module Agda.Utils.Permutation where import Prelude hiding (drop, null) import Control.DeepSeq import Control.Monad (filterM) import Data.Array.Unboxed import Data.IntMap (IntMap) import qualified Data.IntMap as IntMap import qualified Data.IntMap.Strict as IntMapS import qualified Data.IntSet as IntSet import Data.Functor.Identity import qualified Data.List as List import Data.Maybe import GHC.Generics (Generic) import Agda.Utils.Functor import Agda.Utils.Null import Agda.Utils.Size import Agda.Utils.Tuple import Agda.Utils.Impossible -- | Partial permutations. Examples: -- -- @permute [1,2,0] [x0,x1,x2] = [x1,x2,x0]@ (proper permutation). -- -- @permute [1,0] [x0,x1,x2] = [x1,x0]@ (partial permuation). -- -- @permute [1,0,1,2] [x0,x1,x2] = [x1,x0,x1,x2]@ (not a permutation because not invertible). -- -- Agda typing would be: -- @Perm : {m : Nat}(n : Nat) -> Vec (Fin n) m -> Permutation@ -- @m@ is the 'size' of the permutation. data Permutation = Perm { permRange :: Int, permPicks :: [Int] } deriving (Eq, Generic) instance Show Permutation where show (Perm n xs) = showx [0..n - 1] ++ " -> " ++ showx xs where showx = showList "," (\ i -> "x" ++ show i) showList :: String -> (a -> String) -> [a] -> String showList sep f [] = "" showList sep f [e] = f e showList sep f (e:es) = f e ++ sep ++ showList sep f es instance Sized Permutation where size (Perm _ xs) = size xs instance Null Permutation where empty = Perm 0 [] null (Perm _ picks) = null picks instance NFData Permutation -- | @permute [1,2,0] [x0,x1,x2] = [x1,x2,x0]@ -- More precisely, @permute indices list = sublist@, generates @sublist@ -- from @list@ by picking the elements of list as indicated by @indices@. -- @permute [1,3,0] [x0,x1,x2,x3] = [x1,x3,x0]@ -- -- Agda typing: -- @permute (Perm {m} n is) : Vec A m -> Vec A n@ -- -- Precondition for @'permute' ('Perm' _ is) xs@: Every index in @is@ -- must be non-negative and, if @xs@ is finite, then every index must -- also be smaller than the length of @xs@. -- -- The implementation is supposed to be extensionally equal to the -- following one (if different exceptions are identified), but in some -- cases more efficient: -- @ -- permute ('Perm' _ is) xs = 'map' (xs 'Agda.Utils.List.!!') is -- @ permute :: Permutation -> [a] -> [a] permute (Perm _ is) xs = go mempty 0 xs is where -- Computes the list of permuted elements. go :: IntMap a -- A map from positions to elements that have -- already been seen. -> Int -- The number of elements that have been seen (the -- size of the map). -> [a] -- Elements that have not yet been seen. -> [Int] -- Indices to process. -> [a] go seen !n xs [] = [] go seen n xs (i : is) | i < n = fromMaybe __IMPOSSIBLE__ (IntMap.lookup i seen) : go seen n xs is | otherwise = scan seen n xs (i - n) is -- Finds the element at the given position and continues. scan :: IntMap a -> Int -> [a] -> Int -> [Int] -> [a] scan seen !n (x : xs) !i is | i == 0 = x : (go $! seen') n' xs is | i > 0 = (scan $! seen') n' xs (i - 1) is where seen' = IntMap.insert n x seen n' = n + 1 scan seen n xs !_ is = __IMPOSSIBLE__ : go seen n xs is -- | Invert a Permutation on a partial finite int map. -- @inversePermute perm f = f'@ -- such that @permute perm f' = f@ -- -- Example, with map represented as @[Maybe a]@: -- @ -- f = [Nothing, Just a, Just b ] -- perm = Perm 4 [3,0,2] -- f' = [ Just a , Nothing , Just b , Nothing ] -- @ -- Zipping @perm@ with @f@ gives @[(0,a),(2,b)]@, after compression -- with @catMaybes@. This is an @IntMap@ which can easily -- written out into a substitution again. class InversePermute a b where inversePermute :: Permutation -> a -> b instance InversePermute [Maybe a] [(Int,a)] where inversePermute (Perm n is) = catMaybes . zipWith (\ i ma -> (i,) <$> ma) is instance InversePermute [Maybe a] (IntMap a) where inversePermute p = IntMap.fromList . inversePermute p instance InversePermute [Maybe a] [Maybe a] where inversePermute p@(Perm n _) = tabulate . inversePermute p where tabulate m = for [0..n-1] $ \ i -> IntMap.lookup i m instance InversePermute (Int -> a) [Maybe a] where inversePermute (Perm n xs) f = for [0..n-1] $ \i -> f <$> IntMap.lookup i m where m = IntMapS.fromListWith (flip const) $ zip xs [0..] -- | Identity permutation. idP :: Int -> Permutation idP n = Perm n [0..n - 1] -- | Restrict a permutation to work on @n@ elements, discarding picks @>=n@. takeP :: Int -> Permutation -> Permutation takeP n (Perm m xs) = Perm n $ filter (< n) xs -- | Pick the elements that are not picked by the permutation. droppedP :: Permutation -> Permutation droppedP (Perm n xs) = Perm n $ filter (notInXs !) [0 .. n - 1] where notInXs :: UArray Int Bool notInXs = accumArray (flip const) True (0, n - 1) (zip xs (repeat False)) -- | @liftP k@ takes a @Perm {m} n@ to a @Perm {m+k} (n+k)@. -- Analogous to 'Agda.TypeChecking.Substitution.liftS', -- but Permutations operate on de Bruijn LEVELS, not indices. liftP :: Int -> Permutation -> Permutation liftP n (Perm m xs) = Perm (n + m) $ xs ++ [m..m+n-1] -- liftP n (Perm m xs) = Perm (n + m) $ [0..n-1] ++ map (n+) xs -- WRONG, works for indices, but not for levels -- | @permute (compose p1 p2) == permute p1 . permute p2@ composeP :: Permutation -> Permutation -> Permutation composeP p1 (Perm n xs) = Perm n $ permute p1 xs {- proof: permute (compose (Perm xs) (Perm ys)) zs == permute (Perm (permute (Perm xs) ys)) zs == map (zs !!) (permute (Perm xs) ys) == map (zs !!) (map (ys !!) xs) == map (zs !! . ys !!) xs == map (\x -> zs !! (ys !! x)) xs == map (\x -> map (zs !!) ys !! x) xs {- map f xs !! n == f (xs !! n) -} == map (map (zs !!) ys !!) xs == permute (Perm xs) (permute (Perm ys) zs) -} -- | @invertP err p@ is the inverse of @p@ where defined, -- otherwise defaults to @err@. -- @composeP p (invertP err p) == p@ invertP :: Int -> Permutation -> Permutation invertP err p@(Perm n xs) = Perm (size xs) $ elems tmpArray where -- This array cannot be unboxed, because it should be possible to -- instantiate err with __IMPOSSIBLE__. tmpArray :: Array Int Int tmpArray = accumArray (const id) err (0, n-1) $ zip xs [0..] -- | Turn a possible non-surjective permutation into a surjective permutation. compactP :: Permutation -> Permutation compactP p@(Perm _ xs) = Perm (length xs) $ map adjust xs where missing = IntSet.fromList $ permPicks $ droppedP p holesBelow k = IntSet.size $ fst $ IntSet.split k missing adjust k = k - holesBelow k -- | @permute (reverseP p) xs == -- reverse $ permute p $ reverse xs@ -- -- Example: -- @ -- permute (reverseP (Perm 4 [1,3,0])) [x0,x1,x2,x3] -- == permute (Perm 4 $ map (3-) [0,3,1]) [x0,x1,x2,x3] -- == permute (Perm 4 [3,0,2]) [x0,x1,x2,x3] -- == [x3,x0,x2] -- == reverse [x2,x0,x3] -- == reverse $ permute (Perm 4 [1,3,0]) [x3,x2,x1,x0] -- == reverse $ permute (Perm 4 [1,3,0]) $ reverse [x0,x1,x2,x3] -- @ -- -- With @reverseP@, you can convert a permutation on de Bruijn indices -- to one on de Bruijn levels, and vice versa. reverseP :: Permutation -> Permutation reverseP (Perm n xs) = Perm n $ map ((n - 1) -) $ reverse xs -- = flipP $ Perm n $ reverse xs -- | @permPicks (flipP p) = permute p (downFrom (permRange p))@ -- or -- @permute (flipP (Perm n xs)) [0..n-1] = permute (Perm n xs) (downFrom n)@ -- -- Can be use to turn a permutation from (de Bruijn) levels to levels -- to one from levels to indices. -- -- See 'Agda.Syntax.Internal.Patterns.numberPatVars'. flipP :: Permutation -> Permutation flipP (Perm n xs) = Perm n $ map (n - 1 -) xs -- | @expandP i n π@ in the domain of @π@ replace the /i/th element by /n/ elements. expandP :: Int -> Int -> Permutation -> Permutation expandP i n (Perm m xs) = Perm (m + n - 1) $ concatMap expand xs where expand j | j == i = [i..i + n - 1] | j < i = [j] | otherwise = [j + n - 1] -- | Stable topologic sort. The first argument decides whether its first -- argument is an immediate parent to its second argument. topoSort :: (a -> a -> Bool) -> [a] -> Maybe Permutation topoSort parent xs = runIdentity $ topoSortM (\x y -> Identity $ parent x y) xs topoSortM :: Monad m => (a -> a -> m Bool) -> [a] -> m (Maybe Permutation) topoSortM parent xs = do let nodes = zip [0..] xs parents x = map fst <$> filterM (\(_, y) -> parent y x) nodes g <- mapM (mapSndM parents) nodes return $ Perm (size xs) <$> topo g where topo :: Eq node => [(node, [node])] -> Maybe [node] topo [] = return [] topo g = case xs of [] -> fail "cycle detected" x : _ -> do ys <- topo $ remove x g return $ x : ys where xs = [ x | (x, []) <- g ] remove x g = [ (y, filter (/= x) ys) | (y, ys) <- g, x /= y ] ------------------------------------------------------------------------ -- * Drop (apply) and undrop (abstract) ------------------------------------------------------------------------ -- | Delayed dropping which allows undropping. data Drop a = Drop { dropN :: Int -- ^ Non-negative number of things to drop. , dropFrom :: a -- ^ Where to drop from. } deriving (Eq, Ord, Show, Functor, Foldable, Traversable) -- | Things that support delayed dropping. class DoDrop a where doDrop :: Drop a -> a -- ^ Perform the dropping. dropMore :: Int -> Drop a -> Drop a -- ^ Drop more. dropMore n (Drop m xs) = Drop (m + n) xs unDrop :: Int -> Drop a -> Drop a -- ^ Pick up dropped stuff. unDrop n (Drop m xs) | n <= m = Drop (m - n) xs | otherwise = __IMPOSSIBLE__ instance DoDrop [a] where doDrop (Drop m xs) = List.drop m xs instance DoDrop Permutation where doDrop (Drop k (Perm n xs)) = Perm (n + m) $ [0..m-1] ++ map (+ m) (List.drop k xs) where m = -k unDrop m = dropMore (-m) -- allow picking up more than dropped