{-# LANGUAGE BangPatterns #-} {-# LANGUAGE TypeFamilies #-} -- for type equality ~ {-# LANGUAGE UndecidableInstances #-} -- | Check that a datatype is strictly positive. module Agda.TypeChecking.Positivity where import Prelude hiding ( null ) import Control.Applicative hiding (empty) import Control.DeepSeq import Control.Monad.Reader import Data.Either import qualified Data.Foldable as Fold import Data.Function import Data.Graph (SCC(..)) import Data.IntMap (IntMap) import qualified Data.IntMap as IntMap import qualified Data.List as List import Data.Map (Map) import qualified Data.Map as Map import Data.Monoid (mconcat) import Data.Sequence (Seq) import qualified Data.Sequence as DS import Data.Set (Set) import qualified Data.Set as Set import Debug.Trace import Agda.Syntax.Common import qualified Agda.Syntax.Info as Info import Agda.Syntax.Internal import Agda.Syntax.Position (HasRange(..), noRange) import Agda.TypeChecking.Datatypes ( isDataOrRecordType ) import Agda.TypeChecking.Functions import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin (builtinInf, getBuiltin', CoinductionKit(..), coinductionKit) import Agda.TypeChecking.Positivity.Occurrence import Agda.TypeChecking.Pretty import Agda.TypeChecking.Records import Agda.TypeChecking.Reduce import Agda.TypeChecking.Substitute import Agda.TypeChecking.Telescope import Agda.TypeChecking.Warnings import qualified Agda.Utils.Graph.AdjacencyMap.Unidirectional as Graph import Agda.Utils.Function (applyUnless) import Agda.Utils.Functor import Agda.Utils.List import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.Null import qualified Agda.Utils.Pretty as P import Agda.Utils.Pretty (Pretty, prettyShow) import Agda.Utils.SemiRing import Agda.Utils.Singleton import Agda.Utils.Size import Agda.Utils.Impossible type Graph n e = Graph.Graph n e -- | Check that the datatypes in the mutual block containing the given -- declarations are strictly positive. -- -- Also add information about positivity and recursivity of records -- to the signature. checkStrictlyPositive :: Info.MutualInfo -> Set QName -> TCM () checkStrictlyPositive mi qset = do -- compute the occurrence graph for qs let qs = Set.toList qset reportSDoc "tc.pos.tick" 100 $ "positivity of" <+> prettyTCM qs g <- buildOccurrenceGraph qset let (gstar, sccs) = Graph.gaussJordanFloydWarshallMcNaughtonYamada $ fmap occ g reportSDoc "tc.pos.tick" 100 $ "constructed graph" reportSLn "tc.pos.graph" 5 $ "Positivity graph: N=" ++ show (size $ Graph.nodes g) ++ " E=" ++ show (length $ Graph.edges g) reportSDoc "tc.pos.graph" 10 $ vcat [ "positivity graph for" <+> (fsep $ map prettyTCM qs) , nest 2 $ prettyTCM g ] reportSLn "tc.pos.graph" 5 $ "Positivity graph (completed): E=" ++ show (length $ Graph.edges gstar) reportSDoc "tc.pos.graph" 50 $ vcat [ "transitive closure of positivity graph for" <+> prettyTCM qs , nest 2 $ prettyTCM gstar ] -- remember argument occurrences for qs in the signature setArgOccs qset qs gstar reportSDoc "tc.pos.tick" 100 $ "set args" -- check positivity for all strongly connected components of the graph for qs reportSDoc "tc.pos.graph.sccs" 10 $ do let (triv, others) = partitionEithers $ for sccs $ \case AcyclicSCC v -> Left v CyclicSCC vs -> Right vs sep [ text $ show (length triv) ++ " trivial sccs" , text $ show (length others) ++ " non-trivial sccs with lengths " ++ show (map length others) ] reportSLn "tc.pos.graph.sccs" 15 $ " sccs = " ++ prettyShow [ scc | CyclicSCC scc <- sccs ] forM_ sccs $ \case -- If the mutuality information has never been set, we set it to [] AcyclicSCC (DefNode q) -> whenM (isNothing <$> getMutual q) $ do reportSLn "tc.pos.mutual" 10 $ "setting " ++ prettyShow q ++ " to non-recursive" -- Andreas, 