{-# LANGUAGE NondecreasingIndentation #-} module Agda.TypeChecking.Conversion where import Control.Arrow (first, second) import Control.Monad import Control.Monad.Fail (MonadFail) import Data.Function import qualified Data.List as List import Data.List.NonEmpty (NonEmpty(..)) import qualified Data.List.NonEmpty as NonEmpty import qualified Data.Map as Map import qualified Data.Set as Set import qualified Data.IntSet as IntSet import Agda.Syntax.Abstract.Views (isSet) import Agda.Syntax.Common import Agda.Syntax.Internal import Agda.Syntax.Internal.MetaVars import Agda.Syntax.Translation.InternalToAbstract (reify) import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin import Agda.TypeChecking.MetaVars import Agda.TypeChecking.MetaVars.Occurs (killArgs,PruneResult(..),rigidVarsNotContainedIn) import Agda.TypeChecking.Names import Agda.TypeChecking.Reduce import Agda.TypeChecking.Substitute import qualified Agda.TypeChecking.SyntacticEquality as SynEq import Agda.TypeChecking.Telescope import Agda.TypeChecking.Constraints import Agda.TypeChecking.Conversion.Pure (pureCompareAs) import {-# SOURCE #-} Agda.TypeChecking.CheckInternal (infer) import Agda.TypeChecking.Forcing (isForced, nextIsForced) import Agda.TypeChecking.Free import Agda.TypeChecking.Datatypes (getConType, getFullyAppliedConType) import Agda.TypeChecking.Records import Agda.TypeChecking.Pretty import Agda.TypeChecking.Injectivity import Agda.TypeChecking.Polarity import Agda.TypeChecking.SizedTypes import Agda.TypeChecking.Level import Agda.TypeChecking.Implicit (implicitArgs) import Agda.TypeChecking.Irrelevance import Agda.TypeChecking.Primitive import Agda.TypeChecking.Warnings (MonadWarning) import Agda.Interaction.Options import Agda.Utils.Except ( MonadError(catchError, throwError) ) import Agda.Utils.Functor import Agda.Utils.Monad import Agda.Utils.Maybe import Agda.Utils.Permutation import Agda.Utils.Size import Agda.Utils.Tuple import Agda.Utils.WithDefault import Agda.Utils.Impossible type MonadConversion m = ( MonadReduce m , MonadAddContext m , MonadConstraint m , MonadMetaSolver m , MonadError TCErr m , MonadWarning m , MonadDebug m , MonadStatistics m , MonadFresh ProblemId m , MonadFresh Int m , HasBuiltins m , HasConstInfo m , HasOptions m , MonadFail m ) -- | Try whether a computation runs without errors or new constraints -- (may create new metas, though). -- Restores state upon failure. tryConversion :: (MonadConstraint m, MonadWarning m, MonadError TCErr m, MonadFresh ProblemId m) => m () -> m Bool tryConversion = isJust <.> tryConversion' -- | Try whether a computation runs without errors or new constraints -- (may create new metas, though). -- Return 'Just' the result upon success. -- Return 'Nothing' and restore state upon failure. tryConversion' :: (MonadConstraint m, MonadWarning m, MonadError TCErr m, MonadFresh ProblemId m) => m a -> m (Maybe a) tryConversion' m = tryMaybe $ noConstraints m -- | Check if to lists of arguments are the same (and all variables). -- Precondition: the lists have the same length. sameVars :: Elims -> Elims -> Bool sameVars xs ys = and $ zipWith same xs ys where same (Apply (Arg _ (Var n []))) (Apply (Arg _ (Var m []))) = n == m same _ _ = False -- | @intersectVars us vs@ checks whether all relevant elements in @us@ and @vs@ -- are variables, and if yes, returns a prune list which says @True@ for -- arguments which are different and can be pruned. intersectVars :: Elims -> Elims -> Maybe [Bool] intersectVars = zipWithM areVars where -- ignore irrelevant args areVars (Apply u) v | isIrrelevant u = Just False -- do not prune areVars (Apply (Arg _ (Var n []))) (Apply (Arg _ (Var m []))) = Just $ n /= m -- prune different vars areVars _ _ = Nothing equalTerm :: MonadConversion m => Type -> Term -> Term -> m () equalTerm = compareTerm CmpEq equalAtom :: MonadConversion m => CompareAs -> Term -> Term -> m () equalAtom = compareAtom CmpEq equalType :: MonadConversion m => Type -> Type -> m () equalType = compareType CmpEq {- Comparing in irrelevant context always succeeds. However, we might want to dig for solutions of irrelevant metas. To this end, we can just ignore errors during conversion checking. -} -- convError :: MonadTCM tcm => TypeError -> tcm a -- | Ignore errors in irrelevant context. convError :: TypeError -> TCM () convError err = ifM ((==) Irrelevant <$> asksTC getRelevance) (return ()) $ typeError err -- | Type directed equality on values. -- compareTerm :: forall m. MonadConversion m => Comparison -> Type -> Term -> Term -> m () compareTerm cmp a u v = compareAs cmp (AsTermsOf a) u v -- | Type directed equality on terms or types. compareAs :: forall m. MonadConversion m => Comparison -> CompareAs -> Term -> Term -> m () -- If one term is a meta, try to instantiate right away. This avoids unnecessary unfolding. -- Andreas, 2012-02-14: This is UNSOUND for subtyping! compareAs cmp a u v = do reportSDoc "tc.conv.term" 10 $ sep $ [ "compareTerm" , nest 2 $ prettyTCM u <+> prettyTCM cmp <+> prettyTCM v , nest 2 $ prettyTCM a ] -- Check syntactic equality. This actually saves us quite a bit of work. ((u, v), equal) <- SynEq.checkSyntacticEquality u v -- OLD CODE, traverses the *full* terms u v at each step, even if they -- are different somewhere. Leads to infeasibility in issue 854. -- (u, v) <- instantiateFull (u, v) -- let equal = u == v if equal then verboseS "profile.sharing" 20 $ tick "equal terms" else do verboseS "profile.sharing" 20 $ tick "unequal terms" reportSDoc "tc.conv.term" 15 $ sep $ [ "compareTerm (not syntactically equal)" , nest 2 $ prettyTCM u <+> prettyTCM cmp <+> prettyTCM v , nest 2 $ prettyTCM a ] -- If we are at type Size, we cannot short-cut comparison -- against metas by assignment. -- Andreas, 2014-04-12: this looks incomplete. -- It seems to assume we are never comparing -- at function types into Size. let fallback = compareAs' cmp a u v unlessSubtyping :: m () -> m () unlessSubtyping cont = if cmp == CmpEq then cont else do -- Andreas, 2014-04-12 do not short cut if type is blocked. ifBlocked a (\ _ _ -> fallback) {-else-} $ \ _ a -> do -- do not short circuit size comparison! caseMaybeM (isSizeType a) cont (\ _ -> fallback) dir = fromCmp cmp rid = flipCmp dir -- The reverse direction. Bad name, I know. case (u, v) of (MetaV x us, MetaV y vs) | x /= y -> unlessSubtyping $ solve1 `orelse` solve2 `orelse` fallback | otherwise -> fallback where (solve1, solve2) | x > y = (assign dir x us v, assign rid y vs u) | otherwise = (assign rid y vs u, assign dir x us v) (MetaV x us, _) -> unlessSubtyping $ assign dir x us v `orelse` fallback (_, MetaV y vs) -> unlessSubtyping $ assign rid y vs u `orelse` fallback _ -> fallback where assign :: CompareDirection -> MetaId -> Elims -> Term -> m () assign dir x es v = do -- Andreas, 2013-10-19 can only solve if no projections reportSDoc "tc.conv.term.shortcut" 20 $ sep [ "attempting shortcut" , nest 2 $ prettyTCM (MetaV x es) <+> ":=" <+> prettyTCM v ] whenM (isInstantiatedMeta x) patternViolation assignE dir x es v a $ compareAsDir dir a reportSDoc "tc.conv.term.shortcut" 50 $ "shortcut successful" $$ nest 2 ("result:" <+> (pretty =<< instantiate (MetaV x es))) -- Should be ok with catchError_ but catchError is much safer since we don't -- rethrow errors. orelse :: m () -> m () -> m () orelse m h = catchError m (\_ -> h) -- | Try to assign meta. If meta is projected, try to eta-expand -- and run conversion check again. assignE :: (MonadConversion m) => CompareDirection -> MetaId -> Elims -> Term -> CompareAs -> (Term -> Term -> m ()) -> m () assignE dir x es v a comp = assignWrapper dir x es v $ do case allApplyElims es of Just vs -> assignV dir x vs v a Nothing -> do reportSDoc "tc.conv.assign" 30 $ sep [ "assigning to projected meta " , prettyTCM x <+> sep (map prettyTCM es) <+> text (":" ++ show dir) <+> prettyTCM v ] etaExpandMeta [Records] x res <- isInstantiatedMeta' x case res of Just u -> do reportSDoc "tc.conv.assign" 30 $ sep [ "seems like eta expansion instantiated meta " , prettyTCM x <+> text (":" ++ show dir) <+> prettyTCM u ] let w = u `applyE` es comp w v Nothing -> do reportSLn "tc.conv.assign" 30 "eta expansion did not instantiate meta" patternViolation -- nothing happened, give up compareAsDir :: MonadConversion m => CompareDirection -> CompareAs -> Term -> Term -> m () compareAsDir dir a = dirToCmp (`compareAs'` a) dir compareAs' :: forall m. MonadConversion m => Comparison -> CompareAs -> Term -> Term -> m () compareAs' cmp tt m n = case tt of AsTermsOf a -> compareTerm' cmp a m n AsSizes -> compareSizes cmp m n AsTypes -> compareAtom cmp AsTypes m n compareTerm' :: forall m. MonadConversion m => Comparison -> Type -> Term -> Term -> m () compareTerm' cmp a m n = verboseBracket "tc.conv.term" 20 "compareTerm" $ do a' <- reduce a (catchConstraint (ValueCmp cmp (AsTermsOf a') m n) :: m () -> m ()) $ do reportSDoc "tc.conv.term" 30 $ fsep [ "compareTerm", prettyTCM m, prettyTCM cmp, prettyTCM n, ":", prettyTCM a' ] propIrr <- isPropEnabled isSize <- isJust <$> isSizeType a' s <- reduce $ getSort a' mlvl <- getBuiltin' builtinLevel