this state, then -- bad things can happen, because accesses are not mutually exclusive. -- The @forkTCM@ function has been added mainly to allow the thread to -- /read/ (a snapshot of) the current state in a convenient way. -- -- Note also that exceptions which are raised in the thread are not -- propagated to the parent, so the thread should not do anything -- important. forkTCM :: TCM a -> TCM () forkTCM m = do s <- getTC e <- askTC liftIO $ void $ C.forkIO $ void $ runTCM e s m -- | Base name for extended lambda patterns extendedLambdaName :: String extendedLambdaName = ".extendedlambda" -- | Check whether we have an definition from an extended lambda. isExtendedLambdaName :: A.QName -> Bool isExtendedLambdaName = (extendedLambdaName `List.isPrefixOf`) . prettyShow . nameConcrete . qnameName -- | Name of absurdLambda definitions. absurdLambdaName :: String absurdLambdaName = ".absurdlambda" -- | Check whether we have an definition from an absurd lambda. isAbsurdLambdaName :: QName -> Bool isAbsurdLambdaName = (absurdLambdaName ==) . prettyShow . qnameName -- | Base name for generalized variable projections generalizedFieldName :: String generalizedFieldName = ".generalizedField-" -- | Check whether we have a generalized variable field getGeneralizedFieldName :: A.QName -> Maybe String getGeneralizedFieldName q | List.isPrefixOf generalizedFieldName strName = Just (drop (length generalizedFieldName) strName) | otherwise = Nothing where strName = prettyShow $ nameConcrete $ qnameName q --------------------------------------------------------------------------- -- * KillRange instances --------------------------------------------------------------------------- instance KillRange Signature where killRange (Sig secs defs rews) = killRange2 Sig secs defs rews instance KillRange Sections where killRange = fmap killRange instance KillRange Definitions where killRange = fmap killRange instance KillRange RewriteRuleMap where killRange = fmap killRange instance KillRange Section where killRange (Section tel) = killRange1 Section tel instance KillRange Definition where killRange (Defn ai name t pols occs gens gpars displ mut compiled inst copy ma nc inj def) = killRange16 Defn ai name t pols occs gens gpars displ mut compiled inst copy ma nc inj def -- TODO clarify: Keep the range in the defName field? instance KillRange NumGeneralizableArgs where killRange = id instance KillRange NLPat where killRange (PVar x y) = killRange2 PVar x y killRange (PWild) = PWild killRange (PDef x y) = killRange2 PDef x y killRange (PLam x y) = killRange2 PLam x y killRange (PPi x y) = killRange2 PPi x y killRange (PBoundVar x y) = killRange2 PBoundVar x y killRange (PTerm x) = killRange1 PTerm x instance KillRange NLPType where killRange (NLPType s a) = killRange2 NLPType s a instance KillRange RewriteRule where killRange (RewriteRule q gamma f es rhs t) = killRange6 RewriteRule q gamma f es rhs t instance KillRange CompiledRepresentation where killRange = id instance KillRange EtaEquality where killRange = id instance KillRange System where killRange (System tel sys) = System (killRange tel) (killRange sys) instance KillRange ExtLamInfo where killRange (ExtLamInfo m sys) = killRange2 ExtLamInfo m sys instance KillRange FunctionFlag where killRange = id instance KillRange CompKit where killRange = id instance KillRange Defn where killRange def = case def of Axiom -> Axiom DataOrRecSig n -> DataOrRecSig n GeneralizableVar -> GeneralizableVar AbstractDefn{} -> __IMPOSSIBLE__ -- only returned by 'getConstInfo'! Function cls comp ct tt covering inv mut isAbs delayed proj flags term extlam with copat -> killRange15 Function cls comp ct tt covering inv mut isAbs delayed proj flags term extlam with copat Datatype a b c d e f g h i -> killRange8 Datatype a b c d e f g h i Record a b c d e f g h i j k -> killRange11 Record a b c d e f g h i j k Constructor a b c d e f g h i -> killRange9 Constructor a b c d e f g h i Primitive a b c d e -> killRange5 Primitive a b c d e instance KillRange MutualId where killRange = id instance KillRange c => KillRange (FunctionInverse' c) where killRange NotInjective = NotInjective killRange (Inverse m) = Inverse $ killRangeMap m instance KillRange TermHead where killRange SortHead = SortHead killRange PiHead = PiHead killRange (ConsHead q) = ConsHead $ killRange q killRange h@VarHead{} = h killRange UnknownHead = UnknownHead instance KillRange Projection where killRange (Projection a b c d e) = killRange5 Projection a b c d e instance KillRange ProjLams where killRange = id instance KillRange a => KillRange (Open a) where killRange = fmap killRange instance KillRange DisplayForm where killRange (Display n es dt) = killRange3 Display n es dt instance KillRange Polarity where killRange = id instance KillRange IsForced where killRange = id instance KillRange DoGeneralize where killRange = id instance KillRange DisplayTerm where killRange dt = case dt of DWithApp dt dts es -> killRange3 DWithApp dt dts es DCon q ci dts -> killRange3 DCon q ci dts DDef q dts -> killRange2 DDef q dts DDot v -> killRange1 DDot v DTerm v -> killRange1 DTerm v instance KillRange a => KillRange (Closure a) where killRange = id