{-# LANGUAGE NondecreasingIndentation #-} {-# LANGUAGE UndecidableInstances #-} -- | Unification algorithm for specializing datatype indices, as described in -- \"Unifiers as Equivalences: Proof-Relevant Unification of Dependently -- Typed Data\" by Jesper Cockx, Dominique Devriese, and Frank Piessens -- (ICFP 2016). -- -- This is the unification algorithm used for checking the left-hand side -- of clauses (see @Agda.TypeChecking.Rules.LHS@), coverage checking (see -- @Agda.TypeChecking.Coverage@) and indirectly also for interactive case -- splitting (see @Agda.Interaction.MakeCase@). -- -- A unification problem (of type @UnifyState@) consists of: -- -- 1. A telescope @varTel@ of free variables, some or all of which are -- flexible (as indicated by @flexVars@). -- -- 2. A telescope @eqTel@ containing the types of the equations. -- -- 3. Left- and right-hand sides for each equation: -- @varTel ⊢ eqLHS : eqTel@ and @varTel ⊢ eqRHS : eqTel@. -- -- The unification algorithm can end in three different ways: -- (type @UnificationResult@): -- -- - A *positive success* @Unifies (tel, sigma, ps)@ with @tel ⊢ sigma : varTel@, -- @tel ⊢ eqLHS [ varTel ↦ sigma ] ≡ eqRHS [ varTel ↦ sigma ] : eqTel@, -- and @tel ⊢ ps : eqTel@. In this case, @sigma;ps@ is an *equivalence* -- between the telescopes @tel@ and @varTel(eqLHS ≡ eqRHS)@. -- -- - A *negative success* @NoUnify err@ means that a conflicting equation -- was found (e.g an equation between two distinct constructors or a cycle). -- -- - A *failure* @DontKnow err@ means that the unifier got stuck. -- -- The unification algorithm itself consists of two parts: -- -- 1. A *unification strategy* takes a unification problem and produces a -- list of suggested unification rules (of type @UnifyStep@). Strategies -- can be constructed by composing simpler strategies (see for example the -- definition of @completeStrategyAt@). -- -- 2. The *unification engine* @unifyStep@ takes a unification rule and tries -- to apply it to the given state, writing the result to the UnifyOutput -- on a success. -- -- The unification steps (of type @UnifyStep@) are the following: -- -- - *Deletion* removes a reflexive equation @u =?= v : a@ if the left- and -- right-hand side @u@ and @v@ are (definitionally) equal. This rule results -- in a failure if --without-K is enabled (see \"Pattern Matching Without K\" -- by Jesper Cockx, Dominique Devriese, and Frank Piessens (ICFP 2014). -- -- - *Solution* solves an equation if one side is (eta-equivalent to) a -- flexible variable. In case both sides are flexible variables, the -- unification strategy makes a choice according to the @chooseFlex@ -- function in @Agda.TypeChecking.Rules.LHS.Problem@. -- -- - *Injectivity* decomposes an equation of the form -- @c us =?= c vs : D pars is@ where @c : Δc → D pars js@ is a constructor -- of the inductive datatype @D@ into a sequence of equations -- @us =?= vs : delta@. In case @D@ is an indexed datatype, -- *higher-dimensional unification* is applied (see below). -- -- - *Conflict* detects absurd equations of the form -- @c₁ us =?= c₂ vs : D pars is@ where @c₁@ and @c₂@ are two distinct -- constructors of the datatype @D@. -- -- - *Cycle* detects absurd equations of the form @x =?= v : D pars is@ where -- @x@ is a variable of the datatype @D@ that occurs strongly rigid in @v@. -- -- - *EtaExpandVar* eta-expands a single flexible variable @x : R@ where @R@ -- is a (eta-expandable) record type, replacing it by one variable for each -- field of @R@. -- -- - *EtaExpandEquation* eta-expands an equation @u =?= v : R@ where @R@ is a -- (eta-expandable) record type, replacing it by one equation for each field -- of @R@. The left- and right-hand sides of these equations are the -- projections of @u@ and @v@. -- -- - *LitConflict* detects absurd equations of the form @l₁ =?= l₂ : A@ where -- @l₁@ and @l₂@ are distinct literal terms. -- -- - *StripSizeSuc* simplifies an equation of the form -- @sizeSuc x =?= sizeSuc y : Size@ to @x =?= y : Size@. -- -- - *SkipIrrelevantEquation@ removes an equation between irrelevant terms. -- -- - *TypeConInjectivity* decomposes an equation of the form -- @D us =?= D vs : Set i@ where @D@ is a datatype. This rule is only used -- if --injective-type-constructors is enabled. -- -- Higher-dimensional unification (new, does not yet appear in any paper): -- If an equation of the form @c us =?= c vs : D pars is@ is encountered where -- @c : Δc → D pars js@ is a constructor of an indexed datatype -- @D pars : Φ → Set ℓ@, it is in general unsound to just simplify this -- equation to @us =?= vs : Δc@. For this reason, the injectivity rule in the -- paper restricts the indices @is@ to be distinct variables that are bound in -- the telescope @eqTel@. But we can be more general by introducing new -- variables @ks@ to the telescope @eqTel@ and equating these to @is@: -- @ -- Δ₁(x : D pars is)Δ₂ -- ≃ -- Δ₁(ks : Φ)(x : D pars ks)(ps : is ≡Φ ks)Δ₂ -- @ -- Since @ks@ are distinct variables, it's now possible to apply injectivity -- to the equation @x@, resulting in the following new equation telescope: -- @ -- Δ₁(ys : Δc)(ps : is ≡Φ js[Δc ↦ ys])Δ₂ -- @ -- Now we can solve the equations @ps@ by recursively calling the unification -- algorithm with flexible variables @Δ₁(ys : Δc)@. This is called -- *higher-dimensional unification* since we are unifying equality proofs -- rather than terms. If the higher-dimensional unification succeeds, the -- resulting telescope serves as the new equation telescope for the original -- unification problem. module Agda.TypeChecking.Rules.LHS.Unify ( UnificationResult , UnificationResult'(..) , unifyIndices ) where import Prelude hiding (null) import Control.Monad import Control.Monad.State import Control.Monad.Writer (WriterT(..), MonadWriter(..), Monoid(..)) import Data.Semigroup