reportSDoc "tc.conv.level" 60 $ nest 2 $ sep [ "a' =" <+> pretty a' , "mlvl =" <+> pretty mlvl , text $ "(Just (unEl a') == mlvl) = " ++ show (Just (unEl a') == mlvl) ] case s of Prop{} | propIrr -> compareIrrelevant a' m n _ | isSize -> compareSizes cmp m n _ -> case unEl a' of a | Just a == mlvl -> do a <- levelView m b <- levelView n equalLevel a b a@Pi{} -> equalFun s a m n Lam _ _ -> __IMPOSSIBLE__ Def r es -> do isrec <- isEtaRecord r if isrec then do sig <- getSignature let ps = fromMaybe __IMPOSSIBLE__ $ allApplyElims es -- Andreas, 2010-10-11: allowing neutrals to be blocked things does not seem -- to change Agda's behavior -- isNeutral Blocked{} = False isNeutral (NotBlocked _ Con{}) = return False -- Andreas, 2013-09-18 / 2015-06-29: a Def by copatterns is -- not neutral if it is blocked (there can be missing projections -- to trigger a reduction. isNeutral (NotBlocked r (Def q _)) = do -- Andreas, 2014-12-06 optimize this using r !! not <$> usesCopatterns q -- a def by copattern can reduce if projected isNeutral _ = return True isMeta (NotBlocked _ MetaV{}) = True isMeta _ = False reportSDoc "tc.conv.term" 30 $ prettyTCM a <+> "is eta record type" m <- reduceB m mNeutral <- isNeutral m n <- reduceB n nNeutral <- isNeutral n case (m, n) of _ | isMeta m || isMeta n -> compareAtom cmp (AsTermsOf a') (ignoreBlocking m) (ignoreBlocking n) _ | mNeutral && nNeutral -> do -- Andreas 2011-03-23: (fixing issue 396) -- if we are dealing with a singleton record, -- we can succeed immediately isSing <- isSingletonRecordModuloRelevance r ps case isSing of Right True -> return () -- do not eta-expand if comparing two neutrals _ -> compareAtom cmp (AsTermsOf a') (ignoreBlocking m) (ignoreBlocking n) _ -> do (tel, m') <- etaExpandRecord r ps $ ignoreBlocking m (_ , n') <- etaExpandRecord r ps $ ignoreBlocking n -- No subtyping on record terms c <- getRecordConstructor r -- Record constructors are covariant (see test/succeed/CovariantConstructors). compareArgs (repeat $ polFromCmp cmp) [] (telePi_ tel __DUMMY_TYPE__) (Con c ConOSystem []) m' n' else (do pathview <- pathView a' equalPath pathview a' m n) _ -> compareAtom cmp (AsTermsOf a') m n where -- equality at function type (accounts for eta) equalFun :: (MonadConversion m) => Sort -> Term -> Term -> Term -> m () equalFun s a@(Pi dom b) m n | domFinite dom = do mp <- fmap getPrimName <$> getBuiltin' builtinIsOne case unEl $ unDom dom of Def q [Apply phi] | Just q == mp -> compareTermOnFace cmp (unArg phi) (El s (Pi (dom {domFinite = False}) b)) m n _ -> equalFun s (Pi (dom{domFinite = False}) b) m n equalFun _ (Pi dom@Dom{domInfo = info} b) m n | not $ domFinite dom = do let name = suggests [ Suggestion b , Suggestion m , Suggestion n ] addContext (name, dom) $ compareTerm cmp (absBody b) m' n' where (m',n') = raise 1 (m,n) `apply` [Arg info $ var 0] equalFun _ _ _ _ = __IMPOSSIBLE__ equalPath :: (MonadConversion m) => PathView -> Type -> Term -> Term -> m () equalPath (PathType s _ l a x y) _ m n = do let name = "i" :: String interval <- el primInterval let (m',n') = raise 1 (m, n) `applyE` [IApply (raise 1 $ unArg x) (raise 1 $ unArg y) (var 0)] addContext (name, defaultDom interval) $ compareTerm cmp (El (raise 1 s) $ (raise 1 $ unArg a) `apply` [argN $ var 0]) m' n' equalPath OType{} a' m n = cmpDef a' m n cmpDef a'@(El s ty) m n = do mI <- getBuiltinName' builtinInterval mIsOne <- getBuiltinName' builtinIsOne mGlue <- getPrimitiveName' builtinGlue mHComp <- getPrimitiveName' builtinHComp mSub <- getBuiltinName' builtinSub case ty of Def q es | Just q == mIsOne -> return () Def q es | Just q == mGlue, Just args@(l:_:a:phi:_) <- allApplyElims es -> do ty <- el' (pure $ unArg l) (pure $ unArg a) unglue <- prim_unglue let mkUnglue m = apply unglue $ map (setHiding Hidden) args ++ [argN m] reportSDoc "conv.glue" 20 $ prettyTCM (ty,mkUnglue m,mkUnglue n) compareTermOnFace cmp (unArg phi) ty m n compareTerm cmp ty (mkUnglue m) (mkUnglue n) Def q es | Just q == mHComp, Just (sl:s:args@[phi,u,u0]) <- allApplyElims es , Sort (Type lvl) <- unArg s -> do let l = Level lvl ty <- el' (pure $ l) (pure $ unArg u0) unglueU <- prim_unglueU subIn <- primSubIn let bA = subIn `apply` [sl,s,phi,u0] let mkUnglue m = apply unglueU $ [argH l] ++ map (setHiding Hidden) [phi,u] ++ [argH bA,argN m] reportSDoc "conv.hcompU" 20 $ prettyTCM (ty,mkUnglue m,mkUnglue n) compareTermOnFace cmp (unArg phi) ty m n compareTerm cmp ty (mkUnglue m) (mkUnglue n) Def q es | Just q == mSub, Just args@(l:a:_) <- allApplyElims es -> do ty <- el' (pure $ unArg l) (pure $ unArg a) out <- primSubOut let mkOut m = apply out $ map (setHiding Hidden) args ++ [argN m] compareTerm cmp ty (mkOut m) (mkOut n) Def q [] | Just q == mI -> compareInterval cmp a' m n _ -> compareAtom cmp (AsTermsOf a') m n -- | @compareTel t1 t2 cmp tel1 tel1@ checks whether pointwise -- @tel1 \`cmp\` tel2@ and complains that @t2 \`cmp\` t1@ failed if -- not. compareTel :: MonadConversion m => Type -> Type -> Comparison -> Telescope -> Telescope -> m () compareTel t1 t2 cmp tel1 tel2 = verboseBracket "tc.conv.tel" 20 "compareTel" $ catchConstraint (TelCmp t1 t2 cmp tel1 tel2) $ case (tel1, tel2) of (EmptyTel, EmptyTel) -> return () (EmptyTel, _) -> bad (_, EmptyTel) -> bad (ExtendTel dom1{-@(Dom i1 a1)-} tel1, ExtendTel dom2{-@(Dom i2 a2)-} tel2) -> do compareDom cmp dom1 dom2 tel1 tel2 bad bad bad bad $ compareTel t1 t2 cmp (absBody tel1) (absBody tel2) where -- Andreas, 2011-05-10 better report message about types bad = typeError $ UnequalTypes cmp t2 t1 -- switch t2 and t1 because of contravariance! compareAtomDir :: MonadConversion m => CompareDirection -> CompareAs -> Term -> Term -> m () compareAtomDir dir a = dirToCmp (`compareAtom` a) dir -- | Compute the head type of an elimination. For projection-like functions -- this requires inferring the type of the principal argument. computeElimHeadType :: MonadConversion m => QName -> Elims -> Elims -> m Type computeElimHeadType f es es' = do def <- getConstInfo f -- To compute the type @a@ of a projection-like @f@, -- we have to infer the type of its first argument. if projectionArgs (theDef def) <= 0 then return $ defType def else do -- Find an first argument to @f@. let arg = case (es, es') of (Apply arg : _, _) -> arg (_, Apply arg : _) -> arg _ -> __IMPOSSIBLE__ -- Infer its type. reportSDoc "tc.conv.infer" 30 $ "inferring type of internal arg: " <+> prettyTCM arg targ <- infer $ unArg arg reportSDoc "tc.conv.infer" 30 $ "inferred type: " <+> prettyTCM targ -- getDefType wants the argument type reduced. -- Andreas, 2016-02-09, Issue 1825: The type of arg might be -- a meta-variable, e.g. in interactive development. -- In this case, we postpone. fromMaybeM patternViolation $ getDefType f =<< reduce targ -- | Syntax directed equality on atomic values -- compareAtom :: forall m. MonadConversion m => Comparison -> CompareAs -> Term -> Term -> m () compareAtom cmp t m n = verboseBracket "tc.conv.atom" 20 "compareAtom" $ -- if a PatternErr is thrown, rebuild constraint! (catchConstraint (ValueCmp cmp t m n) :: m () -> m ()) $ do reportSDoc "tc.conv.atom" 50 $ "compareAtom" <+> fsep [ prettyTCM m <+> prettyTCM cmp , prettyTCM n , prettyTCM t ] -- Andreas: what happens if I cut out the eta expansion here? -- Answer: Triggers issue 245, does not resolve 348 (mb',nb') <- ifM (asksTC envCompareBlocked) ((notBlocked -*- notBlocked) <$> reduce (m,n)) $ do mb' <- etaExpandBlocked =<< reduceB m nb' <- etaExpandBlocked =<< reduceB n return (mb', nb') -- constructorForm changes literal to constructors -- only needed if the other side is not a literal (mb'', nb'') <- case (ignoreBlocking mb', ignoreBlocking nb') of (Lit _, Lit _) -> return (mb', nb') _ -> (,) <$> traverse constructorForm mb' <*> traverse constructorForm nb' mb <- traverse unLevel mb'' nb <- traverse unLevel nb'' cmpBlocked <- viewTC eCompareBlocked let m = ignoreBlocking mb n = ignoreBlocking nb postpone = addConstraint $ ValueCmp cmp t m n -- Jesper, 2019-05-14, Issue #3776: If the type is blocked, -- the comparison could be solved by eta-expansion so we -- cannot fail hard postponeIfBlockedAs :: CompareAs -> (Blocked CompareAs -> m ()) -> m () postponeIfBlockedAs AsTypes f = f $ NotBlocked ReallyNotBlocked AsTypes postponeIfBlockedAs AsSizes f = f $ NotBlocked ReallyNotBlocked AsSizes postponeIfBlockedAs (AsTermsOf t) f = ifBlocked t (\m t -> (f $ Blocked m $ AsTermsOf t) `catchError` \case TypeError{} -> postpone err -> throwError err) (\nb t -> f $ NotBlocked nb $ AsTermsOf t) checkDefinitionalEquality = unlessM (pureCompareAs CmpEq t m n) postpone dir = fromCmp cmp rid = flipCmp dir -- The reverse direction. Bad name, I know. assign dir x es v = assignE dir x es v t $ compareAtomDir dir t reportSDoc "tc.conv.atom" 30 $ "compareAtom" <+> fsep [ prettyTCM mb <+> prettyTCM cmp , prettyTCM nb , prettyTCM t ] reportSDoc "tc.conv.atom" 80 $ "compareAtom" <+> fsep [ (text . show) mb <+> prettyTCM cmp , (text . show) nb , ":" <+> (text . show) t ] case (mb, nb) of -- equate two metas x and y. if y is the younger meta, -- try first y := x and then x := y (NotBlocked _ (MetaV x xArgs), NotBlocked _ (MetaV y yArgs)) | x == y , cmpBlocked -> do a <- metaType x compareElims [] [] a (MetaV x []) xArgs yArgs | x == y -> case intersectVars xArgs yArgs of -- all relevant arguments are variables Just kills -> do -- kills is a list with 'True' for each different var killResult <- killArgs kills x case killResult of NothingToPrune -> return () PrunedEverything -> return () PrunedNothing -> postpone PrunedSomething -> postpone -- not all relevant arguments are variables Nothing -> checkDefinitionalEquality -- Check definitional equality on meta-variables -- (same as for blocked terms) | otherwise -> do [p1, p2] <- mapM getMetaPriority [x,y] -- First try the one with the highest priority. If that doesn't -- work, try the low priority one. let (solve1, solve2) | (p1, x) > (p2, y) = (l1, r2) | otherwise = (r1, l2) where l1 = assign dir x xArgs n r1 = assign rid y yArgs m -- Careful: the first attempt might prune the low -- priority meta! (Issue #2978) l2 = ifM (isInstantiatedMeta x) (compareAsDir dir t m n) l1 r2 = ifM (isInstantiatedMeta y) (compareAsDir rid t n m) r1 catchPatternErr solve2 solve1 -- one side a meta, the other an unblocked term (NotBlocked _ (MetaV x es), _) -> assign dir x es n (_, NotBlocked _ (MetaV x es)) -> assign rid x es m (Blocked{}, Blocked{}) -> checkDefinitionalEquality (Blocked{}, _) -> useInjectivity (fromCmp cmp) t m n -- The blocked term goes first (_, Blocked{}) -> useInjectivity (flipCmp $ fromCmp cmp) t n m _ -> postponeIfBlockedAs t $ \bt -> do -- -- Andreas, 2013-10-20 put projection-like function -- -- into the spine, to make compareElims work. -- -- 'False' means: leave (Def f []) unchanged even for -- -- proj-like funs. -- m <- elimView False m -- n <- elimView False n -- Andreas, 2015-07-01, actually, don't put them into the spine. -- Polarity cannot be communicated properly if projection-like -- functions are post-fix. case (m, n) of (Pi{}, Pi{}) -> equalFun m n (Sort s1, Sort s2) -> ifM (optCumulativity <$> pragmaOptions) (compareSort cmp s1 s2) (equalSort s1 s2) (Lit l1, Lit l2) | l1 == l2 -> return () (Var i es, Var i' es') | i == i' -> do a <- typeOfBV i -- Variables are invariant in their arguments compareElims [] [] a (var i) es es' -- The case of definition application: (Def f es, Def f' es') -> do -- 1. All absurd lambdas are equal. unlessM (bothAbsurd f f') $ do -- 2. If the heads are unequal, the only chance is subtyping between SIZE and SIZELT. if f /= f' then trySizeUniv cmp t m n f es f' es' else do -- 3. If the heads are equal: -- 3a. If there are no arguments, we are done. unless (null es && null es') $ do -- 3b. If some cubical magic kicks in, we are done. unlessM (compareEtaPrims f es es') $ do -- 3c. Oh no, we actually have to work and compare the eliminations! a <- computeElimHeadType f es es' -- The polarity vector of projection-like functions -- does not include the parameters. pol <- getPolarity' cmp f compareElims pol [] a (Def f []) es es' -- Due to eta-expansion, these constructors are fully applied. (Con x ci xArgs, Con y _ yArgs) | x == y -> do -- Get the type of the constructor instantiated to the datatype parameters. a' <- case t of AsTermsOf a -> conType x a AsSizes -> __IMPOSSIBLE__ AsTypes -> __IMPOSSIBLE__ forcedArgs <- getForcedArgs $ conName x -- Constructors are covariant in their arguments -- (see test/succeed/CovariantConstructors). compareElims (repeat $ polFromCmp cmp) forcedArgs a' (Con x ci []) xArgs yArgs _ -> typeError $ UnequalTerms cmp m n $ ignoreBlocking bt where -- returns True in case we handled the comparison already. compareEtaPrims :: MonadConversion m => QName -> Elims -> Elims -> m Bool compareEtaPrims q es es' = do munglue <- getPrimitiveName' builtin_unglue munglueU <- getPrimitiveName' builtin_unglueU msubout <- getPrimitiveName' builtinSubOut case () of _ | Just q == munglue -> compareUnglueApp q es es' _ | Just q == munglueU -> compareUnglueUApp q es es' _ | Just q == msubout -> compareSubApp q es es' _ -> return False compareSubApp q es es' = do let (as,bs) = splitAt 5 es; (as',bs') = splitAt 5 es' case (allApplyElims as, allApplyElims as') of (Just [a,bA,phi,u,x], Just [a',bA',phi',u',x']) -> do tSub <- primSub -- Andrea, 28-07-16: -- comparing the types is most probably wasteful, -- since b and b' should be neutral terms, but it's a -- precondition for the compareAtom call to make -- sense. equalType (El Inf $ apply tSub $ [a] ++ map (setHiding NotHidden) [bA,phi,u]) (El Inf $ apply tSub $ [a] ++ map (setHiding NotHidden) [bA',phi',u']) compareAtom cmp (AsTermsOf $ El Inf $ apply tSub $ [a] ++ map (setHiding NotHidden) [bA,phi,u]) (unArg x) (unArg x') compareElims [] [] (El (tmSort (unArg a)) (unArg bA)) (Def q as) bs bs' return True _ -> return False compareUnglueApp q es es' = do let (as,bs) = splitAt 7 es; (as',bs') = splitAt 7 es' case (allApplyElims as, allApplyElims as') of (Just [la,lb,bA,phi,bT,e,b], Just [la',lb',bA',phi',bT',e',b']) -> do tGlue <- getPrimitiveTerm builtinGlue -- Andrea, 28-07-16: -- comparing the types is most probably wasteful, -- since b and b' should be neutral terms, but it's a -- precondition for the compareAtom call to make -- sense. -- equalType (El (tmSort (unArg lb)) $ apply tGlue $ [la,lb] ++ map (setHiding NotHidden) [bA,phi,bT,e]) -- (El (tmSort (unArg lb')) $ apply tGlue $ [la',lb'] ++ map (setHiding NotHidden) [bA',phi',bT',e']) compareAtom cmp (AsTermsOf $ El (tmSort (unArg lb)) $ apply tGlue $ [la,lb] ++ map (setHiding NotHidden) [bA,phi,bT,e]) (unArg b) (unArg b') compareElims [] [] (El (tmSort (unArg la)) (unArg bA)) (Def q as) bs bs' return True _ -> return False compareUnglueUApp :: MonadConversion m => QName -> Elims -> Elims -> m Bool compareUnglueUApp q es es' = do let (as,bs) = splitAt 5 es; (as',bs') = splitAt 5 es' case (allApplyElims as, allApplyElims as') of (Just [la,phi,bT,bAS,b], Just [la',phi',bT',bA',b']) -> do tHComp <- primHComp tLSuc <- primLevelSuc tSubOut <- primSubOut iz <- primIZero let lsuc t = tLSuc `apply` [argN t] s = tmSort $ unArg la sucla = lsuc <$> la bA <- runNamesT [] $ do [la,phi,bT,bAS] <- mapM (open . unArg) [la,phi,bT,bAS] (pure tSubOut <#> (pure tLSuc <@> la) <#> (Sort . tmSort <$> la) <#> phi <#> (bT <@> primIZero) <@> bAS) compareAtom cmp (AsTermsOf $ El (tmSort . unArg $ sucla) $ apply tHComp $ [sucla, argH (Sort s), phi] ++ [argH (unArg bT), argH bA]) (unArg b) (unArg b') compareElims [] [] (El s bA) (Def q as) bs bs' return True _ -> return False -- Andreas, 2013-05-15 due to new postponement strategy, type can now be blocked conType c t = ifBlocked t (\ _ _ -> patternViolation) $ \ _ t -> do let impossible = do reportSDoc "impossible" 10 $ "expected data/record type, found " <+> prettyTCM t reportSDoc "impossible" 70 $ nest 2 $ "raw =" <+> pretty t -- __IMPOSSIBLE__ -- Andreas, 2013-10-20: in case termination checking fails -- we might get some unreduced types here. -- In issue 921, this happens during the final attempt -- to solve left-over constraints. -- Thus, instead of crashing, just give up gracefully. patternViolation maybe impossible (return . snd) =<< getFullyAppliedConType c t equalFun t1 t2 = case (t1, t2) of (Pi dom1 b1, Pi dom2 b2) -> do verboseBracket "tc.conv.fun" 15 "compare function types" $ do reportSDoc "tc.conv.fun" 20 $ nest 2 $ vcat [ "t1 =" <+> prettyTCM t1 , "t2 =" <+> prettyTCM t2 ] compareDom cmp dom2 dom1 b1 b2 errH errR errQ errC $ compareType cmp (absBody b1) (absBody b2) where errH = typeError $ UnequalHiding t1 t2 errR = typeError $ UnequalRelevance cmp t1 t2 errQ = typeError $ UnequalQuantity cmp t1 t2 errC = typeError $ UnequalCohesion cmp t1 t2 _ -> __IMPOSSIBLE__ -- | Check whether @a1 `cmp` a2@ and continue in context extended by @a1@. compareDom :: (MonadConversion m , Free c) => Comparison -- ^ @cmp@ The comparison direction -> Dom Type -- ^ @a1@ The smaller domain. -> Dom Type -- ^ @a2@ The other domain. -> Abs b -- ^ @b1@ The smaller codomain. -> Abs c -- ^ @b2@ The bigger codomain. -> m () -- ^ Continuation if mismatch in 'Hiding'. -> m () -- ^ Continuation if mismatch in 'Relevance'. -> m () -- ^ Continuation if mismatch in 'Quantity'. -> m () -- ^ Continuation if mismatch in 'Cohesion'. -> m () -- ^ Continuation if comparison is successful. -> m () compareDom cmp0 dom1@(Dom{domInfo = i1, unDom = a1}) dom2@(Dom{domInfo = i2, unDom = a2}) b1 b2 errH errR errQ errC cont = do hasSubtyping <- collapseDefault . optSubtyping <$> pragmaOptions let cmp = if hasSubtyping then cmp0 else CmpEq if | not $ sameHiding dom1 dom2 -> errH | not $ compareRelevance cmp (getRelevance dom1) (getRelevance dom2) -> errR | not $ compareQuantity cmp (getQuantity dom1) (getQuantity dom2) -> errQ | not $ compareCohesion cmp (getCohesion dom1) (getCohesion dom2) -> errC | otherwise -> do let r = max (getRelevance dom1) (getRelevance dom2) -- take "most irrelevant" dependent = (r /= Irrelevant) && isBinderUsed b2 pid <- newProblem_ $ compareType cmp0 a1 a2 dom <- if dependent then (\ a -> dom1 {unDom = a}) <$> blockTypeOnProblem a1 pid else return dom1 -- We only need to require a1 == a2 if b2 is dependent -- If