2017-04-26, issue #2555 -- We should not have @DefNode@s pointing outside our formal mutual block. unless (Set.member q qset) __IMPOSSIBLE__ setMutual q [] AcyclicSCC (ArgNode{}) -> return () CyclicSCC scc -> setMut [ q | DefNode q <- scc ] mapM_ (checkPos g gstar) qs reportSDoc "tc.pos.tick" 100 $ "checked positivity" where checkPos :: Graph Node (Edge OccursWhere) -> Graph Node Occurrence -> QName -> TCM () checkPos g gstar q = inConcreteOrAbstractMode q $ \ _def -> do -- we check positivity only for data or record definitions whenJustM (isDatatype q) $ \ dr -> do reportSDoc "tc.pos.check" 10 $ "Checking positivity of" <+> prettyTCM q let loop :: Maybe Occurrence loop = Graph.lookup (DefNode q) (DefNode q) gstar g' :: Graph Node (Edge (Seq OccursWhere)) g' = fmap (fmap DS.singleton) g -- Note the property -- Internal.Utils.Graph.AdjacencyMap.Unidirectional.prop_productOfEdgesInBoundedWalk, -- which relates productOfEdgesInBoundedWalk to -- gaussJordanFloydWarshallMcNaughtonYamada. reason bound = case productOfEdgesInBoundedWalk occ g' (DefNode q) (DefNode q) bound of Just (Edge _ how) -> how Nothing -> __IMPOSSIBLE__ how :: String -> Occurrence -> TCM Doc how msg bound = fsep $ [prettyTCM q] ++ pwords "is" ++ pwords (msg ++ ", because it occurs") ++ [prettyTCM (reason bound)] -- if we have a negative loop, raise error -- ASR (23 December 2015). We don't raise a strictly positive -- error if the NO_POSITIVITY_CHECK pragma was set on in the -- mutual block. See Issue 1614. when (Info.mutualPositivityCheck mi == YesPositivityCheck) $ whenM positivityCheckEnabled $ case loop of Just o | o <= JustPos -> warning $ NotStrictlyPositive q (reason JustPos) _ -> return () -- if we find an unguarded record, mark it as such when (dr == IsRecord) $ case loop of Just o | o <= StrictPos -> do reportSDoc "tc.pos.record" 5 $ how "not guarded" StrictPos unguardedRecord q checkInduction q -- otherwise, if the record is recursive, mark it as well Just o | o <= GuardPos -> do reportSDoc "tc.pos.record" 5 $ how "recursive" GuardPos recursiveRecord q checkInduction q -- If the record is not recursive, switch on eta -- unless it is coinductive or a no-eta-equality record. Nothing -> do reportSDoc "tc.pos.record" 10 $ "record type " <+> prettyTCM q <+> "is not recursive" nonRecursiveRecord q _ -> return () checkInduction :: QName -> TCM () checkInduction q = -- ASR (01 January 2016). We don't raise this error if the -- NO_POSITIVITY_CHECK pragma was set on in the record. See -- Issue 1760. when (Info.mutualPositivityCheck mi == YesPositivityCheck) $ whenM positivityCheckEnabled $ do -- Check whether the recursive record has been declared as -- 'Inductive' or 'Coinductive'. Otherwise, error. unlessM (isJust . recInduction . theDef <$> getConstInfo q) $ setCurrentRange (nameBindingSite $ qnameName q) $ typeError . GenericDocError =<< "Recursive record" <+> prettyTCM q <+> "needs to be declared as either inductive or coinductive" occ (Edge o _) = o isDatatype :: QName -> TCM (Maybe DataOrRecord) isDatatype q = do def <- theDef <$> getConstInfo q return $ case def of Datatype{dataClause = Nothing} -> Just IsData Record {recClause = Nothing} -> Just IsRecord _ -> Nothing -- Set the mutually recursive identifiers for a SCC. setMut :: [QName] -> TCM () setMut [] = return () -- nothing to do setMut qs = forM_ qs $ \ q -> do reportSLn "tc.pos.mutual" 10 $ "setting " ++ prettyShow q ++ " to (mutually) recursive" setMutual q qs -- TODO: The previous line produces data of quadratic size -- (which has to be processed upon serialization). Presumably qs is -- usually short, but in some cases (for instance for generated -- code) it may be long. Wouldn't it be better to assign a -- unique identifier