hiding (Arg) import qualified Data.List as List import qualified Data.IntSet as IntSet import Data.IntSet (IntSet) import qualified Data.IntMap as IntMap import Data.IntMap (IntMap) import Data.Foldable (Foldable) import Data.Traversable (Traversable,traverse) import Agda.Interaction.Options (optInjectiveTypeConstructors) import Agda.Syntax.Common import Agda.Syntax.Internal import Agda.Syntax.Literal import Agda.TypeChecking.Monad import qualified Agda.TypeChecking.Monad.Benchmark as Bench import Agda.TypeChecking.Monad.Builtin (constructorForm) import Agda.TypeChecking.Conversion -- equalTerm import Agda.TypeChecking.Constraints import Agda.TypeChecking.Datatypes import Agda.TypeChecking.Irrelevance import Agda.TypeChecking.Level (reallyUnLevelView) import Agda.TypeChecking.Reduce import qualified Agda.TypeChecking.Patterns.Match as Match import Agda.TypeChecking.Pretty import Agda.TypeChecking.Substitute import Agda.TypeChecking.Telescope import Agda.TypeChecking.Free import Agda.TypeChecking.Free.Precompute import Agda.TypeChecking.Free.Reduce import Agda.TypeChecking.Records import Agda.TypeChecking.Rules.LHS.Problem import Agda.Utils.Function import Agda.Utils.Functor import Agda.Utils.Lens import Agda.Utils.List import Agda.Utils.ListT import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.Null import Agda.Utils.PartialOrd import Agda.Utils.Permutation import Agda.Utils.Singleton import Agda.Utils.Size import Agda.Utils.Impossible -- | Result of 'unifyIndices'. type UnificationResult = UnificationResult' ( Telescope -- @tel@ , PatternSubstitution -- @sigma@ s.t. @tel ⊢ sigma : varTel@ , [NamedArg DeBruijnPattern] -- @ps@ s.t. @tel ⊢ ps : eqTel @ ) data UnificationResult' a = Unifies a -- ^ Unification succeeded. | NoUnify NegativeUnification -- ^ Terms are not unifiable. | DontKnow [UnificationFailure] -- ^ Some other error happened, unification got stuck. deriving (Show, Functor, Foldable, Traversable) -- | Unify indices. -- -- In @unifyIndices gamma flex a us vs@, -- -- * @us@ and @vs@ are the argument lists to unify, eliminating type @a@. -- -- * @gamma@ is the telescope of free variables in @us@ and @vs@. -- -- * @flex@ is the set of flexible (instantiable) variabes in @us@ and @vs@. -- -- The result is the most general unifier of @us@ and @vs@. unifyIndices :: MonadTCM tcm => Telescope -- ^ @gamma@ -> FlexibleVars -- ^ @flex@ -> Type -- ^ @a@ -> Args -- ^ @us@ -> Args -- ^ @vs@ -> tcm UnificationResult unifyIndices tel flex a [] [] = return $ Unifies (tel, idS, []) unifyIndices tel flex a us vs = liftTCM $ Bench.billTo [Bench.Typing, Bench.CheckLHS, Bench.UnifyIndices] $ do reportSDoc "tc.lhs.unify" 10 $ sep [ "unifyIndices" , nest 2 $ prettyTCM tel , nest 2 $ addContext tel $ text $ show $ map flexVar flex , nest 2 $ addContext tel $ parens (prettyTCM a) , nest 2 $ addContext tel $ prettyList $ map prettyTCM us , nest 2 $ addContext tel $ prettyList $ map prettyTCM vs ] initialState <- initUnifyState tel flex a us vs reportSDoc "tc.lhs.unify" 20 $ "initial unifyState:" <+> prettyTCM initialState reportSDoc "tc.lhs.unify" 70 $ "initial unifyState:" <+> text (show initialState) (result,output) <- runUnifyM $ unify initialState rightToLeftStrategy let ps = applySubst (unifyProof output) $ teleNamedArgs (eqTel initialState) return $ fmap (\s -> (varTel s , unifySubst output , ps)) result ---------------------------------------------------- -- Equalities ---------------------------------------------------- data Equality = Equal { _eqType :: Dom Type , _eqLeft :: Term , _eqRight :: Term } instance Reduce Equality where reduce' (Equal a u v) = Equal <$> reduce' a <*> reduce' u <*> reduce' v eqConstructorForm :: Equality -> TCM Equality eqConstructorForm (Equal a u v) = Equal a <$> constructorForm u <*> constructorForm v eqUnLevel :: Equality -> TCM Equality eqUnLevel (Equal a u v) = Equal a <$> unLevel u <*> unLevel v where unLevel (Level l) = reallyUnLevelView l unLevel u = return u ---------------------------------------------------- -- Unify state ---------------------------------------------------- data UnifyState = UState { varTel :: Telescope -- ^ Don't reduce! , flexVars :: FlexibleVars , eqTel :: Telescope -- ^ Can be reduced eagerly. , eqLHS :: [Arg Term] -- ^ Ends up in dot patterns (should not be reduced eagerly). , eqRHS :: [Arg Term] -- ^ Ends up in dot patterns (should not be reduced eagerly). } deriving (Show) -- Issues #3578 and #4125: avoid unnecessary reduction in unifier. lensVarTel :: Lens' Telescope UnifyState lensVarTel f s = f (varTel s) <&> \ tel -> s { varTel = tel } --UNUSED Liang-Ting Chen 2019-07-16 --lensFlexVars :: Lens' FlexibleVars UnifyState --lensFlexVars f s = f (flexVars s) <&> \ flex -> s { flexVars = flex } lensEqTel :: Lens' Telescope UnifyState lensEqTel f s = f (eqTel s) <&> \ x -> s { eqTel = x } --UNUSED Liang-Ting Chen 2019-07-16 --lensEqLHS :: Lens' Args UnifyState --lensEqLHS f s = f (eqLHS s) <&> \ x -> s { eqLHS = x } --UNUSED Liang-Ting Chen 2019-07-16 --lensEqRHS :: Lens' Args UnifyState --lensEqRHS f s = f (eqRHS s) <&> \ x -> s { eqRHS = x } -- UNUSED Andreas, 2019-10-14 -- instance Reduce UnifyState where -- reduce' (UState var flex eq lhs rhs) = -- UState <$> reduce' var -- <*> pure flex -- <*> reduce' eq -- <*> reduce' lhs -- <*> reduce' rhs -- Andreas, 2019-10-14, issues #3578 and #4125: -- | Don't ever reduce the whole 'varTel', as it will destroy -- readability of the context in interactive editing! -- To make sure this insight is not lost, the following -- dummy instance should prevent a proper 'Reduce' instance for 'UnifyState'. instance Reduce UnifyState where reduce' = __IMPOSSIBLE__ --UNUSED Liang-Ting Chen 2019-07-16 --reduceEqTel :: UnifyState -> TCM UnifyState --reduceEqTel = lensEqTel reduce -- UNUSED Andreas, 2019-10-14 -- instance Normalise UnifyState where -- normalise' (UState var flex eq lhs rhs) = -- UState <$> normalise' var -- <*> pure flex -- <*> normalise' eq -- <*> normalise' lhs -- <*> normalise' rhs instance PrettyTCM UnifyState where prettyTCM state = "UnifyState" $$ nest 2 (vcat $ [ "variable tel: " <+> prettyTCM gamma , "flexible vars: " <+> pshow (map flexVarF $ flexVars state) , "equation tel: " <+> addContext gamma (prettyTCM delta) , "equations: " <+> addContext gamma (prettyList_ (zipWith prettyEquality (eqLHS state) (eqRHS state))) ]) where flexVarF fi = (flexVar fi, flexForced fi) gamma = varTel state delta = eqTel state prettyEquality x y = prettyTCM x <+> "=?