it's non-dependent it doesn't matter what we add to the context. let name = suggests [ Suggestion b1 , Suggestion b2 ] addContext (name, dom) $ cont stealConstraints pid -- Andreas, 2013-05-15 Now, comparison of codomains is not -- blocked any more by getting stuck on domains. -- Only the domain type in context will be blocked. -- But see issue #1258. compareRelevance :: Comparison -> Relevance -> Relevance -> Bool compareRelevance CmpEq = (==) compareRelevance CmpLeq = (<=) compareQuantity :: Comparison -> Quantity -> Quantity -> Bool compareQuantity CmpEq = sameQuantity compareQuantity CmpLeq = moreQuantity compareCohesion :: Comparison -> Cohesion -> Cohesion -> Bool compareCohesion CmpEq = sameCohesion compareCohesion CmpLeq = moreCohesion -- | When comparing argument spines (in compareElims) where the first arguments -- don't match, we keep going, substituting the anti-unification of the two -- terms in the telescope. More precisely: -- -- @@ -- (u = v : A)[pid] w = antiUnify pid A u v us = vs : Δ[w/x] -- ------------------------------------------------------------- -- u us = v vs : (x : A) Δ -- @@ -- -- The simplest case of anti-unification is to return a fresh metavariable -- (created by blockTermOnProblem), but if there's shared structure between -- the two terms we can expose that. -- -- This is really a crutch that lets us get away with things that otherwise -- would require heterogenous conversion checking. See for instance issue -- #2384. antiUnify :: MonadConversion m => ProblemId -> Type -> Term -> Term -> m Term antiUnify pid a u v = do ((u, v), eq) <- SynEq.checkSyntacticEquality u v if eq then return u else do (u, v) <- reduce (u, v) reportSDoc "tc.conv.antiUnify" 30 $ vcat [ "antiUnify" , "a =" <+> prettyTCM a , "u =" <+> prettyTCM u , "v =" <+> prettyTCM v ] case (u, v) of (Pi ua ub, Pi va vb) -> do wa0 <- antiUnifyType pid (unDom ua) (unDom va) let wa = wa0 <$ ua wb <- addContext wa $ antiUnifyType pid (absBody ub) (absBody vb) return $ Pi wa (mkAbs (absName ub) wb) (Lam i u, Lam _ v) -> reduce (unEl a) >>= \case Pi a b -> Lam i . (mkAbs (absName u)) <$> addContext a (antiUnify pid (absBody b) (absBody u) (absBody v)) _ -> fallback (Var i us, Var j vs) | i == j -> maybeGiveUp $ do a <- typeOfBV i antiUnifyElims pid a (var i) us vs -- Andreas, 2017-07-27: -- It seems that nothing guarantees here that the constructors are fully -- applied!? Thus, @a@ could be a function type and we need the robust -- @getConType@ here. -- (Note that @patternViolation@ swallows exceptions coming from @getConType@ -- thus, we would not see clearly if we used @getFullyAppliedConType@ instead.) (Con x ci us, Con y _ vs) | x == y -> maybeGiveUp $ do a <- maybe patternViolation (return . snd) =<< getConType x a antiUnifyElims pid a (Con x ci []) us vs (Def f us, Def g vs) | f == g, length us == length vs -> maybeGiveUp $ do a <- computeElimHeadType f us vs antiUnifyElims pid a (Def f []) us vs _ -> fallback where maybeGiveUp = catchPatternErr fallback fallback = blockTermOnProblem a u pid antiUnifyArgs :: MonadConversion m => ProblemId -> Dom Type -> Arg Term -> Arg Term -> m (Arg Term) antiUnifyArgs pid dom u v | getModality u /= getModality v = patternViolation | otherwise = applyModalityToContext u $ ifM (isIrrelevantOrPropM dom) {-then-} (return u) {-else-} ((<$ u) <$> antiUnify pid (unDom dom) (unArg u) (unArg v)) antiUnifyType :: MonadConversion m => ProblemId -> Type -> Type -> m Type antiUnifyType pid (El s a) (El _ b) = workOnTypes $ El s <$> antiUnify pid (sort s) a b antiUnifyElims :: MonadConversion m => ProblemId -> Type -> Term -> Elims -> Elims -> m Term antiUnifyElims pid a self [] [] = return self antiUnifyElims pid a self (Proj o f : es1) (Proj _ g : es2) | f == g = do res <- projectTyped self a o f case res of Just (_, self, a) -> antiUnifyElims pid a self es1 es2 Nothing -> patternViolation -- can fail for projection like antiUnifyElims pid a self (Apply u : es1) (Apply v : es2) = do reduce (unEl a) >>= \case Pi a b -> do w <- antiUnifyArgs pid a u v antiUnifyElims pid (b `lazyAbsApp` unArg w) (apply self [w]) es1 es2 _ -> patternViolation antiUnifyElims _ _ _ _ _ = patternViolation -- trigger maybeGiveUp in antiUnify -- | @compareElims pols a v els1 els2@ performs type-directed equality on eliminator spines. -- @t@ is the type of the head @v@. compareElims :: forall m. MonadConversion m => [Polarity] -> [IsForced] -> Type -> Term -> [Elim] -> [Elim] -> m () compareElims pols0 fors0 a v els01 els02 = (catchConstraint (ElimCmp pols0 fors0 a v els01 els02) :: m () -> m ()) $ do let v1 = applyE v els01 v2 = applyE v els02 failure = typeError $ UnequalTerms CmpEq v1 v2 (AsTermsOf a) -- Andreas, 2013-03-15 since one of the spines is empty, @a@ -- is the correct type here. unless (null els01) $ do reportSDoc "tc.conv.elim" 25 $ "compareElims" $$ do nest 2 $ vcat [ "a =" <+> prettyTCM a , "pols0 (truncated to 10) =" <+> hsep (map prettyTCM $ take 10 pols0) , "fors0 (truncated to 10) =" <+> hsep (map prettyTCM $ take 10 fors0) , "v =" <+> prettyTCM v , "els01 =" <+> prettyTCM els01 , "els02 =" <+> prettyTCM els02 ] case (els01, els02) of ([] , [] ) -> return () ([] , Proj{}:_ ) -> failure -- not impossible, see issue 821 (Proj{} : _, [] ) -> failure -- could be x.p =?= x for projection p ([] , Apply{} : _) -> failure -- not impossible, see issue 878 (Apply{} : _, [] ) -> failure ([] , IApply{} : _) -> failure (IApply{} : _, [] ) -> failure (Apply{} : _, Proj{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True -- NB: popped up in issue 889 (Proj{} : _, Apply{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True -- but should be impossible (but again in issue 1467) (IApply{} : _, Proj{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True (Proj{} : _, IApply{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True (IApply{} : _, Apply{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True (Apply{} : _, IApply{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True (e@(IApply x1 y1 r1) : els1, IApply x2 y2 r2 : els2) -> do reportSDoc "tc.conv.elim" 25 $ "compareElims IApply" -- Andrea: copying stuff from the Apply case.. let (pol, pols) = nextPolarity pols0 ifBlocked a (\ m t -> patternViolation) $ \ _ a -> do va <- pathView a reportSDoc "tc.conv.elim.iapply" 60 $ "compareElims IApply" $$ do nest 2 $ "va =" <+> text (show (isPathType va)) case va of PathType s path l bA x y -> do b <- elInf primInterval compareWithPol pol (flip compareTerm b) r1 r2 -- TODO: compare (x1,x2) and (y1,y2) ? let r = r1 -- TODO Andrea: do blocking codom <- el' (pure . unArg $ l) ((pure . unArg $ bA) <@> pure r) compareElims pols [] codom -- Path non-dependent (codom `lazyAbsApp` unArg arg) (applyE v [e]) els1 els2 -- We allow for functions (i : I) -> ... to also be heads of a IApply, -- because @etaContract@ can produce such terms OType t@(El _ Pi{}) -> compareElims pols0 fors0 t v (Apply (defaultArg r1) : els1) (Apply (defaultArg r2) : els2) OType{} -> patternViolation (Apply arg1 : els1, Apply arg2 : els2) -> (verboseBracket "tc.conv.elim" 20 "compare Apply" :: m () -> m ()) $ do reportSDoc "tc.conv.elim" 10 $ nest 2 $ vcat [ "a =" <+> prettyTCM a , "v =" <+> prettyTCM v , "arg1 =" <+> prettyTCM arg1 , "arg2 =" <+> prettyTCM arg2 ] reportSDoc "tc.conv.elim" 50 $ nest 2 $ vcat [ "raw:" , "a =" <+> pretty a , "v =" <+> pretty v , "arg1 =" <+> pretty arg1 , "arg2 =" <+> pretty arg2 ] let (pol, pols) = nextPolarity pols0 (for, fors) = nextIsForced fors0 ifBlocked a (\ m t -> patternViolation) $ \ _ a -> do reportSLn "tc.conv.elim" 90 $ "type is not blocked" case unEl a of (Pi (Dom{domInfo = info, unDom = b}) codom) -> do reportSLn "tc.conv.elim" 90 $ "type is a function type" mlvl <- tryMaybe primLevel let freeInCoDom (Abs _ c) = 0 `freeInIgnoringSorts` c freeInCoDom _ = False dependent = (Just (unEl b) /= mlvl) && freeInCoDom codom -- Level-polymorphism (x : Level) -> ... does not count as dependency here -- NB: we could drop the free variable test and still be sound. -- It is a trade-off between the administrative effort of -- creating a blocking and traversing a term for free variables. -- Apparently, it is believed that checking free vars is cheaper. -- Andreas, 2013-05-15 -- NEW, Andreas, 2013-05-15 -- compare arg1 and arg2 pid <- newProblem_ $ applyModalityToContext info $ if isForced for then reportSLn "tc.conv.elim" 90 $ "argument is forced" else if isIrrelevant info then do reportSLn "tc.conv.elim" 90 $ "argument is irrelevant" compareIrrelevant b (unArg arg1) (unArg arg2) else do reportSLn "tc.conv.elim" 90 $ "argument has polarity " ++ show pol compareWithPol pol (flip compareTerm b) (unArg arg1) (unArg arg2) -- if comparison got stuck and function type is dependent, block arg solved <- isProblemSolved pid reportSLn "tc.conv.elim" 90 $ "solved = " ++ show solved arg <- if dependent && not solved then applyModalityToContext info $ do reportSDoc "tc.conv.elims" 30 $ vcat $ [ "Trying antiUnify:" , nest 2 $ "b =" <+> prettyTCM b , nest 2 $ "arg1 =" <+> prettyTCM arg1 , nest 2 $ "arg2 =" <+> prettyTCM arg2 ] arg <- (arg1 $>) <$> antiUnify