to each SCC, and avoid storing lists? -- Set the polarity of the arguments to a couple of definitions setArgOccs :: Set QName -> [QName] -> Graph Node Occurrence -> TCM () setArgOccs qset qs g = do -- Andreas, 2018-05-11, issue #3049: we need to be pessimistic about -- argument polarity beyond the formal arity of the function. -- -- -- Compute a map from each name in q to the maximal argument index -- let maxs = Map.fromListWith max -- [ (q, i) | ArgNode q i <- Set.toList $ Graph.nodes g, q `Set.member` qset ] forM_ qs $ \ q -> inConcreteOrAbstractMode q $ \ def -> when (hasDefinition $ theDef def) $ do reportSDoc "tc.pos.args" 10 $ "checking args of" <+> prettyTCM q n <- getDefArity def -- If there is no outgoing edge @ArgNode q i@, all @n@ arguments are @Unused@. -- Otherwise, we obtain the occurrences from the Graph. let findOcc i = fromMaybe Unused $ Graph.lookup (ArgNode q i) (DefNode q) g args = -- caseMaybe (Map.lookup q maxs) (replicate n Unused) $ \ m -> map findOcc [0 .. n-1] -- [0 .. max m (n - 1)] -- triggers issue #3049 reportSDoc "tc.pos.args" 10 $ sep [ "args of" <+> prettyTCM q <+> "=" , nest 2 $ prettyList $ map prettyTCM args ] -- The list args can take a long time to compute, but contains -- small elements, and is stored in the interface (right?), so -- it is computed deep-strictly. setArgOccurrences q $!! args where -- Andreas, 2018-11-23, issue #3404 -- Only assign argument occurrences to things which have a definition. -- Things without a definition would be judged "constant" in all arguments, -- since no occurrence could possibly be found, naturally. hasDefinition :: Defn -> Bool hasDefinition = \case Axiom{} -> False DataOrRecSig{} -> False GeneralizableVar{} -> False AbstractDefn{} -> False Primitive{} -> False Constructor{} -> False Function{} -> True Datatype{} -> True Record{} -> True getDefArity :: Definition -> TCM Int getDefArity def = do let dropped = case theDef def of defn@Function{} -> projectionArgs defn _ -> 0 -- TODO: instantiateFull followed by arity could perhaps be -- optimised, presumably the instantiation can be performed -- lazily. subtract dropped . arity <$> instantiateFull (defType def) -- Computing occurrences -------------------------------------------------- data Item = AnArg Nat | ADef QName deriving (Eq, Ord, Show) instance HasRange Item where getRange (AnArg _) = noRange getRange (ADef qn) = getRange qn type Occurrences = Map Item [OccursWhere] -- | Used to build 'Occurrences' and occurrence graphs. data OccurrencesBuilder = Concat [OccurrencesBuilder] | OccursAs Where OccurrencesBuilder | OccursHere Item | OnlyVarsUpTo Nat OccurrencesBuilder -- ^ @OnlyVarsUpTo n occs@ discards occurrences of de Bruijn index -- @>= n@. -- | Used to build 'Occurrences' and occurrence graphs. data OccurrencesBuilder' = Concat' [OccurrencesBuilder'] | OccursAs' Where OccurrencesBuilder' | OccursHere' Item -- | The semigroup laws only hold up to flattening of 'Concat'. instance Semigroup OccurrencesBuilder where occs1 <> occs2 = Concat [occs1, occs2] -- | The monoid laws only hold up to flattening of 'Concat'. instance Monoid OccurrencesBuilder where mempty = Concat [] mappend = (<>) mconcat = Concat -- | Removes 'OnlyVarsUpTo' entries. preprocess :: OccurrencesBuilder -> OccurrencesBuilder' preprocess ob = case pp Nothing ob of Nothing -> Concat' [] Just ob -> ob where pp :: Maybe Nat -- ^ Variables larger than or equal to this number, if any, -- are not retained. -> OccurrencesBuilder -> Maybe OccurrencesBuilder' pp !m = \case Concat obs -> case mapMaybe (pp m) obs of [] -> Nothing obs -> return (Concat' obs) OccursAs w ob -> OccursAs' w <$> pp m ob OnlyVarsUpTo n ob -> pp (Just $! maybe n (min n) m) ob OccursHere i -> do