=" <+> prettyTCM y initUnifyState :: Telescope -> FlexibleVars -> Type -> Args -> Args -> TCM UnifyState initUnifyState tel flex a lhs rhs = do (tel, a, lhs, rhs) <- instantiateFull (tel, a, lhs, rhs) let n = size lhs unless (n == size rhs) __IMPOSSIBLE__ TelV eqTel _ <- telView a unless (n == size eqTel) __IMPOSSIBLE__ return $ UState tel flex eqTel lhs rhs -- Andreas, 2019-02-23, issue #3578: do not eagerly reduce -- reduce $ UState tel flex eqTel lhs rhs isUnifyStateSolved :: UnifyState -> Bool isUnifyStateSolved = null . eqTel varCount :: UnifyState -> Int varCount = size . varTel -- | Get the type of the i'th variable in the given state getVarType :: Int -> UnifyState -> Dom Type getVarType i s = indexWithDefault __IMPOSSIBLE__ (flattenTel $ varTel s) i getVarTypeUnraised :: Int -> UnifyState -> Dom Type getVarTypeUnraised i s = snd <$> indexWithDefault __IMPOSSIBLE__ (telToList $ varTel s) i eqCount :: UnifyState -> Int eqCount = size . eqTel -- | Get the k'th equality in the given state. The left- and right-hand sides -- of the equality live in the varTel telescope, and the type of the equality -- lives in the varTel++eqTel telescope getEquality :: Int -> UnifyState -> Equality getEquality k UState { eqTel = eqs, eqLHS = lhs, eqRHS = rhs } = Equal (indexWithDefault __IMPOSSIBLE__ (flattenTel eqs) k) (unArg $ indexWithDefault __IMPOSSIBLE__ lhs k) (unArg $ indexWithDefault __IMPOSSIBLE__ rhs k) -- | As getEquality, but with the unraised type getEqualityUnraised :: Int -> UnifyState -> Equality getEqualityUnraised k UState { eqTel = eqs, eqLHS = lhs, eqRHS = rhs } = Equal (snd <$> indexWithDefault __IMPOSSIBLE__ (telToList eqs) k) (unArg $ indexWithDefault __IMPOSSIBLE__ lhs k) (unArg $ indexWithDefault __IMPOSSIBLE__ rhs k) --UNUSED Liang-Ting Chen 2019-07-16 --getEqInfo :: Int -> UnifyState -> ArgInfo --getEqInfo k UState { eqTel = eqs } = -- domInfo $ indexWithDefault __IMPOSSIBLE__ (telToList eqs) k -- ---- | Add a list of equations to the front of the equation telescope --addEqs :: Telescope -> [Arg Term] -> [Arg Term] -> UnifyState -> UnifyState --addEqs tel us vs s = -- s { eqTel = tel `abstract` eqTel s -- , eqLHS = us ++ eqLHS s -- , eqRHS = vs ++ eqRHS s -- } -- where k = size tel -- --addEq :: Type -> Arg Term -> Arg Term -> UnifyState -> UnifyState --addEq a u v = addEqs (ExtendTel (defaultDom a) (Abs underscore EmptyTel)) [u] [v] -- | Instantiate the k'th variable with the given value. -- Returns Nothing if there is a cycle. solveVar :: Int -- ^ Index @k@ -> DeBruijnPattern -- ^ Solution @u@ -> UnifyState -> Maybe (UnifyState, PatternSubstitution) solveVar k u s = case instantiateTelescope (varTel s) k u of Nothing -> Nothing Just (tel' , sigma , rho) -> Just $ (,sigma) $ UState { varTel = tel' , flexVars = permuteFlex (reverseP rho) $ flexVars s , eqTel = applyPatSubst sigma $ eqTel s , eqLHS = applyPatSubst sigma $ eqLHS s , eqRHS = applyPatSubst sigma $ eqRHS s } where permuteFlex :: Permutation -> FlexibleVars -> FlexibleVars permuteFlex perm = mapMaybe $ \(FlexibleVar ai fc k p x) -> FlexibleVar ai fc k p <$> List.findIndex (x==) (permPicks perm) applyUnder :: Int -> Telescope -> Term -> Telescope applyUnder k tel u | k < 0 = __IMPOSSIBLE__ | k == 0 = tel `apply1` u | otherwise = case tel of EmptyTel -> __IMPOSSIBLE__ ExtendTel a tel' -> ExtendTel a $ Abs (absName tel') $ applyUnder (k-1) (absBody tel') u dropAt :: Int -> [a] -> [a] dropAt _ [] = __IMPOSSIBLE__ dropAt k (x:xs) | k < 0 = __IMPOSSIBLE__ | k == 0 = xs | otherwise = x : dropAt (k-1) xs -- | Solve the k'th equation with the given value, which can depend on -- regular variables but not on other equation variables. solveEq :: Int -> Term -> UnifyState -> (UnifyState, PatternSubstitution) solveEq k u s = (,sigma) $ s { eqTel = applyUnder k (eqTel s) u' , eqLHS = dropAt k $ eqLHS s , eqRHS = dropAt k $ eqRHS s } where u' = raise k u n = eqCount s sigma = liftS (n-k-1) $ consS (dotP u') idS --UNUSED Liang-Ting Chen 2019-07-16 ---- | Simplify the k'th equation with the given value (which can depend on other ---- equation variables). Returns Nothing if there is a cycle. --simplifyEq :: Int -> Term -> UnifyState -> Maybe (UnifyState, PatternSubstitution) --simplifyEq k u s = case instantiateTelescope (eqTel s) k u of -- Nothing -> Nothing -- Just (tel' , sigma , rho) -> Just $ (,sigma) $ UState -- { varTel = varTel s -- , flexVars = flexVars s -- , eqTel = tel' -- , eqLHS = permute rho $ eqLHS s -- , eqRHS = permute rho $ eqRHS s -- } -- ---------------------------------------------------- -- Unification strategies ---------------------------------------------------- data UnifyStep = Deletion { deleteAt :: Int , deleteType :: Type , deleteLeft :: Term , deleteRight :: Term } | Solution { solutionAt :: Int , solutionType :: Dom Type , solutionVar :: FlexibleVar Int , solutionTerm :: Term } | Injectivity { injectAt :: Int , injectType :: Type , injectDatatype :: QName , injectParameters :: Args , injectIndices :: Args , injectConstructor :: ConHead } | Conflict { conflictAt :: Int , conflictType :: Type , conflictDatatype :: QName , conflictParameters :: Args , conflictLeft :: Term , conflictRight :: Term } | Cycle { cycleAt :: Int , cycleType :: Type , cycleDatatype :: QName , cycleParameters :: Args , cycleVar :: Int , cycleOccursIn :: Term } | EtaExpandVar { expandVar :: FlexibleVar Int , expandVarRecordType :: QName , expandVarParameters :: Args } | EtaExpandEquation { expandAt :: Int , expandRecordType :: QName , expandParameters :: Args } | LitConflict { litConflictAt :: Int , litType :: Type , litConflictLeft :: Literal , litConflictRight :: Literal } | StripSizeSuc { stripAt :: Int , stripArgLeft :: Term , stripArgRight :: Term } | SkipIrrelevantEquation { skipIrrelevantAt :: Int } | TypeConInjectivity { typeConInjectAt :: Int , typeConstructor :: QName , typeConArgsLeft :: Args , typeConArgsRight :: Args } deriving (Show) instance PrettyTCM UnifyStep where prettyTCM step = case step of Deletion k a u v -> "Deletion" $$ nest 2 (vcat $ [ "position: " <+> text (show k) , "type: " <+> prettyTCM a , "lhs: " <+> prettyTCM u , "rhs: " <+> prettyTCM v ]) Solution k a i u -> "Solution" $$ nest 2 (vcat $ [ "position: " <+> text (show k) , "type: " <+> prettyTCM a , "variable: " <+> text (show (flexVar i, flexPos i, flexForced i, flexKind i)) , "term: " <+> prettyTCM u ]) Injectivity k a d pars ixs c -> "Injectivity" $$ nest 2 (vcat $ [ "position: " <+> text (show k) , "type: " <+> prettyTCM a , "datatype: " <+> prettyTCM d , "parameters: " <+> prettyList_ (map prettyTCM pars) , "indices: " <+> prettyList_ (map prettyTCM ixs) , "constructor:" <+> prettyTCM c ]) Conflict k a d pars u v -> "Conflict" $$ nest 2 (vcat $ [ "position: " <+> text (show k) , "type: " <+> prettyTCM a , "datatype: " <+> prettyTCM d , "parameters: " <+> prettyList_ (map prettyTCM pars) , "lhs: " <+> prettyTCM u , "rhs: " <+> prettyTCM v ]) Cycle k a d pars i u -> "Cycle" $$ nest 2 (vcat $ [ "position: " <+> text (show k) , "type: " <+> prettyTCM a , "datatype: " <+> prettyTCM d , "parameters: " <+> prettyList_ (map prettyTCM pars) , "variable: " <+> text (show i) , "term: " <+> prettyTCM u ]) EtaExpandVar fi r pars -> "EtaExpandVar" $$ nest 2 (vcat $ [ "variable: " <+> text (show fi) , "record type:" <+> prettyTCM r , "parameters: " <+> prettyTCM pars ]) EtaExpandEquation k r pars -> "EtaExpandEquation" $$ nest 2 (vcat $ [ "position: " <+> text (show k) , "record type:" <+> prettyTCM r , "parameters: " <+> prettyTCM pars ]) LitConflict k a u v -> "LitConflict" $$ nest 2 (vcat $ [ "position: " <+> text (show k) , "type: " <+> prettyTCM a , "lhs: " <+> prettyTCM u , "rhs: " <+> prettyTCM v ]) StripSizeSuc k u v -> "StripSizeSuc" $$ nest 2 (vcat $ [ "position: " <+> text (show k) , "lhs: " <+> prettyTCM u , "rhs: " <+> prettyTCM v ]) SkipIrrelevantEquation k -> "SkipIrrelevantEquation" $$ nest 2 (vcat $ [ "position: " <+> text (show k) ]) TypeConInjectivity k d us vs -> "TypeConInjectivity" $$ nest 2 (vcat $ [ "position: " <+> text (show k) , "datatype: " <+> prettyTCM d , "lhs: " <+> prettyList_ (map prettyTCM us) , "rhs: " <+> prettyList_ (map prettyTCM vs) ]) type UnifyStrategy = UnifyState -> ListT TCM UnifyStep --UNUSED Liang-Ting Chen 2019-07-16 --leftToRightStrategy :: UnifyStrategy --leftToRightStrategy s = -- msum (for [0..n-1] $ \k -> completeStrategyAt k s) -- where n = size $ eqTel s rightToLeftStrategy :: UnifyStrategy rightToLeftStrategy s = msum (for (downFrom n) $ \k -> completeStrategyAt k s) where n = size $ eqTel s completeStrategyAt :: Int -> UnifyStrategy completeStrategyAt k s = msum $ map (\strat -> strat k s) $ [ skipIrrelevantStrategy , basicUnifyStrategy , literalStrategy , dataStrategy , etaExpandVarStrategy , etaExpandEquationStrategy , injectiveTypeConStrategy , injectivePragmaStrategy , simplifySizesStrategy , checkEqualityStrategy ] -- | @isHom n x@ returns x lowered by n if the variables 0..n-1 don't occur in x. -- -- This is naturally sensitive to normalization. isHom :: (Free a, Subst Term a) => Int -> a -> Maybe a isHom n x = do guard $ getAll $ runFree (All . (>= n)) IgnoreNot x return $ raise (-n) x findFlexible :: Int -> FlexibleVars -> Maybe (FlexibleVar Nat) findFlexible i flex = let flex' = map flexVar flex flexible i = i `elem` flex' in List.find ((i ==) . flexVar) flex basicUnifyStrategy :: Int -> UnifyStrategy basicUnifyStrategy k s = do Equal dom@Dom{unDom = a} u v <- liftTCM $ eqUnLevel (getEquality k s) -- Andreas, 2019-02-23: reduce equality for the sake of isHom? ha <- fromMaybeMP $ isHom n a (mi, mj) <- liftTCM $ addContext (varTel s) $ (,) <$> isEtaVar u ha <*> isEtaVar v ha liftTCM $ reportSDoc "tc.lhs.unify" 30 $ "isEtaVar results: " <+> text (show [mi,mj]) case (mi, mj) of (Just i, Just j) | i == j -> mzero -- Taken care of by checkEqualityStrategy (Just i, Just j) | Just fi <- findFlexible i flex , Just fj <- findFlexible j flex -> do let choice = chooseFlex fi fj firstTryLeft = msum [ return (Solution k dom{unDom = ha} fi v) , return (Solution k dom{unDom = ha} fj u)] firstTryRight = msum [ return (Solution k dom{unDom = ha} fj u) , return (Solution k dom{unDom = ha} fi v)] liftTCM $ reportSDoc "tc.lhs.unify" 40 $ "fi = " <+> text (show fi) liftTCM $ reportSDoc "tc.lhs.unify" 40 $ "fj = " <+> text (show fj) liftTCM $ reportSDoc "tc.lhs.unify" 40 $ "chooseFlex: " <+> text (show choice) case choice of ChooseLeft -> firstTryLeft ChooseRight -> firstTryRight ExpandBoth -> mzero -- This should be taken care of by etaExpandEquationStrategy ChooseEither -> firstTryRight (Just i, _) | Just fi <- findFlexible i flex -> return $ Solution k dom{unDom = ha} fi v (_, Just j) | Just fj <- findFlexible j flex -> return $ Solution k dom{unDom = ha} fj u _ -> mzero where flex = flexVars s n = eqCount s dataStrategy :: Int -> UnifyStrategy dataStrategy k s = do Equal Dom{unDom = a} u v <- liftTCM $ eqConstructorForm =<< eqUnLevel =<< reduce (getEqualityUnraised k s) case unEl a of Def d es | Type{} <- getSort a -> do npars <- catMaybesMP $ liftTCM $ getNumberOfParameters d let (pars,ixs) = splitAt npars $ fromMaybe __IMPOSSIBLE__ $ allApplyElims es liftTCM $ reportSDoc "tc.lhs.unify" 40 $ addContext (varTel s `abstract` eqTel s) $ "Found equation at datatype " <+> prettyTCM d <+> " with parameters " <+> prettyTCM (raise (size (eqTel s) - k) pars) case (u, v) of (Con c _ _ , Con c' _ _ ) | c == c' -> return $ Injectivity k a d pars ixs c (Con c _ _ , Con c' _ _ ) -> return $ Conflict k a d pars u v (Var i [] , v ) -> ifOccursStronglyRigid i v $ return $ Cycle k a d pars i v (u , Var j [] ) -> ifOccursStronglyRigid j u $ return $ Cycle k a d pars j u _ -> mzero _ -> mzero where ifOccursStronglyRigid i u ret = do -- Call forceNotFree to reduce u as far as possible -- around any occurrences of i (_ , u) <- liftTCM $ forceNotFree (singleton i) u case flexRigOccurrenceIn i u of Just StronglyRigid -> ret _ -> mzero checkEqualityStrategy :: Int -> UnifyStrategy checkEqualityStrategy k s = do let Equal Dom{unDom = a} u v = getEquality k s n = eqCount s ha <- fromMaybeMP $ isHom n a return $ Deletion k ha u v literalStrategy :: Int -> UnifyStrategy literalStrategy k s = do let n = eqCount s Equal Dom{unDom = a} u v <- liftTCM $ eqUnLevel $ getEquality k s ha <- fromMaybeMP $ isHom n a case (u , v) of (Lit l1 , Lit l2) | l1 == l2 -> return $ Deletion k ha u v | otherwise -> return $ LitConflict k ha l1 l2 _ -> mzero etaExpandVarStrategy :: Int -> UnifyStrategy etaExpandVarStrategy k s = do Equal Dom{unDom = a} u v <- liftTCM $ eqUnLevel <=< reduce $ getEquality k s shouldEtaExpand u v a s `mplus` shouldEtaExpand v u a s where -- TODO: use IsEtaVar to check if the term is a variable shouldEtaExpand :: Term -> Term -> Type -> UnifyStrategy shouldEtaExpand (Var i es) v a s = do fi <- fromMaybeMP $ findFlexible i (flexVars s) liftTCM $ reportSDoc "tc.lhs.unify" 50 $ "Found flexible variable " <+> text (show i) -- Issue 2888: Do this if there are only projections or if it's a singleton -- record or if it's unified against a record constructor term. Basically -- we need to avoid EtaExpandEquation if EtaExpandVar is possible, or the -- forcing translation is unhappy. b <- reduce $ unDom $ getVarTypeUnraised (varCount s - 1 - i) s (d, pars) <- catMaybesMP $ liftTCM $ isEtaRecordType b ps <- fromMaybeMP $ allProjElims es guard =<< orM [ pure $ not $ null ps , liftTCM $ isRecCon v -- is the other term a record constructor? , liftTCM $ (Right True ==) <$> isSingletonRecord d pars ] liftTCM $ reportSDoc "tc.lhs.unify" 50 $ "with projections " <+> prettyTCM (map snd ps) liftTCM $ reportSDoc "tc.lhs.unify" 50 $ "at record type " <+> prettyTCM d return $ EtaExpandVar fi d pars shouldEtaExpand _ _ _ _ = mzero isRecCon (Con c _ _) = isJust <$> isRecordConstructor (conName c) isRecCon _ = return False etaExpandEquationStrategy :: Int -> UnifyStrategy etaExpandEquationStrategy k s = do -- Andreas, 2019-02-23, re #3578, is the following reduce redundant? Equal Dom{unDom = a} u v <- reduce $ getEqualityUnraised k s (d, pars) <- catMaybesMP $ liftTCM $ addContext tel $ isEtaRecordType a guard =<< orM [ liftTCM $ (Right True ==) <$> isSingletonRecord d pars , liftTCM $ shouldProject u , liftTCM $ shouldProject v ] return $ EtaExpandEquation k d pars where shouldProject :: Term -> TCM Bool shouldProject u = case u of Def f es -> usesCopatterns f Con c _ _ -> isJust <$> isRecordConstructor (conName c) Var _ _ -> return False Lam _ _ -> __IMPOSSIBLE__ Lit _ -> __IMPOSSIBLE__ Pi _ _ -> __IMPOSSIBLE__ Sort _ -> __IMPOSSIBLE__ Level _ -> __IMPOSSIBLE__ MetaV _ _ -> return False DontCare _ -> return False Dummy s _ -> __IMPOSSIBLE_VERBOSE__ s tel = varTel s `abstract` telFromList (take k $ telToList $ eqTel s) simplifySizesStrategy :: Int -> UnifyStrategy simplifySizesStrategy k s = do isSizeName <- liftTCM isSizeNameTest Equal Dom{unDom = a} u v <- reduce $ getEquality k s case unEl a of Def d _ -> do guard $ isSizeName d su <- liftTCM $ sizeView u sv <- liftTCM $ sizeView v case (su, sv) of (SizeSuc u, SizeSuc v) -> return $ StripSizeSuc k u v (SizeSuc u, SizeInf ) -> return $ StripSizeSuc k u v (SizeInf , SizeSuc v) -> return $ StripSizeSuc k u v _ -> mzero _ -> mzero injectiveTypeConStrategy :: Int -> UnifyStrategy injectiveTypeConStrategy k s = do injTyCon <- liftTCM $ optInjectiveTypeConstructors <$> pragmaOptions guard injTyCon eq <- liftTCM $ eqUnLevel <=< reduce $ getEquality k s case eq of Equal a u@(Def d es) v@(Def d' es') | d == d' -> do -- d must be a data, record or axiom def <- liftTCM $ getConstInfo d guard $ case theDef def of Datatype{} -> True Record{} -> True Axiom{} -> True DataOrRecSig{} -> True AbstractDefn{} -> False -- True triggers issue #2250 Function{} -> False Primitive{} -> False GeneralizableVar{} -> __IMPOSSIBLE__ Constructor{} -> __IMPOSSIBLE__ -- Never a type! let us = fromMaybe __IMPOSSIBLE__ $ allApplyElims es vs = fromMaybe __IMPOSSIBLE__ $ allApplyElims es' return $ TypeConInjectivity k d us vs _ -> mzero injectivePragmaStrategy :: Int -> UnifyStrategy injectivePragmaStrategy k s = do eq <- liftTCM $ eqUnLevel <=< reduce $ getEquality k s case eq of Equal a u@(Def d es) v@(Def d' es') | d == d' -> do -- d must have an injective pragma def <- liftTCM $ getConstInfo d guard $ defInjective def let us = fromMaybe __IMPOSSIBLE__ $ allApplyElims es vs = fromMaybe __IMPOSSIBLE__ $ allApplyElims es' return $ TypeConInjectivity k d us vs _ -> mzero skipIrrelevantStrategy :: Int -> UnifyStrategy skipIrrelevantStrategy k s = do let Equal a _ _ = getEquality k s -- reduce not necessary guard =<< isIrrelevantOrPropM a -- reduction takes place here return $ SkipIrrelevantEquation k ---------------------------------------------------- -- Actually doing the unification ---------------------------------------------------- data