pid b (unArg arg1) (unArg arg2) reportSDoc "tc.conv.elims" 30 $ hang "Anti-unification:" 2 (prettyTCM arg) reportSDoc "tc.conv.elims" 70 $ nest 2 $ "raw:" <+> pretty arg return arg else return arg1 -- continue, possibly with blocked instantiation compareElims pols fors (codom `lazyAbsApp` unArg arg) (apply v [arg]) els1 els2 -- any left over constraints of arg are associated to the comparison reportSLn "tc.conv.elim" 90 $ "stealing constraints from problem " ++ show pid stealConstraints pid {- Stealing solves this issue: Does not create enough blocked tc-problems, see test/fail/DontPrune. (There are remaining problems which do not show up as yellow.) Need to find a way to associate pid also to result of compareElims. -} a -> do reportSDoc "impossible" 10 $ "unexpected type when comparing apply eliminations " <+> prettyTCM a reportSDoc "impossible" 50 $ "raw type:" <+> pretty a patternViolation -- Andreas, 2013-10-22 -- in case of disabled reductions (due to failing termination check) -- we might get stuck, so do not crash, but fail gently. -- __IMPOSSIBLE__ -- case: f == f' are projections (Proj o f : els1, Proj _ f' : els2) | f /= f' -> typeError . GenericError . show =<< prettyTCM f <+> "/=" <+> prettyTCM f' | otherwise -> ifBlocked a (\ m t -> patternViolation) $ \ _ a -> do res <- projectTyped v a o f -- fails only if f is proj.like but parameters cannot be retrieved case res of Just (_, u, t) -> do -- Andreas, 2015-07-01: -- The arguments following the principal argument of a projection -- are invariant. (At least as long as we have no explicit polarity -- annotations.) compareElims [] [] t u els1 els2 Nothing -> do reportSDoc "tc.conv.elims" 30 $ sep [ text $ "projection " ++ show f , text "applied to value " <+> prettyTCM v , text "of unexpected type " <+> prettyTCM a ] patternViolation -- | "Compare" two terms in irrelevant position. This always succeeds. -- However, we can dig for solutions of irrelevant metas in the -- terms we compare. -- (Certainly not the systematic solution, that'd be proof search...) compareIrrelevant :: MonadConversion m => Type -> Term -> Term -> m () {- 2012-04-02 DontCare no longer present compareIrrelevant t (DontCare v) w = compareIrrelevant t v w compareIrrelevant t v (DontCare w) = compareIrrelevant t v w -} compareIrrelevant t v0 w0 = do let v = stripDontCare v0 w = stripDontCare w0 reportSDoc "tc.conv.irr" 20 $ vcat [ "compareIrrelevant" , nest 2 $ "v =" <+> prettyTCM v , nest 2 $ "w =" <+> prettyTCM w ] reportSDoc "tc.conv.irr" 50 $ vcat [ nest 2 $ "v =" <+> pretty v , nest 2 $ "w =" <+> pretty w ] try v w $ try w v $ return () where try (MetaV x es) w fallback = do mv <- lookupMeta x let rel = getMetaRelevance mv inst = case mvInstantiation mv of InstV{} -> True _ -> False reportSDoc "tc.conv.irr" 20 $ vcat [ nest 2 $ text $ "rel = " ++ show rel , nest 2 $ "inst =" <+> pretty inst ] if not (isIrrelevant rel) || inst then fallback -- Andreas, 2016-08-08, issue #2131: -- Mining for solutions for irrelevant metas is not definite. -- Thus, in case of error, leave meta unsolved. else (assignE DirEq x es w (AsTermsOf t) $ compareIrrelevant t) `catchError` \ _ -> fallback -- the value of irrelevant or unused meta does not matter try v w fallback = fallback compareWithPol :: MonadConversion m => Polarity -> (Comparison -> a -> a -> m ()) -> a -> a -> m () compareWithPol Invariant cmp x y = cmp CmpEq x y compareWithPol Covariant cmp x y = cmp CmpLeq x y compareWithPol Contravariant cmp x y = cmp CmpLeq y x compareWithPol Nonvariant cmp x y = return () polFromCmp :: Comparison -> Polarity polFromCmp CmpLeq = Covariant polFromCmp CmpEq = Invariant -- | Type-directed equality on argument lists -- compareArgs :: MonadConversion m => [Polarity] -> [IsForced] -> Type -> Term -> Args -> Args -> m () compareArgs pol for a v args1 args2 = compareElims pol for a v (map Apply args1) (map Apply args2) --------------------------------------------------------------------------- -- * Types --------------------------------------------------------------------------- -- | Equality on Types compareType :: MonadConversion m => Comparison -> Type -> Type -> m () compareType cmp ty1@(El s1 a1) ty2@(El s2 a2) = workOnTypes $ verboseBracket "tc.conv.type" 20 "compareType" $ do reportSDoc "tc.conv.type" 50 $ vcat [ "compareType" <+> sep [ prettyTCM ty1 <+> prettyTCM cmp , prettyTCM ty2 ] , hsep [ " sorts:", prettyTCM s1, " and ", prettyTCM s2 ] ] compareAs cmp AsTypes a1 a2 unlessM ((optCumulativity <$> pragmaOptions) `or2M` (not . optCompareSorts <$> pragmaOptions)) $ compareSort CmpEq s1 s2 return () leqType :: MonadConversion m => Type -> Type -> m () leqType = compareType CmpLeq -- | @coerce v a b@ coerces @v : a@ to type @b@, returning a @v' : b@ -- with maybe extra hidden applications or hidden abstractions. -- -- In principle, this function can host coercive subtyping, but -- currently it only tries to fix problems with hidden function types. -- coerce :: (MonadConversion m, MonadTCM m) => Comparison -> Term -> Type -> Type -> m Term coerce cmp v t1 t2 = blockTerm t2 $ do verboseS "tc.conv.coerce" 10 $ do (a1,a2) <- reify (t1,t2) let dbglvl = if isSet a1 && isSet a2 then 50 else 10 reportSDoc "tc.conv.coerce" dbglvl $ "coerce" <+> vcat [ "term v =" <+> prettyTCM v , "from type t1 =" <+> prettyTCM a1 , "to type t2 =" <+> prettyTCM a2 , "comparison =" <+> prettyTCM cmp ] reportSDoc "tc.conv.coerce" 70 $ "coerce" <+> vcat [ "term v =" <+> pretty v , "from type t1 =" <+> pretty t1 , "to type t2 =" <+> pretty t2 , "comparison =" <+> pretty cmp ] -- v <$ do workOnTypes $ leqType t1 t2 -- take off hidden/instance domains from t1 and t2 TelV tel1 b1 <- telViewUpTo' (-1) notVisible t1 TelV tel2 b2 <- telViewUpTo' (-1) notVisible t2 let n = size tel1 - size tel2 -- the crude solution would be -- v' = λ {tel2} → v {tel1} -- however, that may introduce unneccessary many function types -- If n > 0 and b2 is not blocked, it is safe to -- insert n many hidden args if n <= 0 then fallback else do ifBlocked b2 (\ _ _ -> fallback) $ \ _ _ -> do (args, t1') <- implicitArgs n notVisible t1 let v' = v `apply` args v' <$ coerceSize (compareType cmp) v' t1' t2 where fallback = v <$ coerceSize (compareType cmp) v t1 t2 -- | Account for situations like @k : (Size< j) <= (Size< k + 1)@ -- -- Actually, the semantics is -- @(Size<= k) ∩ (Size< j) ⊆ rhs@ -- which gives a disjunctive constraint. Mmmh, looks like stuff -- TODO. -- -- For now, we do a cheap heuristics. -- coerceSize :: MonadConversion m => (Type -> Type -> m ()) -> Term -> Type -> Type -> m () coerceSize leqType v t1 t2 = verboseBracket "tc.conv.size.coerce" 45 "coerceSize" $ workOnTypes $ do reportSDoc "tc.conv.size.coerce" 70 $ "coerceSize" <+> vcat [ "term v =" <+> pretty v , "from type t1 =" <+> pretty t1 , "to type t2 =" <+> pretty t2 ] let fallback = leqType t1 t2 done = caseMaybeM (isSizeType =<< reduce t1) fallback $ \ _ -> return () -- Andreas, 2015-07-22, Issue 1615: -- If t1 is a meta and t2 a type like Size< v2, we need to make sure we do not miss -- the constraint v < v2! caseMaybeM (isSizeType =<< reduce t2) fallback $ \ b2 -> do -- Andreas, 2017-01-20, issue #2329: -- If v is not a size suitable for the solver, like a neutral term, -- we can only rely on the type. mv <- sizeMaxView v if any (\case{ DOtherSize{} -> True; _ -> False }) mv then fallback else do -- Andreas, 2015-02-11 do not instantiate metas here (triggers issue 1203). unlessM (tryConversion $ dontAssignMetas $ leqType t1 t2) $ do -- A (most probably weaker) alternative is to just check syn.eq. -- ifM (snd <$> checkSyntacticEquality t1 t2) (return v) $ {- else -} do reportSDoc "tc.conv.size.coerce" 20 $ "coercing to a size type" case b2 of -- @t2 = Size@. We are done! BoundedNo -> done -- @t2 = Size< v2@ BoundedLt v2 -> do sv2 <- sizeView v2 case sv2 of SizeInf -> done OtherSize{} -> do -- Andreas, 2014-06-16: -- Issue 1203: For now, just treat v < v2 as suc v <= v2 -- TODO: Need proper < comparison vinc <- sizeSuc 1 v compareSizes CmpLeq vinc v2 done -- @v2 = a2 + 1@: In this case, we can try @v <= a2@ SizeSuc a2 -> do compareSizes CmpLeq v a2 done -- to pass Issue 1136 --------------------------------------------------------------------------- -- * Sorts and levels --------------------------------------------------------------------------- compareLevel :: MonadConversion m => Comparison -> Level -> Level -> m () compareLevel CmpLeq u v = leqLevel u v compareLevel CmpEq u v = equalLevel u v compareSort :: MonadConversion m => Comparison -> Sort -> Sort -> m () compareSort CmpEq = equalSort compareSort CmpLeq = leqSort -- | Check that the first sort is less or equal to the second. -- -- We can put @SizeUniv@ below @Inf@, but otherwise, it is -- unrelated to the other universes. -- leqSort :: forall m. MonadConversion m => Sort -> Sort -> m () leqSort s1 s2 = (catchConstraint (SortCmp CmpLeq s1 s2) :: m () -> m ()) $ do (s1,s2) <- reduce (s1,s2) let postpone = addConstraint (SortCmp CmpLeq s1 s2) no = typeError $ NotLeqSort s1 s2 yes = return () synEq = ifNotM (optSyntacticEquality <$> pragmaOptions) postpone $ do ((s1,s2) , equal) <- SynEq.checkSyntacticEquality s1 s2 if | equal -> yes | otherwise -> postpone reportSDoc "tc.conv.sort" 30 $ sep [ "leqSort" , nest 2 $ fsep [ prettyTCM s1 <+> "=<" , prettyTCM s2 ] ] propEnabled <- isPropEnabled let fvsRHS = (`IntSet.member` allFreeVars s2) badRigid <- s1 `rigidVarsNotContainedIn` fvsRHS case (s1, s2) of -- Andreas, 2018-09-03: crash on dummy sort (DummyS s, _) -> impossibleSort s (_, DummyS s) -> impossibleSort s -- The most basic rule: @Set l =< Set l'@ iff @l =< l'@ (Type a , Type b ) -> leqLevel a b -- Likewise for @Prop@ (Prop a , Prop b ) -> leqLevel a b -- @Prop l@ is below @Set l@ (Prop a , Type b ) -> leqLevel a b (Type a , Prop b ) -> no -- Setω is the top sort (_ , Inf ) -> yes (Inf , _ ) -> equalSort s1 s2 -- @SizeUniv@ and @Prop0@ are bottom sorts. -- So is @Set0@ if @Prop@ is not enabled. (_ , SizeUniv) -> equalSort s1 s2 (_ , Prop (Max 0 [])) -> equalSort s1 s2 (_ , Type (Max 0 [])) | not propEnabled -> equalSort s1 s2 -- SizeUniv is unrelated to any @Set l@ or @Prop l@ (SizeUniv, Type{} ) -> no (SizeUniv, Prop{} ) -> no -- If the first sort rigidly depends on a variable and the second -- sort does not mention this variable, the second sort must be Inf. (_ , _ ) | badRigid -> equalSort s2 Inf -- This shouldn't be necessary (UnivSort Inf , UnivSort Inf) -> yes -- PiSort, FunSort, UnivSort and MetaS might reduce once we instantiate -- more metas, so we postpone. (PiSort{}, _ ) -> synEq (_ , PiSort{}) -> synEq (FunSort{}, _ ) -> synEq (_ , FunSort{}) -> synEq (UnivSort{}, _ ) -> synEq (_ , UnivSort{}) -> synEq (MetaS{} , _ ) -> synEq (_ , MetaS{} ) -> synEq -- DefS are postulated sorts, so they do not reduce. (DefS{} , _ ) -> synEq (_ , DefS{}) -> synEq where impossibleSort s = do reportS "impossible" 10 [ "leqSort: found dummy sort with description:" , s ] __IMPOSSIBLE__ leqLevel :: MonadConversion m => Level -> Level -> m () leqLevel a b = do reportSDoc "tc.conv.nat" 30 $ "compareLevel" <+> sep [ prettyTCM a <+> "=<" , prettyTCM b ] -- Andreas, 2015-12-28 Issue 1757 -- We normalize both sides to make the syntactic equality check (==) stronger. -- See case for `same term` below. a <- normalise a b <- normalise b leqView a b where -- Andreas, 2016-09-28 -- If we have to postpone a constraint, then its simplified form! leqView :: MonadConversion m => Level -> Level -> m () leqView a b = catchConstraint (LevelCmp CmpLeq a b) $ do reportSDoc "tc.conv.level" 30 $ "compareLevelView" <+> sep [ pretty a <+> "=<" , pretty b ] cumulativity <- optCumulativity <$> pragmaOptions reportSDoc "tc.conv.level" 40 $ "compareLevelView" <+> sep [ prettyList_ (map (pretty . unSingleLevel) $ NonEmpty.toList $ levelMaxView a) , "=<" , prettyList_ (map (pretty . unSingleLevel) $ NonEmpty.toList $ levelMaxView b) ] wrap $ case (levelMaxView a, levelMaxView b) of -- same term _ | a == b -> ok -- 0 ≤ any (SingleClosed 0 :| [] , _) -> ok -- any ≤ 0 (as , SingleClosed 0 :| []) -> sequence_ [ equalLevel (unSingleLevel a') (ClosedLevel 0) | a' <- NonEmpty.toList as ] -- closed ≤ closed (SingleClosed m :| [], SingleClosed n :| []) -> if m <= n then ok else notok -- closed ≤ b (SingleClosed m :| [] , _) | m <= levelLowerBound b -> ok -- as ≤ neutral/closed (as, bs) | all neutralOrClosed bs , levelLowerBound a > levelLowerBound b -> notok -- ⊔ as ≤ single (as@(_:|_:_), b :| []) -> sequence_ [ leqView (unSingleLevel a') (unSingleLevel b) | a' <- NonEmpty.toList as ] -- reduce constants (as, bs) | let minN = min (fst $ levelPlusView a) (fst $ levelPlusView b) a' = fromMaybe __IMPOSSIBLE__ $ subLevel minN a b' = fromMaybe __IMPOSSIBLE__ $ subLevel minN b , minN > 0 -> leqView a' b' -- remove subsumed -- Andreas, 2014-04-07: This is ok if we do not go back to equalLevel (as, bs) | (subsumed@(_:_) , as') <- List.partition isSubsumed (NonEmpty.toList as) -> leqView (unSingleLevels as') b where isSubsumed a = any (`subsumes` a) (NonEmpty.toList bs) subsumes :: SingleLevel -> SingleLevel -> Bool subsumes (SingleClosed m) (SingleClosed n) = m >= n subsumes (SinglePlus (Plus m _)) (SingleClosed n) = m >= n subsumes (SinglePlus (Plus m a)) (SinglePlus (Plus n b)) = a == b && m >= n subsumes _ _ = False -- as ≤ _l x₁ .. xₙ ⊔ bs -- We can solve _l := λ x₁ .. xₙ -> as ⊔ (_l' x₁ .. xₙ) -- (where _l' is a new metavariable) (as , bs) | cumulativity , Just (mb@(MetaLevel x es) , bs') <- singleMetaView (NonEmpty.toList bs) , null bs' || noMetas (Level a , unSingleLevels bs') -> do mv <- lookupMeta x -- Jesper, 2019-10-13: abort if this is an interaction -- meta or a generalizable meta abort <- (isJust <$> isInteractionMeta x) `or2M` ((== YesGeneralize) <$> isGeneralizableMeta x) if | abort -> postpone | otherwise -> do x' <- case mvJudgement mv of IsSort{} -> __IMPOSSIBLE__ HasType _ cmp t -> do TelV tel t' <- telView t newMeta Instantiable (mvInfo mv) normalMetaPriority (idP $ size tel) $ HasType () cmp t reportSDoc "tc.conv.level" 20 $ fsep [ "attempting to solve" , prettyTCM (MetaV x es) , "to the maximum of" , prettyTCM (Level a) , "and the fresh meta" , prettyTCM (MetaV x' es) ] equalLevel (atomicLevel mb) $ levelLub a (atomicLevel $ MetaLevel x' es) -- Andreas, 2016-09-28: This simplification loses the solution lzero. -- Thus, it is invalid. -- See test/Succeed/LevelMetaLeqNeutralLevel.agda. -- -- [a] ≤ [neutral] -- ([a@(Plus n _)], [b@(Plus m NeutralLevel{})]) -- | m == n -> equalLevel' (Max [a]) (Max [b]) -- -- Andreas, 2014-04-07: This call to equalLevel is ok even if we removed -- -- subsumed terms from the lhs. -- anything else _ | noMetas (Level a , Level b) -> notok | otherwise -> postpone where ok = return () notok = unlessM typeInType $ typeError $ NotLeqSort (Type a) (Type b) postpone = patternViolation wrap m = m `catchError` \case TypeError{} -> notok err -> throwError err neutralOrClosed (SingleClosed _) = True neutralOrClosed (SinglePlus (Plus _ NeutralLevel{})) = True neutralOrClosed _ = False -- Is there exactly one @MetaLevel@ in the list of single levels? singleMetaView :: [SingleLevel] -> Maybe (LevelAtom, [SingleLevel]) singleMetaView (SinglePlus (Plus 0 l@(MetaLevel m es)) : ls) | all (not . isMetaLevel) ls = Just (l,ls) singleMetaView (l : ls) | not $ isMetaLevel l = second (l:) <$> singleMetaView ls singleMetaView _ = Nothing isMetaLevel :: SingleLevel -> Bool isMetaLevel (SinglePlus (Plus _ MetaLevel{})) = True isMetaLevel (SinglePlus (Plus _ UnreducedLevel{})) = __IMPOSSIBLE__ isMetaLevel _ = False equalLevel :: MonadConversion m => Level -> Level -> m () equalLevel a b = do -- Andreas, 2013-10-31 Use normalization to make syntactic equality stronger (a, b) <- normalise (a, b) equalLevel' a b -- | Precondition: levels are 'normalise'd. equalLevel' :: forall m. MonadConversion m => Level -> Level -> m () equalLevel' a b = do reportSDoc "tc.conv.level" 50 $ sep [ "equalLevel", nest 2 $ parens $ pretty a, nest 2 $ parens $ pretty b ] -- Andreas, 2013-10-31 remove common terms (that don't contain metas!) -- THAT's actually UNSOUND when metas are instantiated, because -- max a b == max a c does not imply b == c -- as <- return $ Set.fromList $ closed0 as -- bs <- return $ Set.fromList $ closed0 bs -- let cs = Set.filter (not . hasMeta) $ Set.intersection as bs -- as <- return $ Set.toList $ as Set.\\ cs -- bs <- return $ Set.toList $ bs Set.\\ cs reportSDoc "tc.conv.level" 40 $ sep [ "equalLevel" , vcat [ nest 2 $ sep [ prettyTCM a <+> "==" , prettyTCM b ] ] ] -- Jesper, 2014-02-02 remove terms that certainly do not contribute -- to the maximum let (a',b') = removeSubsumed a b reportSDoc "tc.conv.level" 50 $ sep [ "equalLevel (w/o subsumed)" , vcat [ nest 2 $ sep [ prettyTCM a' <+> "==" , prettyTCM b' ] ] ] let as = levelMaxView a' bs = levelMaxView b' reportSDoc "tc.conv.level" 50 $ sep [ text "equalLevel" , vcat [ nest 2 $ sep [ prettyList_ (map (pretty . unSingleLevel) $ NonEmpty.toList $ as) , "==" , prettyList_ (map (pretty . unSingleLevel) $ NonEmpty.toList $ bs) ] ] ] reportSDoc "tc.conv.level" 80 $ sep [ text "equalLevel" , vcat [ nest 2 $ sep [ prettyList_ (map (text . show . unSingleLevel) $ NonEmpty.toList $ as) , "==" , prettyList_ (map (text . show . unSingleLevel) $ NonEmpty.toList $ bs) ] ] ] catchConstraint (LevelCmp CmpEq a b) $ case (as, bs) of -- equal levels _ | a == b -> ok -- closed == closed (SingleClosed m :| [], SingleClosed n :| []) | m == n -> ok | otherwise -> notok -- closed == neutral (SingleClosed m :| [] , bs) | any isNeutral bs -> notok (as , SingleClosed n :| []) | any isNeutral as -> notok -- closed == b (SingleClosed m :| [] , _) | m < levelLowerBound b -> notok (_ , SingleClosed n :| []) | n < levelLowerBound a -> notok -- 0 == a ⊔ b (SingleClosed 0 :| [] , bs@(_:|_:_)) -> sequence_ [ equalLevel' (ClosedLevel 0) (unSingleLevel b') | b' <- NonEmpty.toList bs ] (as@(_:|_:_) , SingleClosed 0 :| []) -> sequence_ [ equalLevel' (unSingleLevel a') (ClosedLevel 0) | a' <- NonEmpty.toList as ] -- meta == any (SinglePlus (Plus k (MetaLevel x as)) :| [] , bs) | any (isThisMeta x) bs -> postpone (as , SinglePlus (Plus k (MetaLevel x bs)) :| []) | any (isThisMeta x) as -> postpone (SinglePlus (Plus k (MetaLevel x as')) :| [] , SinglePlus (Plus l (MetaLevel y bs')) :| []) -- there is only a potential choice when k == l | k == l -> if | y < x -> meta x as' $ atomicLevel $ MetaLevel y bs' | otherwise -> meta y bs' $ atomicLevel $ MetaLevel x as' (SinglePlus (Plus k (MetaLevel x as')) :| [] , _) | Just b' <- subLevel k b -> meta x as' b' (_ , SinglePlus (Plus l (MetaLevel y bs')) :| []) | Just a' <- subLevel l a -> meta y bs' a' -- a' ⊔ b == b _ | Just a' <- levelMaxDiff a b , b /= ClosedLevel 0 -> leqLevel a' b -- a == b' ⊔ a _ | Just b' <- levelMaxDiff b a , a /= ClosedLevel 0 -> leqLevel b' a -- neutral/closed == neutral/closed (as , bs) | all isNeutralOrClosed (NonEmpty.toList as ++ NonEmpty.toList bs) -- Andreas, 2013-10-31: There could be metas in neutral levels (see Issue 930). -- Should not we postpone there as well? Yes! , not (any hasMeta (NonEmpty.toList as ++ NonEmpty.toList bs)) , length as == length bs -> do reportSLn "tc.conv.level" 60 $ "equalLevel: all are neutral or closed" zipWithM_ ((===) `on` levelTm . unSingleLevel) (NonEmpty.toList as) (NonEmpty.toList bs) -- more cases? _ | noMetas (Level a , Level b) -> notok | otherwise -> postpone where a === b = unlessM typeInType $ do lvl <- levelType equalAtom (AsTermsOf lvl) a b ok = return () notok = unlessM typeInType notOk notOk = typeError $ UnequalLevel CmpEq a b postpone = do reportSDoc "tc.conv.level" 30 $ hang "postponing:" 2 $ hang (pretty a <+> "==") 0 (pretty b) patternViolation -- perform assignment (MetaLevel x as) := b meta x as b = do reportSLn "tc.meta.level" 30 $ "Assigning meta level" reportSDoc "tc.meta.level" 50 $ "meta" <+> sep [prettyList $ map pretty as, pretty b] lvl <- levelType assignE DirEq x as (levelTm b) (AsTermsOf lvl) (===) -- fallback: check equality as atoms -- Make sure to give a sensible error message wrap m = m `catchError` \case TypeError{} -> notok err -> throwError err isNeutral (SinglePlus (Plus _ NeutralLevel{})) = True isNeutral _ = False isNeutralOrClosed (SingleClosed _) = True isNeutralOrClosed (SinglePlus (Plus _ NeutralLevel{})) = True isNeutralOrClosed _ = False hasMeta (SinglePlus a) = case a of Plus _ MetaLevel{} -> True Plus _ (BlockedLevel _ v) -> isJust $ firstMeta v Plus _ (NeutralLevel _ v) -> isJust $ firstMeta v Plus _ (UnreducedLevel v) -> isJust $ firstMeta v hasMeta (SingleClosed _) = False isThisMeta x (SinglePlus (Plus _ (MetaLevel y _))) = x == y isThisMeta _ _ = False removeSubsumed a b = let as = NonEmpty.toList $ levelMaxView a bs = NonEmpty.toList $ levelMaxView b a' = unSingleLevels $ filter (not . (`isStrictlySubsumedBy` bs)) as b' = unSingleLevels $ filter (not . (`isStrictlySubsumedBy` as)) bs in (a',b') x `isStrictlySubsumedBy` ys = any (`strictlySubsumes` x) ys SingleClosed m `strictlySubsumes` SingleClosed n = m > n SinglePlus (Plus m a) `strictlySubsumes` SingleClosed n = m > n SinglePlus (Plus m a) `strictlySubsumes` SinglePlus (Plus n b) = a == b && m > n _ `strictlySubsumes` _ = False -- | Check that the first sort equal to the second. equalSort :: forall m. MonadConversion m => Sort -> Sort -> m () equalSort s1 s2 = do catchConstraint (SortCmp CmpEq s1 s2) $ do (s1,s2) <- reduce (s1,s2) let yes = return () no = typeError $ UnequalSorts s1 s2 reportSDoc "tc.conv.sort" 30 $ sep [ "equalSort" , vcat [ nest 2 $ fsep [ prettyTCM s1 <+> "==" , prettyTCM s2 ] , nest 2 $ fsep [ pretty s1 <+> "==" , pretty s2 ] ] ] propEnabled <- isPropEnabled typeInTypeEnabled <- typeInType case (s1, s2) of -- Andreas, 2018-09-03: crash on dummy sort (DummyS s, _) -> impossibleSort s (_, DummyS s) -> impossibleSort s -- one side is a meta sort: try to instantiate -- In case both sides are meta sorts, instantiate the -- bigger (i.e. more recent) one. (MetaS x es , MetaS y es') | x == y -> synEq s1 s2 | x < y -> meta y es' s1 | otherwise -> meta x es s2 (MetaS x es , _ ) -> meta x es s2 (_ , MetaS x es ) -> meta x es s1 -- diagonal cases for rigid sorts (Type a , Type b ) -> equalLevel a b `catchInequalLevel` no (SizeUniv , SizeUniv ) -> yes (Prop a , Prop b ) -> equalLevel a b `catchInequalLevel` no (Inf , Inf ) -> yes -- if --type-in-type is enabled, Setω is equal to any Set ℓ (see #3439) (Type{} , Inf ) | typeInTypeEnabled -> yes (Inf , Type{} ) | typeInTypeEnabled -> yes -- equating @PiSort a b@ to another sort (s1 , PiSort a b) -> piSortEquals s1 a b (PiSort a b , s2) -> piSortEquals s2 a b -- equating @FunSort a b@ to another sort (s1 , FunSort a b) -> funSortEquals s1 a b (FunSort a b , s2) -> funSortEquals s2 a b -- equating @UnivSort s@ to another sort (s1 , UnivSort s2) -> univSortEquals s1 s2 (UnivSort s1 , s2 ) -> univSortEquals s2 s1 -- postulated sorts can only be equal if they have the same head (DefS d es , DefS d' es') | d == d' -> synEq s1 s2 | otherwise -> no -- any other combinations of sorts are not equal (_ , _ ) -> no where -- perform assignment (MetaS x es) := s meta :: MetaId -> [Elim' Term] -> Sort -> m () meta x es s = do reportSLn "tc.meta.sort" 30 $ "Assigning meta sort" reportSDoc "tc.meta.sort" 50 $ "meta" <+> sep [pretty x, prettyList $ map pretty es, pretty s] assignE DirEq x es (Sort s) AsTypes __IMPOSSIBLE__ -- fall back to syntactic equality check, postpone if it fails synEq :: Sort -> Sort -> m () synEq s1 s2 = do let postpone = addConstraint $ SortCmp CmpEq s1 s2 doSynEq <- optSyntacticEquality <$> pragmaOptions if | doSynEq -> do ((s1,s2) , equal) <- SynEq.checkSyntacticEquality s1 s2 if | equal -> return () | otherwise -> postpone | otherwise -> postpone set0 = mkType 0 prop0 = mkProp 0 -- Equate a sort @s1@ to @univSort s2@ -- Precondition: @s1@ and @univSort s2@ are already reduced. univSortEquals :: Sort -> Sort -> m () univSortEquals s1 s2 = do reportSDoc "tc.conv.sort" 35 $ vcat [ "univSortEquals" , " s1 =" <+> prettyTCM s1 , " s2 =" <+> prettyTCM s2 ] let no = typeError $ UnequalSorts s1 (UnivSort s2) case s1 of -- @Set l1@ is the successor sort of either @Set l2@ or -- @Prop l2@ where @l1 == lsuc l2@. Type l1 -> do propEnabled <- isPropEnabled -- @s2@ is definitely not @Inf@ or @SizeUniv@ if | Inf <- s2 -> no | SizeUniv <- s2 -> no -- If @Prop@ is not used, then @s2@ must be of the form -- @Set l2@ | not propEnabled -> do l2 <- case subLevel 1 l1 of Just l2 -> return l2 Nothing -> do l2 <- newLevelMeta equalLevel l1 (levelSuc l2) return l2 equalSort (Type l2) s2 -- Otherwise we postpone | otherwise -> synEq (Type l1) (UnivSort s2) -- @Setω@ is only a successor sort if --type-in-type or -- --omega-in-omega is enabled. Inf -> do infInInf <- (optOmegaInOmega <$> pragmaOptions) `or2M` typeInType if | infInInf -> equalSort Inf s2 | otherwise -> no -- @Prop l@ and @SizeUniv@ are not successor sorts Prop{} -> no SizeUniv{} -> no -- Anything else: postpone _ -> synEq s1 (UnivSort s2) -- Equate a sort @s@ to @piSort a b@ -- Precondition: @s@ and @piSort a b@ are already reduced. piSortEquals :: Sort -> Dom Type -> Abs Sort -> m () piSortEquals s a NoAbs{} = __IMPOSSIBLE__ piSortEquals s a bAbs@(Abs x b) = do reportSDoc "tc.conv.sort" 35 $ vcat [ "piSortEquals" , " s =" <+> prettyTCM s , " a =" <+> prettyTCM a , " b =" <+> addContext (x,a) (prettyTCM b) ] propEnabled <- isPropEnabled -- If @b@ is dependent, then @piSort a b@ computes to -- @Setω@. Hence, if @s@ is definitely not @Setω@, then @b@ -- cannot be dependent. if | definitelyNotInf s -> do -- We force @b@ to be non-dependent by unifying it with -- a fresh meta that does not depend on @x : a@ b' <- newSortMeta addContext (x,a) $ equalSort b (raise 1 b') funSortEquals s (getSort a) b' -- Otherwise: postpone | otherwise -> synEq (PiSort a bAbs) s -- Equate a sort @s@ to @funSort s1 s2@ -- Precondition: @s@ and @funSort s1 s2@ are already reduced funSortEquals :: Sort -> Sort -> Sort -> m () funSortEquals s0 s1 s2 = do reportSDoc "tc.conv.sort" 35 $ vcat [ "funSortEquals" , " s0 =" <+> prettyTCM s0 , " s1 =" <+> prettyTCM s1 , " s2 =" <+> prettyTCM s2 ] propEnabled <- isPropEnabled sizedTypesEnabled <- sizedTypesOption case s0 of -- If @Setω == funSort s1 s2@, then either @s1@ or @s2@ must -- be @Setω@. Inf | definitelyNotInf s1 && definitelyNotInf s2 -> do typeError $ UnequalSorts s0 (FunSort s1 s2) | definitelyNotInf s1 -> equalSort Inf s2 | definitelyNotInf s2 -> equalSort Inf s1 | otherwise -> synEq s0 (FunSort s1 s2) -- If @Set l == funSort s1 s2@, then @s2@ must be of the -- form @Set l2@. @s1@ can be one of @Set l1@, @Prop l1@, or -- @SizeUniv@. Type l -> do l2 <- forceType s2 -- We must have @l2 =< l@, this might help us to solve -- more constraints (in particular when @l == 0@). leqLevel l2 l -- Jesper, 2019-12-27: SizeUniv is disabled at the moment. if | {- sizedTypesEnabled || -} propEnabled -> case funSort' s1 (Type l2) of -- If the work we did makes the @funSort@ compute, -- continue working. Just s -> equalSort (Type l) s -- Otherwise: postpone Nothing -> synEq (Type l) (FunSort s1 $ Type l2) -- If both Prop and sized types are disabled, only the -- case @s1 == Set l1@ remains. | otherwise -> do l1 <- forceType s1 equalLevel l (levelLub l1 l2) -- If @Prop l == funSort s1 s2@, then @s2@ must be of the -- form @Prop l2@, and @s1@ can be one of @Set l1@, Prop -- l1@, or @SizeUniv@. Prop l -> do l2 <- forceProp s2 leqLevel l2 l case funSort' s1 (Prop l2) of -- If the work we did makes the @funSort@ compute, -- continue working. Just s -> equalSort (Prop l) s -- Otherwise: postpone Nothing -> synEq (Prop l) (FunSort s1 $ Prop l2) -- We have @SizeUniv == funSort s1 s2@ iff @s2 == SizeUniv@ SizeUniv -> equalSort SizeUniv s2 -- Anything else: postpone _ -> synEq s0 (FunSort s1 s2) -- check if the given sort @s0@ is a (closed) bottom sort -- i.e. @piSort a b == s0@ implies @b == s0@. isBottomSort :: Bool -> Sort -> Bool isBottomSort propEnabled (Prop (ClosedLevel 0)) = True isBottomSort propEnabled (Type (ClosedLevel 0)) = not propEnabled isBottomSort propEnabled _ = False definitelyNotInf :: Sort -> Bool definitelyNotInf = \case Inf -> False Type{} -> True Prop{} -> True SizeUniv -> True PiSort{} -> False FunSort{} -> False UnivSort{} -> False MetaS{} -> False DefS{} -> False DummyS{} -> False forceType :: Sort -> m Level forceType (Type l) = return l forceType s = do l <- newLevelMeta equalSort s (Type l) return l forceProp :: Sort -> m Level forceProp (Prop l) = return l forceProp s = do l <- newLevelMeta equalSort s (Prop l) return l impossibleSort s = do reportS "impossible" 10 [ "equalSort: found dummy sort with description:" , s ] __IMPOSSIBLE__ catchInequalLevel m fail = m `catchError` \case TypeError{} -> fail err -> throwError err -- -- This should probably represent face maps with a more precise type -- toFaceMaps :: Term -> TCM [[(Int,Term)]] -- toFaceMaps t = do -- view <- intervalView' -- iz <- primIZero -- io <- primIOne -- ineg <- (\ q t -> Def q [Apply $ Arg defaultArgInfo t]) <$> fromMaybe __IMPOSSIBLE__ <$> getPrimitiveName' "primINeg" -- let f IZero = mzero -- f IOne = return [] -- f (IMin x y) = do xs <- (f . view . unArg) x; ys <- (f . view . unArg) y; return (xs ++ ys) -- f (IMax x y) = msum $ map (f . view . unArg) [x,y] -- f (INeg x) = map (id -*- not) <$> (f . view . unArg) x -- f (OTerm (Var i [])) = return [(i,True)] -- f (OTerm _) = return [] -- what about metas? we should suspend? maybe no metas is a precondition? -- isConsistent xs = all (\ xs -> length xs == 1) . map nub . Map.elems $ xs -- optimize by not doing generate + filter -- as = map (map (id -*- head) . Map.toAscList) . filter isConsistent . map (Map.fromListWith (++) . map (id -*- (:[]))) $ (f (view t)) -- xs <- mapM (mapM (\ (i,b) -> (,) i <$> intervalUnview (if b then IOne else IZero))) as -- return xs forallFaceMaps :: MonadConversion m => Term -> (Map.Map Int Bool -> MetaId -> Term -> m a) -> (Substitution -> m a) -> m [a] forallFaceMaps t kb k = do reportSDoc "conv.forall" 20 $ fsep ["forallFaceMaps" , prettyTCM t ] as <- decomposeInterval t boolToI <- do io <- primIOne iz <- primIZero return (\b -> if b then io else iz) forM as $ \ (ms,ts) -> do ifBlockeds ts (kb ms) $ \ _ _ -> do let xs = map (id -*- boolToI) $ Map.toAscList ms cxt <- getContext reportSDoc "conv.forall" 20 $ fsep ["substContextN" , prettyTCM cxt , prettyTCM xs ] (cxt',sigma) <- substContextN cxt xs resolved <- forM xs (\ (i,t) -> (,) <$> lookupBV i <*> return (applySubst sigma t)) updateContext sigma (const cxt') $ addBindings resolved $ do cl <- buildClosure () tel <- getContextTelescope m <- currentModule sub <- getModuleParameterSub m reportS "conv.forall" 10 [ replicate 10 '-' , show (envCurrentModule $ clEnv cl) , show (envLetBindings $ clEnv cl) , show tel -- (toTelescope $ envContext $ clEnv cl) , show sigma , show m , show sub ] k sigma where -- TODO Andrea: inefficient because we try to reduce the ts which we know are in whnf ifBlockeds ts blocked unblocked = do and <- getPrimitiveTerm "primIMin" io <- primIOne let t = foldr (\ x r -> and `apply` [argN x,argN r]) io ts ifBlocked t blocked unblocked addBindings [] m = m addBindings ((Dom{domInfo = info,unDom = (nm,ty)},t):bs) m = addLetBinding info nm t ty (addBindings bs m) substContextN :: MonadConversion m => Context -> [(Int,Term)] -> m (Context , Substitution) substContextN c [] = return (c, idS) substContextN c ((i,t):xs) = do (c', sigma) <- substContext i t c (c'', sigma') <- substContextN c' (map (subtract 1 -*- applySubst sigma) xs) return (c'', applySubst sigma' sigma) -- assumes the term can be typed in the shorter telescope -- the terms we get from toFaceMaps are closed. substContext :: MonadConversion m => Int -> Term -> Context -> m (Context , Substitution) substContext i t [] = __IMPOSSIBLE__ substContext i t (x:xs) | i == 0 = return $ (xs , singletonS 0 t) substContext i t (x:xs) | i > 0 = do reportSDoc "conv.forall" 20 $ fsep ["substContext" , text (show (i-1)) , prettyTCM t , prettyTCM xs ] (c,sigma) <- substContext (i-1) t xs let e = applySubst sigma x return (e:c, liftS 1 sigma) substContext i t (x:xs) = __IMPOSSIBLE__ compareInterval :: MonadConversion m => Comparison -> Type -> Term -> Term -> m () compareInterval cmp i t u = do reportSDoc "tc.conv.interval" 15 $ sep [ "{ compareInterval" <+> prettyTCM t <+> "=" <+> prettyTCM u ] tb <- reduceB t ub <- reduceB u let t = ignoreBlocking tb u = ignoreBlocking ub it <- decomposeInterval' t iu <- decomposeInterval' u case () of _ | blockedOrMeta tb || blockedOrMeta ub -> do -- in case of metas we wouldn't be able to make progress by how we deal with de morgan laws. -- (because the constraints generated by decomposition are sufficient but not necessary). -- but we could still prune/solve some metas by comparing the terms as atoms. -- also if blocked we won't find the terms conclusively unequal(?) so compareAtom -- won't report type errors when we should accept. interval <- elInf $ primInterval compareAtom CmpEq (AsTermsOf interval) t u _ | otherwise -> do x <- leqInterval it iu y <- leqInterval iu it let final = isCanonical it && isCanonical iu if x && y then reportSDoc "tc.conv.interval" 15 $ "Ok! }" else if final then typeError $ UnequalTerms cmp t u (AsTermsOf i) else do reportSDoc "tc.conv.interval" 15 $ "Giving up! }" patternViolation where blockedOrMeta Blocked{} = True blockedOrMeta (NotBlocked _ (MetaV{})) = True blockedOrMeta _ = False type Conj = (Map.Map Int (Set.Set Bool),[Term]) isCanonical :: [Conj] -> Bool isCanonical = all (null . snd) -- | leqInterval r q = r ≤ q in the I lattice. -- (∨ r_i) ≤ (∨ q_j) iff ∀ i. ∃ j. r_i ≤ q_j leqInterval :: MonadConversion m => [Conj] -> [Conj] -> m Bool leqInterval r q = and <$> forM r (\ r_i -> or <$> forM q (\ q_j -> leqConj r_i q_j)) -- TODO shortcut -- | leqConj r q = r ≤ q in the I lattice, when r and q are conjuctions. -- ' (∧ r_i) ≤ (∧ q_j) iff -- ' (∧ r_i) ∧ (∧ q_j) = (∧ r_i) iff -- ' {r_i | i} ∪ {q_j | j} = {r_i | i} iff -- ' {q_j | j} ⊆ {r_i | i} leqConj :: MonadConversion m => Conj -> Conj -> m Bool leqConj (rs,rst) (qs,qst) = do case toSet qs `Set.isSubsetOf` toSet rs of False -> return False True -> do interval <- elInf $ fromMaybe __IMPOSSIBLE__ <$> getBuiltin' builtinInterval -- we don't want to generate new constraints here because -- 1) in some situations the same constraint would get generated twice. -- 2) unless things are completely accepted we are going to -- throw patternViolation in compareInterval. let eqT t u = tryConversion (compareAtom CmpEq (AsTermsOf interval) t u) let listSubset ts us = and <$> forM ts (\ t -> or <$> forM us (\ u -> eqT t u)) -- TODO shortcut listSubset qst rst where toSet m = Set.fromList [ (i,b) | (i,bs) <- Map.toList m, b <- Set.toList bs] -- | equalTermOnFace φ A u v = _ , φ ⊢ u = v : A equalTermOnFace :: MonadConversion m => Term -> Type -> Term -> Term -> m () equalTermOnFace = compareTermOnFace CmpEq compareTermOnFace :: MonadConversion m => Comparison -> Term -> Type -> Term -> Term -> m () compareTermOnFace = compareTermOnFace' compareTerm compareTermOnFace' :: MonadConversion m => (Comparison -> Type -> Term -> Term -> m ()) -> Comparison -> Term -> Type -> Term -> Term -> m () compareTermOnFace' k cmp phi ty u v = do phi <- reduce phi _ <- forallFaceMaps phi postponed $ \ alpha -> k cmp (applySubst alpha ty) (applySubst alpha u) (applySubst alpha v) return () where postponed ms i psi = do phi <- runNamesT [] $ do imin <- cl $ getPrimitiveTerm "primIMin" ineg <- cl $ getPrimitiveTerm "primINeg" psi <- open psi let phi = foldr (\ (i,b) r -> do i <- open (var i); pure imin <@> (if b then i else pure ineg <@> i) <@> r) psi (Map.toList ms) -- TODO Andrea: make a view? phi addConstraint (ValueCmpOnFace cmp phi ty u v) --------------------------------------------------------------------------- -- * Definitions --------------------------------------------------------------------------- bothAbsurd :: MonadConversion m => QName -> QName -> m Bool bothAbsurd f f' | isAbsurdLambdaName f, isAbsurdLambdaName f' = do -- Double check we are really dealing with absurd lambdas: -- Their functions should not have bodies. def <- getConstInfo f def' <- getConstInfo f' case (theDef def, theDef def') of (Function{ funClauses = [Clause{ clauseBody = Nothing }] }, Function{ funClauses = [Clause{ clauseBody = Nothing }] }) -> return True _ -> return False | otherwise = return False