guard keep return (OccursHere' i) where keep = case (m, i) of (Nothing, _) -> True (_, ADef _) -> True (Just m, AnArg i) -> i < m -- | An interpreter for 'OccurrencesBuilder'. -- -- WARNING: There can be lots of sharing between the generated -- 'OccursWhere' entries. Traversing all of these entries could be -- expensive. (See 'computeEdges' for an example.) flatten :: OccurrencesBuilder -> Map Item Integer flatten = Map.fromListWith (+) . flip flatten' [] . preprocess where flatten' :: OccurrencesBuilder' -> [(Item, Integer)] -> [(Item, Integer)] flatten' (Concat' obs) = foldr (\occs f -> flatten' occs . f) id obs flatten' (OccursAs' _ ob) = flatten' ob flatten' (OccursHere' i) = ((i, 1) :) -- | Context for computing occurrences. data OccEnv = OccEnv { vars :: [Maybe Item] -- ^ Items corresponding to the free variables. -- -- Potential invariant: It seems as if the list has the form -- @'genericReplicate' n 'Nothing' ++ 'map' ('Just' . 'AnArg') is@, -- for some @n@ and @is@, where @is@ is decreasing -- (non-strictly). , inf :: Maybe QName -- ^ Name for ∞ builtin. } -- | Monad for computing occurrences. type OccM = Reader OccEnv instance Semigroup a => Semigroup (OccM a) where ma <> mb = liftA2 (<>) ma mb instance (Semigroup a, Monoid a) => Monoid (OccM a) where mempty = return mempty mappend = (<>) mconcat = mconcat <.> sequence withExtendedOccEnv :: Maybe Item -> OccM a -> OccM a withExtendedOccEnv i = withExtendedOccEnv' [i] withExtendedOccEnv' :: [Maybe Item] -> OccM a -> OccM a withExtendedOccEnv' is = local $ \ e -> e { vars = is ++ vars e } -- | Running the monad getOccurrences :: (Show a, PrettyTCM a, ComputeOccurrences a) => [Maybe Item] -- ^ Extension of the 'OccEnv', usually a local variable context. -> a -> TCM OccurrencesBuilder getOccurrences vars a = do reportSDoc "tc.pos.occ" 70 $ "computing occurrences in " <+> text (show a) reportSDoc "tc.pos.occ" 20 $ "computing occurrences in " <+> prettyTCM a kit <- coinductionKit return $ runReader (occurrences a) $ OccEnv vars $ fmap nameOfInf kit class ComputeOccurrences a where occurrences :: a -> OccM OccurrencesBuilder default occurrences :: (Foldable t, ComputeOccurrences b, t b ~ a) => a -> OccM OccurrencesBuilder occurrences = foldMap occurrences instance ComputeOccurrences Clause where occurrences cl = do let ps = namedClausePats cl items = IntMap.elems $ patItems ps -- sorted from low to high DBI (Concat (mapMaybe matching (zip [0..] ps)) <>) <$> do withExtendedOccEnv' items $ occurrences $ clauseBody cl where matching (i, p) | properlyMatching (namedThing $ unArg p) = Just $ OccursAs Matched $ OccursHere $ AnArg i | otherwise = Nothing -- @patItems ps@ creates a map from the pattern variables of @ps@ -- to the index of the argument they are bound in. patItems ps = mconcat $ zipWith patItem [0..] ps -- @patItem i p@ assigns index @i@ to each pattern variable in @p@ patItem :: Int -> NamedArg DeBruijnPattern -> IntMap (Maybe Item) patItem i p = Fold.foldMap makeEntry ixs where ixs = map dbPatVarIndex $ lefts $ map unArg $ patternVars $ namedThing <$> p makeEntry x = singleton (x, Just $ AnArg i) instance ComputeOccurrences Term where occurrences v = case unSpine v of Var i args -> (occI <$> asks vars) <> (OccursAs VarArg <$> occurrences args) where occI vars = maybe mempty OccursHere $ indexWithDefault unbound vars i unbound = flip trace __IMPOSSIBLE__ $ "impossible: occurrence of de Bruijn index " ++ show i ++ " in vars " ++ show vars ++ " is unbound" Def d args -> do inf <- asks inf let occsAs = if Just d /= inf then OccursAs . DefArg d else \ n -> -- the principal argument of builtin INF (∞) is the second (n==1) -- the first is a level argument (n==0, counting from 0!) if n == 1 then OccursAs