UnifyLogEntry = UnificationStep UnifyState UnifyStep -- | UnificationDone UnifyState -- unused? type UnifyLog = [UnifyLogEntry] data UnifyOutput = UnifyOutput { unifySubst :: PatternSubstitution , unifyProof :: PatternSubstitution , unifyLog :: UnifyLog } instance Semigroup UnifyOutput where x <> y = UnifyOutput { unifySubst = unifySubst y `composeS` unifySubst x , unifyProof = unifyProof y `composeS` unifyProof x , unifyLog = unifyLog x ++ unifyLog y } instance Monoid UnifyOutput where mempty = UnifyOutput IdS IdS [] mappend = (<>) type UnifyM a = WriterT UnifyOutput TCM a tellUnifySubst :: PatternSubstitution -> UnifyM () tellUnifySubst sub = tell $ UnifyOutput sub IdS [] tellUnifyProof :: PatternSubstitution -> UnifyM () tellUnifyProof sub = tell $ UnifyOutput IdS sub [] writeUnifyLog :: UnifyLogEntry -> UnifyM () writeUnifyLog x = tell $ UnifyOutput IdS IdS [x] runUnifyM :: UnifyM a -> TCM (a,UnifyOutput) runUnifyM = runWriterT unifyStep :: UnifyState -> UnifyStep -> UnifyM (UnificationResult' UnifyState) unifyStep s Deletion{ deleteAt = k , deleteType = a , deleteLeft = u , deleteRight = v } = do -- Check definitional equality of u and v isReflexive <- liftTCM $ addContext (varTel s) $ tryCatch $ do dontAssignMetas $ noConstraints $ equalTerm a u v withoutK <- liftTCM withoutKOption case isReflexive of Just err -> return $ DontKnow [] _ | withoutK -> return $ DontKnow [UnifyReflexiveEq (varTel s) a u] _ -> do let (s', sigma) = solveEq k u s tellUnifyProof sigma Unifies <$> liftTCM (lensEqTel reduce s') unifyStep s step@Solution{} = solutionStep RetryNormalised s step unifyStep s (Injectivity k a d pars ixs c) = do ifM (liftTCM $ consOfHIT $ conName c) (return $ DontKnow []) $ do withoutK <- liftTCM withoutKOption let n = eqCount s -- Split equation telescope into parts before and after current equation let (eqListTel1, _ : eqListTel2) = splitAt k $ telToList $ eqTel s (eqTel1, eqTel2) = (telFromList eqListTel1, telFromList eqListTel2) -- Get constructor telescope and target indices cdef <- liftTCM (getConInfo c) let ctype = defType cdef `piApply` pars forced = defForced cdef addContext (varTel s `abstract` eqTel1) $ reportSDoc "tc.lhs.unify" 40 $ "Constructor type: " <+> prettyTCM ctype TelV ctel ctarget <- liftTCM $ telView ctype let cixs = case unEl ctarget of Def d' es | d == d' -> let args = fromMaybe __IMPOSSIBLE__ $ allApplyElims es in drop (length pars) args _ -> __IMPOSSIBLE__ -- Get index telescope of the datatype dtype <- (`piApply` pars) . defType <$> liftTCM (getConstInfo d) addContext (varTel s `abstract` eqTel1) $ reportSDoc "tc.lhs.unify" 40 $ "Datatype type: " <+> prettyTCM dtype -- This is where the magic of higher-dimensional unification happens -- We need to generalize the indices `ixs` to the target indices of the -- constructor `cixs`. This is done by calling the unification algorithm -- recursively (this doesn't get stuck in a loop because a type should -- never be indexed over itself). Note the similarity with the -- computeNeighbourhood function in Agda.TypeChecking.Coverage. let hduTel = eqTel1 `abstract` ctel notforced = replicate (size hduTel) NotForced res <- liftTCM $ addContext (varTel s) $ unifyIndices hduTel (allFlexVars notforced hduTel) (raise (size ctel) dtype) (raise (size ctel) ixs) cixs case res of -- Higher-dimensional unification can never end in a conflict, -- because `cong c1 ...` and `cong c2 ...` don't even have the -- same type for distinct constructors c1 and c2. NoUnify _ -> __IMPOSSIBLE__ -- Higher-dimensional unification has failed. If not --without-K, -- we can simply ignore the higher-dimensional equations and -- simplify the equation as in the non-indexed case. DontKnow _ | not withoutK -> do -- using the same variable names as in the case where hdu succeeds. let eqTel1' = eqTel1 `abstract` ctel rho1 = raiseS (size ctel) ceq = ConP c noConPatternInfo $ teleNamedArgs ctel rho3 = consS ceq rho1 eqTel2' = applyPatSubst rho3 eqTel2 eqTel' = eqTel1' `abstract` eqTel2' rho = liftS (size eqTel2) rho3 tellUnifyProof rho eqTel' <- liftTCM $ reduce eqTel' -- Compute new lhs and rhs by matching the old ones against rho (lhs', rhs') <- do let ps = applySubst rho $ teleNamedArgs $ eqTel s (lhsMatch, _) <- liftTCM $ runReduceM $ Match.matchPatterns ps $ eqLHS s (rhsMatch, _) <- liftTCM $ runReduceM $ Match.matchPatterns ps $ eqRHS s case (lhsMatch, rhsMatch) of (Match.Yes _ lhs', Match.Yes _ rhs') -> return (reverse $ Match.matchedArgs __IMPOSSIBLE__ (size eqTel') lhs', reverse $ Match.matchedArgs __IMPOSSIBLE__ (size eqTel') rhs') _ -> __IMPOSSIBLE__ return $ Unifies $ s { eqTel = eqTel' , eqLHS = lhs' , eqRHS = rhs' } DontKnow _ -> let n = eqCount s Equal Dom{unDom = a} u v = getEquality k s in return $ DontKnow [UnifyIndicesNotVars (varTel s `abstract` eqTel s) a (raise n u) (raise n v) (raise (n-k) ixs)] Unifies (eqTel1', rho0, _) -> do -- Split ps0 into parts for eqTel1 and ctel let (rho1, rho2) = splitS (size ctel) rho0 -- Compute new equation telescope context and substitution let ceq = ConP c noConPatternInfo $ applySubst rho2 $ teleNamedArgs ctel rho3 = consS ceq rho1 eqTel2' = applyPatSubst rho3 eqTel2 eqTel' = eqTel1' `abstract` eqTel2' rho = liftS (size eqTel2) rho3 tellUnifyProof rho eqTel' <- liftTCM $ reduce eqTel' -- Compute new lhs and rhs by matching the old ones against rho (lhs', rhs') <- do let ps = applySubst rho $ teleNamedArgs $ eqTel s (lhsMatch, _) <- liftTCM $ runReduceM $ Match.matchPatterns ps $ eqLHS s (rhsMatch, _) <- liftTCM $ runReduceM $ Match.matchPatterns ps $ eqRHS s case (lhsMatch, rhsMatch) of (Match.Yes _ lhs', Match.Yes _ rhs') -> return (reverse $ Match.matchedArgs __IMPOSSIBLE__ (size eqTel') lhs', reverse $ Match.matchedArgs __IMPOSSIBLE__ (size eqTel') rhs') _ -> __IMPOSSIBLE__ return $ Unifies $ s { eqTel = eqTel' , eqLHS = lhs' , eqRHS = rhs' } unifyStep s Conflict { conflictLeft = u , conflictRight = v } = case u of Con h _ _ -> do ifM (liftTCM $ consOfHIT $ conName h) (return $ DontKnow []) $ do return $ NoUnify $ UnifyConflict (varTel s) u v _ -> __IMPOSSIBLE__ unifyStep s Cycle { cycleVar = i , cycleOccursIn = u } = case u of Con h _ _ -> do ifM (liftTCM $ consOfHIT $ conName h) (return $ DontKnow []) $ do return $ NoUnify $ UnifyCycle (varTel s) i u _ -> __IMPOSSIBLE__ unifyStep s EtaExpandVar{ expandVar = fi, expandVarRecordType = d , expandVarParameters = pars } = do delta <- liftTCM $ (`apply` pars) <$> getRecordFieldTypes d c <- liftTCM $ getRecordConstructor d let nfields = size delta (varTel', rho) = expandTelescopeVar (varTel s) (m-1-i) delta c projectFlexible = [ FlexibleVar (getArgInfo fi) (flexForced fi) (projFlexKind j) (flexPos fi) (i+j) | j <- [0..nfields-1] ] tellUnifySubst $ rho return $ Unifies $ UState { varTel = varTel' , flexVars = projectFlexible ++ liftFlexibles nfields (flexVars s) , eqTel = applyPatSubst rho $ eqTel s , eqLHS = applyPatSubst rho $ eqLHS s , eqRHS = applyPatSubst rho $ eqRHS s } where i = flexVar fi m = varCount s n = eqCount s projFlexKind :: Int -> FlexibleVarKind projFlexKind j = case flexKind fi of RecordFlex ks -> indexWithDefault ImplicitFlex ks j ImplicitFlex -> ImplicitFlex DotFlex -> DotFlex OtherFlex -> OtherFlex liftFlexible :: Int -> Int -> Maybe Int liftFlexible n j = if j == i then Nothing else Just (if j > i then j + (n-1) else j) liftFlexibles :: Int -> FlexibleVars -> FlexibleVars liftFlexibles n fs = mapMaybe (traverse $ liftFlexible n) fs unifyStep s EtaExpandEquation{ expandAt = k, expandRecordType = d, expandParameters = pars } = do delta <- liftTCM $ (`apply` pars) <$> getRecordFieldTypes d c <- liftTCM $ getRecordConstructor d lhs <- expandKth $ eqLHS s rhs <- expandKth $ eqRHS s let (tel, sigma) = expandTelescopeVar (eqTel s) k delta c tellUnifyProof sigma Unifies <$> do liftTCM $ lensEqTel reduce $ s { eqTel = tel , eqLHS = lhs , eqRHS = rhs } where expandKth us = do let (us1,v:us2) = fromMaybe __IMPOSSIBLE__ $ splitExactlyAt k us vs <- liftTCM $ snd <$> etaExpandRecord d pars (unArg v) vs <- liftTCM $ reduce vs return $ us1 ++ vs ++ us2 unifyStep s LitConflict { litType = a , litConflictLeft = l , litConflictRight = l' } = return $ NoUnify $ UnifyConflict (varTel s) (Lit l) (Lit l') unifyStep s (StripSizeSuc k u v) = do sizeTy <- liftTCM sizeType sizeSu <- liftTCM $ sizeSuc 1 (var 0) let n = eqCount s sub = liftS (n-k-1) $ consS sizeSu $ raiseS 1 eqFlatTel = flattenTel $ eqTel s eqFlatTel' = applySubst sub $ updateAt k (fmap $ const sizeTy) $ eqFlatTel eqTel' = unflattenTel (teleNames $ eqTel s) eqFlatTel' -- TODO: tellUnifyProof sub -- but sizeSu is not a constructor, so sub is not a PatternSubstitution! return $ Unifies $ s { eqTel = eqTel' , eqLHS = updateAt k (const $ defaultArg u) $ eqLHS s , eqRHS = updateAt k (const $ defaultArg v) $ eqRHS s } unifyStep s (SkipIrrelevantEquation k) = do let lhs = eqLHS s (s', sigma) = solveEq k (DontCare $ unArg $ indexWithDefault __IMPOSSIBLE__ lhs k) s tellUnifyProof sigma return $ Unifies s' unifyStep s (TypeConInjectivity k d us vs) = do dtype <- defType <$> liftTCM (getConstInfo d) TelV dtel _ <- liftTCM $ telView dtype let n = eqCount s m = size dtel deq = Def d $ map Apply $ teleArgs dtel -- TODO: tellUnifyProof ??? -- but d is not a constructor... Unifies <$> do liftTCM $ lensEqTel reduce $ s { eqTel = dtel `abstract` applyUnder k (eqTel s) (raise k deq) , eqLHS = us ++ dropAt k (eqLHS s) , eqRHS = vs ++ dropAt k (eqRHS s) } data RetryNormalised = RetryNormalised | DontRetryNormalised deriving (Eq, Show) solutionStep :: RetryNormalised -> UnifyState -> UnifyStep -> UnifyM (UnificationResult' UnifyState) solutionStep retry s step@Solution{ solutionAt = k , solutionType = dom@Dom{ unDom = a } , solutionVar = fi@FlexibleVar{ flexVar = i } , solutionTerm = u } = do let m = varCount s -- Now we have to be careful about forced variables in `u`. If they appear -- in pattern positions we need to bind them there rather in their forced positions. We can safely -- ignore non-pattern positions and forced pattern positions, because in that case there will be -- other equations where the variable can be bound. -- NOTE: If we're doing make-case we ignore forced variables. This is safe since we take the -- result of unification and build user clauses that will be checked again with forcing turned on. inMakeCase <- viewTC eMakeCase let forcedVars | inMakeCase = IntMap.empty | otherwise = IntMap.fromList [ (flexVar fi, getModality fi) | fi <- flexVars s, flexForced fi == Forced ] (p, bound) <- patternBindingForcedVars forcedVars u -- To maintain the invariant that each variable in varTel is bound exactly once in the pattern -- subtitution we need to turn the bound variables in `p` into dot patterns in the rest of the -- substitution. let dotSub = foldr composeS idS [ inplaceS i (dotP (Var i [])) | i <- IntMap.keys bound ] -- We moved the binding site of some forced variables, so we need to update their modalities in -- the telescope. The new modality is the combination of the modality of the variable we are -- instantiating and the modality of the binding site in the pattern (return by -- patternBindingForcedVars). let updModality md vars tel | IntMap.null vars = tel | otherwise = telFromList $ zipWith upd (downFrom $ size tel) (telToList tel) where upd i a | Just md' <- IntMap.lookup i vars = setModality (md <> md') a | otherwise = a s <- return $ s { varTel = updModality (getModality fi) bound (varTel s) } reportSDoc "tc.lhs.unify.force" 45 $ vcat [ "forcedVars =" <+> pretty (IntMap.keys forcedVars) , "u =" <+> prettyTCM u , "p =" <+> prettyTCM p , "bound =" <+> pretty (IntMap.keys bound) , "dotSub =" <+> pretty dotSub ] -- Check that the type of the variable is equal to the type of the equation -- (not just a subtype), otherwise we cannot instantiate (see Issue 2407). let dom'@Dom{ unDom = a' } = getVarType (m-1-i) s equalTypes <- liftTCM $ addContext (varTel s) $ tryCatch $ do reportSDoc "tc.lhs.unify" 45 $ "Equation type: " <+> prettyTCM a reportSDoc "tc.lhs.unify" 45 $ "Variable type: " <+> prettyTCM a' dontAssignMetas $ noConstraints $ equalType a a' -- The conditions on the relevances are as follows (see #2640): -- - If the type of the equation is relevant, then the solution must be -- usable in a relevant position. -- - If the type of the equation is (shape-)irrelevant, then the solution -- must be usable in a μ-relevant position where μ is the relevance -- of the variable being solved. -- -- Jesper, Andreas, 2018-10-17: the quantity of the equation is morally -- always @Quantity0@, since the indices of the data type are runtime erased. -- Thus, we need not change the quantity of the solution. let eqrel = getRelevance dom eqmod = getModality dom varmod = getModality dom' mod = applyUnless (NonStrict `moreRelevant` eqrel) (setRelevance eqrel) $ varmod reportSDoc "tc.lhs.unify" 65 $ text $ "Equation modality: " ++ show (getModality dom) reportSDoc "tc.lhs.unify" 65 $ text $ "Variable modality: " ++ show varmod reportSDoc "tc.lhs.unify" 65 $ text $ "Solution must be usable in a " ++ show mod ++ " position." -- Andreas, 2018-10-18 -- Currently, the modality check has problems with meta-variables created in the type signature, -- and thus, in quantity 0, that get into terms using the unifier, and there are checked to be -- non-erased, i.e., have quantity ω. -- Ulf, 2019-12-13. We still do it though. usable <- liftTCM $ addContext (varTel s) $ usableMod mod u reportSDoc "tc.lhs.unify" 45 $ "Modality ok: " <+> prettyTCM usable unless usable $ reportSLn "tc.lhs.unify" 65 $ "Rejected solution: " ++ show u -- We need a Flat equality to solve a Flat variable. -- This also ought to take care of the need for a usableCohesion check. if not (getCohesion eqmod `moreCohesion` getCohesion varmod) then return $ DontKnow [] else do case equalTypes of Just err -> return $ DontKnow [] Nothing | usable -> case solveVar (m - 1 - i) p s of Nothing | retry == RetryNormalised -> do u <- liftTCM $ normalise u s <- liftTCM $ lensVarTel normalise s solutionStep DontRetryNormalised s step{ solutionTerm = u } Nothing -> return $ DontKnow [UnifyRecursiveEq (varTel s) a i u] Just (s', sub) -> do let rho = sub `composeS` dotSub tellUnifySubst rho let (s'', sigma) = solveEq k (applyPatSubst rho u) s' tellUnifyProof sigma return $ Unifies s'' -- Andreas, 2019-02-23, issue #3578: do not eagerly reduce -- Unifies <$> liftTCM (reduce s'') Nothing -> return $ DontKnow [UnifyUnusableModality (varTel s) a i u mod] solutionStep _ _ _ = __IMPOSSIBLE__ unify :: UnifyState -> UnifyStrategy -> UnifyM (UnificationResult' UnifyState) unify s strategy = if isUnifyStateSolved s then return $ Unifies s else tryUnifyStepsAndContinue (strategy s) where tryUnifyStepsAndContinue :: ListT TCM UnifyStep -> UnifyM (UnificationResult' UnifyState) tryUnifyStepsAndContinue steps = do x <- foldListT tryUnifyStep failure $ liftListT lift steps case x of Unifies s' -> unify s' strategy NoUnify err -> return $ NoUnify err DontKnow err -> return $ DontKnow err tryUnifyStep :: UnifyStep -> UnifyM (UnificationResult' UnifyState) -> UnifyM (UnificationResult' UnifyState) tryUnifyStep step fallback = do addContext (varTel s) $ reportSDoc "tc.lhs.unify" 20 $ "trying unifyStep" <+> prettyTCM step x <- unifyStep s step case x of Unifies s' -> do reportSDoc "tc.lhs.unify" 20 $ "unifyStep successful." reportSDoc "tc.lhs.unify" 20 $ "new unifyState:" <+> prettyTCM s' writeUnifyLog $ UnificationStep s step return x NoUnify{} -> return x DontKnow err1 -> do y <- fallback case y of DontKnow err2 -> return $ DontKnow $ err1 ++ err2 _ -> return y failure :: UnifyM (UnificationResult' a) failure = return $ DontKnow [] -- | Turn a term into a pattern binding as many of the given forced variables as possible (in -- non-forced positions). patternBindingForcedVars :: (HasConstInfo m, MonadReduce m) => IntMap Modality -> Term -> m (DeBruijnPattern, IntMap Modality) patternBindingForcedVars forced v = do let v' = precomputeFreeVars_ v runWriterT (evalStateT (go defaultModality v') forced) where noForced v = IntSet.null . IntSet.intersection (precomputedFreeVars v) . IntMap.keysSet <$> get bind md i = do Just md' <- gets $ IntMap.lookup i if related md POLE md' -- The new binding site must be more relevant (more relevant = smaller). then do -- The forcing analysis guarantees that there exists such a position. tell $ IntMap.singleton i md modify $ IntMap.delete i return $ varP (deBruijnVar i) else return $ dotP (Var i []) go md v = ifM (noForced v) (return $ dotP v) $ do v' <- lift $ lift $ reduce v case v' of Var i [] -> bind md i -- we know i is forced Con c ci es | Just vs <- allApplyElims es -> do fs <- defForced <$> getConstInfo (conName c) let goArg Forced v = return $ fmap (unnamed . dotP) v goArg NotForced v = fmap unnamed <$> traverse (go $ md <> getModality v) v (ps, bound) <- listen $ zipWithM goArg (fs ++ repeat NotForced) vs if IntMap.null bound then return $ dotP v -- bound nothing else do let cpi = (toConPatternInfo ci) { conPRecord = True, conPLazy = True } -- Not setting conPType. Is this a problem? return $ ConP c cpi $ map (setOrigin Inserted) ps | otherwise -> return $ dotP v -- Higher constructor (es has IApply) -- Non-pattern positions Var _ (_:_) -> return $ dotP v Lam{} -> return $ dotP v Pi{} -> return $ dotP v Def{} -> return $ dotP v MetaV{} -> return $ dotP v Sort{} -> return $ dotP v Level{} -> return $ dotP v DontCare{} -> return $ dotP v Dummy{} -> return $ dotP v Lit{} -> __IMPOSSIBLE__