UnderInf else OccursAs (DefArg d n) occs <- mapM occurrences args return . Concat $ OccursHere (ADef d) : zipWith occsAs [0..] occs Con _ _ args -> occurrences args MetaV _ args -> OccursAs MetaArg <$> occurrences args Pi a b -> (OccursAs LeftOfArrow <$> occurrences a) <> occurrences b Lam _ b -> occurrences b Level l -> occurrences l Lit{} -> mempty Sort{} -> mempty -- Jesper, 2020-01-12: this information is also used for the -- occurs check, so we need to look under DontCare (see #4371) DontCare v -> occurrences v Dummy{} -> mempty instance ComputeOccurrences Level where occurrences (Max _ as) = occurrences as instance ComputeOccurrences PlusLevel where occurrences (Plus _ l) = occurrences l instance ComputeOccurrences LevelAtom where occurrences = occurrences . unLevelAtom -- MetaLevel x es -> occurrences $ MetaV x es -- Andreas, 2016-07-25, issue 2108 -- NOT: OccursAs MetaArg <$> occurrences es -- since we need to unSpine! -- (Otherwise, we run into __IMPOSSIBLE__ at Proj elims) instance ComputeOccurrences Type where occurrences (El _ v) = occurrences v instance ComputeOccurrences a => ComputeOccurrences (Tele a) where occurrences EmptyTel = mempty occurrences (ExtendTel a b) = occurrences (a, b) instance ComputeOccurrences a => ComputeOccurrences (Abs a) where occurrences (Abs _ b) = withExtendedOccEnv Nothing $ occurrences b occurrences (NoAbs _ b) = occurrences b instance ComputeOccurrences a => ComputeOccurrences (Elim' a) where occurrences Proj{} = __IMPOSSIBLE__ -- unSpine occurrences (Apply a) = occurrences a occurrences (IApply x y a) = occurrences (x,(y,a)) -- TODO Andrea: conservative instance ComputeOccurrences a => ComputeOccurrences (Arg a) where instance ComputeOccurrences a => ComputeOccurrences (Dom a) where instance ComputeOccurrences a => ComputeOccurrences [a] where instance ComputeOccurrences a => ComputeOccurrences (Maybe a) where instance (ComputeOccurrences a, ComputeOccurrences b) => ComputeOccurrences (a, b) where occurrences (x, y) = occurrences x <> occurrences y -- | Computes the number of occurrences of different 'Item's in the -- given definition. -- -- WARNING: There can be lots of sharing between the 'OccursWhere' -- entries. Traversing all of these entries could be expensive. (See -- 'computeEdges' for an example.) computeOccurrences :: QName -> TCM (Map Item Integer) computeOccurrences q = flatten <$> computeOccurrences' q -- | Computes the occurrences in the given definition. computeOccurrences' :: QName -> TCM OccurrencesBuilder computeOccurrences' q = inConcreteOrAbstractMode q $ \ def -> do reportSDoc "tc.pos" 25 $ do let a = defAbstract def m <- asksTC envAbstractMode cur <- asksTC envCurrentModule "computeOccurrences" <+> prettyTCM q <+> text (show a) <+> text (show m) <+> prettyTCM cur OccursAs (InDefOf q) <$> case theDef def of Function{funClauses = cs} -> do cs <- mapM etaExpandClause =<< instantiateFull cs Concat . zipWith (OccursAs . InClause) [0..] <$> mapM (getOccurrences []) cs Datatype{dataClause = Just c} -> getOccurrences [] =<< instantiateFull c Datatype{dataPars = np0, dataCons = cs} -> do -- Andreas, 2013-02-27 (later edited by someone else): First, -- include each index of an inductive family. TelV tel _ <- telView $ defType def -- Andreas, 2017-04-26, issue #2554: count first index as parameter if it has type Size. -- We compute sizeIndex=1 if first first index has type Size, otherwise sizeIndex==0 sizeIndex <- caseList (drop np0 $ telToList tel) (return 0) $ \ dom _ -> do caseMaybeM (isSizeType dom) (return 0) $ \ _ -> return 1 let np = np0 + sizeIndex let xs = [np .. size tel - 1] -- argument positions corresponding to indices let ioccs = Concat $ map (OccursHere . AnArg) [np0 .. np - 1] ++ map (OccursAs IsIndex . OccursHere . AnArg) xs -- Then, we compute the occurrences in the constructor types. let conOcc c = do -- Andreas, 2020-02-15, issue #4447: -- Allow UnconfimedReductions here to make sure we get the constructor type -- in same way as it was obtained when the data types was checked. TelV tel t <- putAllowedReductions allReductions $ telViewPath . defType =<< getConstInfo c -- Do not collect occurrences in the data parameters. -- Normalization needed e.g. for test/succeed/Bush.agda. -- (Actually, for Bush.agda, reducing the parameters should be sufficient.) tel' <- normalise $ telFromList $ drop np $ telToList tel let vars = map (Just . AnArg) . downFrom -- Occurrences in the types of the constructor arguments. mappend (OccursAs (ConArgType c) <$> getOccurrences (vars np) tel') $ do -- Occurrences in the indices of the data type the constructor targets. -- Andreas, 2020-02-15, issue #4447: -- WAS: @t@ is not necessarily a data type, but it could be something -- that reduces to a data type once UnconfirmedReductions are confirmed -- as safe by the termination checker. -- In any case, if @t@ is not showing itself as the data type, we need to -- do something conservative. We will just collect *all* occurrences -- and flip their sign (variance) using 'LeftOfArrow'. let fallback = OccursAs LeftOfArrow <$> getOccurrences (vars $ size tel) t case unEl t of Def q' vs | q == q' -> do let indices = fromMaybe __IMPOSSIBLE__ $ allApplyElims $ drop np vs OccursAs (IndArgType c) . OnlyVarsUpTo np <$> getOccurrences (vars $ size tel) indices | otherwise -> __IMPOSSIBLE__ -- fallback -- this ought to be impossible now (but wasn't, see #4447) Pi{} -> __IMPOSSIBLE__ -- eliminated by telView MetaV{} -> __IMPOSSIBLE__ -- not a constructor target; should have been solved by now Var{} -> __IMPOSSIBLE__ -- not a constructor target Sort{} -> __IMPOSSIBLE__ -- not a constructor target Lam{} -> __IMPOSSIBLE__ -- not a type Lit{} -> __IMPOSSIBLE__ -- not a type Con{} -> __IMPOSSIBLE__ -- not a type Level{} -> __IMPOSSIBLE__ -- not a type DontCare{} -> __IMPOSSIBLE__ -- not a type Dummy{} -> __IMPOSSIBLE__ mconcat $ pure ioccs : map conOcc cs Record{recClause = Just c} -> getOccurrences [] =<< instantiateFull c Record{recPars = np, recTel = tel} -> do let tel' = telFromList $ drop np $ telToList tel vars = map (Just . AnArg) $ downFrom np getOccurrences vars =<< normalise tel' -- Andreas, 2017-01-01, issue #1899, treat like data types -- Arguments to other kinds of definitions are hard-wired. Constructor{} -> mempty Axiom{} -> mempty DataOrRecSig{} -> mempty Primitive{} -> mempty GeneralizableVar{} -> mempty AbstractDefn{} -> __IMPOSSIBLE__ -- Building the occurrence graph ------------------------------------------ data Node = DefNode !QName | ArgNode !QName !Nat deriving (Eq, Ord) -- | Edge labels for the positivity graph. data Edge a = Edge !Occurrence a deriving (Eq, Ord, Show, Functor) -- | Merges two edges between the same source and target. mergeEdges :: Edge a -> Edge a -> Edge a mergeEdges _ e@(Edge Mixed _) = e -- dominant mergeEdges e@(Edge Mixed _) _ = e mergeEdges (Edge Unused _) e = e -- neutral mergeEdges e (Edge Unused _) = e mergeEdges (Edge JustNeg _) e@(Edge JustNeg _) = e mergeEdges _ e@(Edge JustNeg w) = Edge Mixed w mergeEdges e@(Edge JustNeg w) _ = Edge Mixed w mergeEdges _ e@(Edge JustPos _) = e -- dominates strict pos. mergeEdges e@(Edge JustPos _) _ = e mergeEdges _ e@(Edge StrictPos _) = e -- dominates 'GuardPos' mergeEdges e@(Edge StrictPos _) _ = e mergeEdges (Edge GuardPos _) e@(Edge GuardPos _) = e -- | These operations form a semiring if we quotient by the relation -- \"the 'Occurrence' components are equal\". instance SemiRing (Edge (Seq OccursWhere)) where ozero = Edge ozero DS.empty oone = Edge oone DS.empty oplus = mergeEdges otimes (Edge o1 w1) (Edge o2 w2) = Edge (otimes o1 o2) (w1 DS.>< w2) -- | WARNING: There can be lots of sharing between the 'OccursWhere' -- entries in the edges. Traversing all of these entries could be -- expensive. (See 'computeEdges' for an example.) buildOccurrenceGraph :: Set QName -> TCM (Graph Node (Edge OccursWhere)) buildOccurrenceGraph qs = Graph.fromEdgesWith mergeEdges . concat <$> mapM defGraph (Set.toList qs) where defGraph :: QName -> TCM [Graph.Edge Node (Edge OccursWhere)] defGraph q = inConcreteOrAbstractMode q $ \ _def -> do occs <- computeOccurrences' q reportSDoc "tc.pos.occs" 40 $ (("Occurrences in" <+> prettyTCM q) <> ":") $+$ (nest 2 $ vcat $ map (\(i, n) -> (text (show i) <> ":") <+> text (show n) <+> "occurrences") $ List.sortBy (compare `on` snd) $ Map.toList (flatten occs)) -- Placing this line before the reportSDoc lines above creates a -- space leak: occs is retained for too long. es <- computeEdges qs q occs reportSDoc "tc.pos.occs.edges" 60 $ "Edges:" $+$ (nest 2 $ vcat $ map (\e -> let Edge o w = Graph.label e in prettyTCM (Graph.source e) <+> "-[" <+> (return (P.pretty o) <> ",") <+> return (P.pretty w) <+> "]->" <+> prettyTCM (Graph.target e)) es) return es -- | Computes all non-'ozero' occurrence graph edges represented by -- the given 'OccurrencesBuilder'. -- -- WARNING: There can be lots of sharing between the 'OccursWhere' -- entries in the edges. Traversing all of these entries could be -- expensive. For instance, for the function @F@ in -- @benchmark/misc/SlowOccurrences.agda@ a large number of edges from -- the argument @X@ to the function @F@ are computed. These edges have -- polarity 'StrictPos', 'JustNeg' or 'JustPos', and contain the -- following 'OccursWhere' elements: -- -- * @'OccursWhere' _ 'DS.empty' ('DS.fromList' ['InDefOf' "F", 'InClause' 0])@, -- -- * @'OccursWhere' _ 'DS.empty' ('DS.fromList' ['InDefOf' "F", 'InClause' 0, 'LeftOfArrow'])@, -- -- * @'OccursWhere' _ 'DS.empty' ('DS.fromList' ['InDefOf' "F", 'InClause' 0, 'LeftOfArrow', 'LeftOfArrow'])@, -- -- * @'OccursWhere' _ 'DS.empty' ('DS.fromList' ['InDefOf' "F", 'InClause' 0, 'LeftOfArrow', 'LeftOfArrow', 'LeftOfArrow'])@, -- -- * and so on. computeEdges :: Set QName -- ^ The names in the current mutual block. -> QName -- ^ The current name. -> OccurrencesBuilder -> TCM [Graph.Edge Node (Edge OccursWhere)] computeEdges muts q ob = ($ []) <$> mkEdge StrictPos (preprocess ob) __IMPOSSIBLE__ DS.empty DS.empty where mkEdge :: Occurrence -> OccurrencesBuilder' -> Node -- ^ The current target node. -> DS.Seq Where -- ^ 'Where' information encountered before the current target -- node was (re)selected. -> DS.Seq Where -- ^ 'Where' information encountered after the current target -- node was (re)selected. -> TCM ([Graph.Edge Node (Edge OccursWhere)] -> [Graph.Edge Node (Edge OccursWhere)]) mkEdge !pol ob to cs os = case ob of Concat' obs -> foldr (liftM2 (.)) (return id) [ mkEdge pol ob to cs os | ob <- obs ] OccursAs' w ob -> do (to', pol) <- mkEdge' to pol w let mk = mkEdge pol ob case to' of Nothing -> mk to cs (os DS.|> w) Just to -> mk to (cs DS.>< os) (DS.singleton w) OccursHere' i -> let o = OccursWhere (getRange i) cs os in case i of AnArg i -> return $ applyUnless (null pol) (Graph.Edge { Graph.source = ArgNode q i , Graph.target = to , Graph.label = Edge pol o } :) ADef q' -> -- Andreas, 2017-04-26, issue #2555 -- Skip nodes pointing outside the mutual block. return $ applyUnless (null pol || Set.notMember q' muts) (Graph.Edge { Graph.source = DefNode q' , Graph.target = to , Graph.label = Edge pol o } :) -- | This function might return a new target node. mkEdge' :: Node -- ^ The current target node. -> Occurrence -> Where -> TCM (Maybe Node, Occurrence) mkEdge' to !pol w = case w of VarArg -> mixed MetaArg -> mixed LeftOfArrow -> negative DefArg d i -> do pol' <- isGuarding d if Set.member d muts then return (Just (ArgNode d i), pol') else addPol =<< otimes pol' <$> getArgOccurrence d i UnderInf -> addPol GuardPos -- Andreas, 2012-06-09: ∞ is guarding ConArgType _ -> keepGoing IndArgType _ -> mixed InClause _ -> keepGoing Matched -> mixed -- consider arguments matched against as used IsIndex -> mixed -- And similarly for indices. InDefOf d -> do pol' <- isGuarding d return (Just (DefNode d), pol') where keepGoing = return (Nothing, pol) mixed = return (Nothing, Mixed) negative = return (Nothing, otimes pol JustNeg) addPol pol' = return (Nothing, otimes pol pol') isGuarding d = do isDR <- isDataOrRecordType d return $ case isDR of Just IsData -> GuardPos -- a datatype is guarding _ -> StrictPos -- Pretty-printing ----------------------------------------------------- instance Pretty Node where pretty = \case DefNode q -> P.pretty q ArgNode q i -> P.pretty q <> P.text ("." ++ show i) instance PrettyTCM Node where prettyTCM = return . P.pretty instance PrettyTCM n => PrettyTCM (WithNode n (Edge OccursWhere)) where prettyTCM (WithNode n (Edge o w)) = vcat [ prettyTCM o <+> prettyTCM n , nest 2 $ return $ P.pretty w ] instance PrettyTCM (Seq OccursWhere) where prettyTCM = fmap snd . prettyOWs . map adjustLeftOfArrow . uniq . Fold.toList where nth 0 = pwords "first" nth 1 = pwords "second" nth 2 = pwords "third" nth n = pwords $ show (n + 1) ++ "th" -- Removes consecutive duplicates. uniq :: [OccursWhere] -> [OccursWhere] uniq = map head . List.groupBy ((==) `on` snd') where snd' (OccursWhere _ _ ws) = ws prettyOWs :: MonadPretty m => [OccursWhere] -> m (String, Doc) prettyOWs [] = __IMPOSSIBLE__ prettyOWs [o] = do (s, d) <- prettyOW o return (s, d <> ".") prettyOWs (o:os) = do (s1, d1) <- prettyOW o (s2, d2) <- prettyOWs os return (s1, d1 <> ("," P.<+> "which" P.<+> P.text s2 P.$$ d2)) prettyOW :: MonadPretty m => OccursWhere -> m (String, Doc) prettyOW (OccursWhere _ cs ws) | null cs = prettyWs ws | otherwise = do (s, d1) <- prettyWs ws (_, d2) <- prettyWs cs return (s, d1 P.$$ "(" <> d2 <> ")") prettyWs :: MonadPretty m => Seq Where -> m (String, Doc) prettyWs ws = case Fold.toList ws of [InDefOf d, IsIndex] -> (,) "is" <$> fsep (pwords "an index of" ++ [prettyTCM d]) _ -> (,) "occurs" <$> Fold.foldrM (\w d -> return d $$ fsep (prettyW w)) empty ws prettyW :: MonadPretty m => Where -> [m Doc] prettyW w = case w of LeftOfArrow -> pwords "to the left of an arrow" DefArg q i -> pwords "in the" ++ nth i ++ pwords "argument of" ++ [prettyTCM q] UnderInf -> pwords "under" ++ [do -- this cannot fail if an 'UnderInf' has been generated Def inf _ <- fromMaybe __IMPOSSIBLE__ <$> getBuiltin' builtinInf prettyTCM inf] VarArg -> pwords "in an argument of a bound variable" MetaArg -> pwords "in an argument of a metavariable" ConArgType c -> pwords "in the type of the constructor" ++ [prettyTCM c] IndArgType c -> pwords "in an index of the target type of the constructor" ++ [prettyTCM c] InClause i -> pwords "in the" ++ nth i ++ pwords "clause" Matched -> pwords "as matched against" IsIndex -> pwords "as an index" InDefOf d -> pwords "in the definition of" ++ [prettyTCM d] adjustLeftOfArrow :: OccursWhere -> OccursWhere adjustLeftOfArrow (OccursWhere r cs os) = OccursWhere r (DS.filter (not . isArrow) cs) $ noArrows DS.>< case DS.viewl startsWithArrow of DS.EmptyL -> DS.empty w DS.:< ws -> w DS.<| DS.filter (not . isArrow) ws where (noArrows, startsWithArrow) = DS.breakl isArrow os isArrow LeftOfArrow{} = True isArrow _ = False