----------------------------------------------------------------------------- -- | -- Module : Language.CSPM.Rename -- Copyright : (c) Fontaine 2008 - 2011 -- License : BSD3 -- -- Maintainer : Fontaine@cs.uni-duesseldorf.de -- Stability : experimental -- Portability : GHC-only -- -- Compute the mapping between the using occurences and the defining occurences of all Identifier in a Module -- Also decide whether to use ground or non-ground- representaions for the translation to Prolog. {- todo : check that we do not bind variables when we pattern match against constructors : add a testcase for that todo :: maybe use SYB for gathering the renaming todo :: maybe also compute debruin-index/ freevariables todo :: check idType in useIdent fix topleveldecls to toplevel ? -> allready done by parser -} {-# LANGUAGE EmptyDataDecls, DeriveDataTypeable #-} module Language.CSPM.Rename ( renameModule ,getRenaming ,applyRenaming ,RenameError (..) ,RenameInfo (..) ,ModuleFromRenaming ,FromRenaming ) where import Language.CSPM.AST hiding (prologMode, bindType) import qualified Language.CSPM.AST as AST import qualified Language.CSPM.SrcLoc as SrcLoc import Data.Generics.Basics (Data(..)) import Data.Data (mkDataType) import Data.Generics.Schemes (everywhere) import Data.Generics.Aliases (mkT) import Data.Typeable (Typeable) import Control.Exception (Exception) import Control.Monad.Error import Control.Monad.State import Data.Set (Set) import qualified Data.Map as Map import qualified Data.Set as Set import qualified Data.IntMap as IntMap import Data.List as List instance Data FromRenaming where gunfold = error "instance Data FromRenaming gunfold" toConstr = error "instance Data FromRenaming toConstr" dataTypeOf _ = mkDataType "Language.CSPM.Rename.FromRenaming" [] -- | A module that has gone through renaming type ModuleFromRenaming = Module FromRenaming {-# DEPRECATED applyRenaming, getRenaming "use renameModule instead" #-} -- | Tag that a module has gone through renameing. data FromRenaming deriving Typeable -- | 'renameModule' renames a 'Module'. -- | (also calls mergeFunBinds) renameModule :: ModuleFromParser -> Either RenameError (ModuleFromRenaming, RenameInfo) renameModule m = do let m' = mergeFunBinds m st <- execStateT (rnModule m') initialRState return ( applyRenamingNew m' (identDefinition st) (identUse st) ,st) -- | 'getRenaming' computes two 'AstAnnotation's. -- The first one contains all the defining occurences of identifier -- The second one contains all the using occurences of identitier. -- 'getRename' returns an 'RenameError' if the 'Module' contains unbound -- identifiers or illegal redefinitions. getRenaming :: ModuleFromParser -> Either RenameError (Bindings, AstAnnotation UniqueIdent, AstAnnotation UniqueIdent) getRenaming m = do st <- execStateT (rnModule m) initialRState return (visible st,identDefinition st, identUse st) type RM x = StateT RenameInfo (Either RenameError) x type UniqueName = Int -- | Gather all information about an renaming. data RenameInfo = RenameInfo { nameSupply :: Int -- used to check that we do not bind a name twice inside a pattern ,localBindings :: Bindings ,visible :: Bindings -- everything that is visible ,identDefinition :: AstAnnotation UniqueIdent ,identUse :: AstAnnotation UniqueIdent ,usedNames :: Set String ,prologMode :: PrologMode ,bindType :: BindType } deriving Show initialRState :: RenameInfo initialRState = RenameInfo { nameSupply = 0 ,localBindings = Map.empty ,visible = Map.empty ,identDefinition = IntMap.empty ,identUse = IntMap.empty ,usedNames = Set.empty ,prologMode = PrologVariable ,bindType = NotLetBound } data RenameError = RenameError { renameErrorMsg :: String ,renameErrorLoc :: SrcLoc.SrcLoc } deriving (Show,Typeable) instance Exception RenameError instance Error RenameError where noMsg = RenameError { renameErrorMsg = "no Messsage", renameErrorLoc = SrcLoc.NoLocation } strMsg m = RenameError { renameErrorMsg = m, renameErrorLoc = SrcLoc.NoLocation } bindNewTopIdent :: IDType -> LIdent -> RM () bindNewTopIdent t i = do let (Ident origName) = unLabel i vis <- gets visible case Map.lookup origName vis of Nothing -> bindNewUniqueIdent t i Just _ -> throwError $ RenameError { renameErrorMsg = "Redefinition of toplevel name " ++ origName ,renameErrorLoc = srcLoc i } bindNewUniqueIdent :: IDType -> LIdent -> RM () bindNewUniqueIdent iType lIdent = do let (Ident origName) = unLabel lIdent local <- gets localBindings {- check that we do not bind a variable twice i.e. in a pattern -} case Map.lookup origName local of Nothing -> return () Just _ -> throwError $ RenameError { renameErrorMsg = "Redefinition of " ++ origName ,renameErrorLoc = srcLoc lIdent } {- If we have a Constructor in scope and try to bind a VarID then we actually have a Constructor-Pattern. Same situation for a channelIDs. We throw an error if the csp-code tries to reuse a constructor or a channel for i.e. a function. -} vis <- gets visible case (Map.lookup origName vis,iType) of (Just x ,VarID) -> case idType x of ConstrID _ -> useExistingBinding x ChannelID -> useExistingBinding x _ -> addNewBinding (Just x , _) -> case idType x of ConstrID _-> throwError $ RenameError { renameErrorMsg = "Illigal reuse of Contructor " ++ origName ,renameErrorLoc = srcLoc lIdent } ChannelID -> throwError $ RenameError { renameErrorMsg = "Illigal reuse of Channel " ++ origName ,renameErrorLoc = srcLoc lIdent } _ -> addNewBinding (_, _ ) -> addNewBinding where useExistingBinding :: UniqueIdent -> RM () useExistingBinding constr = do let ptr = unNodeId $ nodeId $ lIdent modify $ \s -> s { identDefinition = IntMap.insert ptr constr (identDefinition s) } addNewBinding :: RM () addNewBinding = do let (Ident origName) = unLabel lIdent nodeID = nodeId lIdent (nameNew,unique) <- nextUniqueName origName plMode <- gets prologMode bType <- gets bindType let uIdent = UniqueIdent { uniqueIdentId = unique ,bindingSide = nodeID ,bindingLoc = srcLoc lIdent ,idType = iType ,realName = origName ,newName = nameNew ,AST.prologMode = plMode ,AST.bindType = bType } modify $ \s -> s { localBindings = Map.insert origName uIdent $ localBindings s , visible = Map.insert origName uIdent $ visible s } modify $ \s -> s { identDefinition = IntMap.insert (unNodeId nodeID) uIdent $ identDefinition s } return () nextUniqueName :: String -> RM (String,UniqueName) nextUniqueName oldName = do n <- gets nameSupply modify $ \s -> s {nameSupply = succ n} occupied <- gets usedNames let suffixes = "" : map show ([2..9] ++ [n + 10 .. ]) candidates = map ((++) oldName) suffixes nextName = head $ filter (\x -> not $ Set.member x occupied) candidates modify $ \s -> s {usedNames = Set.insert nextName $ usedNames s} return (nextName,n) localScope :: RM x -> RM x localScope h = do vis <- gets visible localBind <- gets localBindings modify $ \s -> s {localBindings = Map.empty} res <- h modify $ \e -> e { visible = vis ,localBindings = localBind } return res useIdent :: (Maybe IDType) -> LIdent -> RM () useIdent expectedType lIdent = do let (Ident origName) = unLabel lIdent nodeID = nodeId lIdent vis <- gets visible case Map.lookup origName vis of Nothing -> throwError $ RenameError { renameErrorMsg = "Unbound Identifier :" ++ origName ,renameErrorLoc = srcLoc lIdent } Just uniqueIdent -> do -- todo check idType case expectedType of Nothing -> return () Just t -> when (t /= idType uniqueIdent) $ do throwError $ RenameError { renameErrorMsg = "Typeerror :" ++ origName ,renameErrorLoc = srcLoc lIdent } modify $ \s -> s { identUse = IntMap.insert (unNodeId nodeID) uniqueIdent $ identUse s } return () {- rn just walks through the AST, without modifing it. The actual renamings are stored in a sepearte AstAnnotation inside the RM-Monad -} nop :: RM () nop = return () rnModule :: ModuleFromParser -> RM () rnModule = rnDeclList . moduleDecls rnExpList :: [LExp] -> RM () rnExpList = mapM_ rnExp -- rename an expression rnExp :: LExp -> RM () rnExp expression = case unLabel expression of Var ident -> useIdent Nothing ident IntExp _ -> nop SetExp a Nothing -> rnRange a SetExp a (Just comp) -> inCompGen comp (rnRange a) ListExp a Nothing -> rnRange a ListExp a (Just comp) -> inCompGen comp (rnRange a) ClosureComprehension (a,b) -> inCompGen b (rnExpList a) Let decls e -> localScope (rnDeclList decls >> rnExp e) Ifte a b c -> rnExp a >> rnExp b >> rnExp c CallFunction a args -> rnExp a >> mapM_ rnExpList args CallBuiltIn _ args -> mapM_ rnExpList args Lambda pList e -> localScope (rnPatList pList >> rnExp e) Stop -> nop Skip -> nop CTrue -> nop CFalse -> nop Events -> nop BoolSet -> nop IntSet -> nop ProcSet -> nop TupleExp l -> rnExpList l Parens a -> rnExp a AndExp a b -> rnExp a >> rnExp b OrExp a b -> rnExp a >> rnExp b NotExp a -> rnExp a NegExp a -> rnExp a Fun1 _ a -> rnExp a Fun2 _ a b -> rnExp a >> rnExp b DotTuple l -> rnExpList l Closure l -> rnExpList l ProcSharing al p1 p2 -> rnExp al >> rnExp p1 >> rnExp p2 ProcAParallel a b c d -> rnExp a >> rnExp b >> rnExp c >> rnExp d ProcLinkParallel l e1 e2 -> rnLinkList l >> rnExp e1 >> rnExp e2 ProcRenaming rlist gen proc -> case gen of Nothing -> mapM_ reRename rlist >> rnExp proc Just comp -> inCompGenL comp (mapM_ reRename rlist) >> rnExp proc ProcException p1 e p2 -> rnExp p1 >> rnExp e >> rnExp p2 ProcRepSequence a p -> inCompGenL a (rnExp p) ProcRepInternalChoice a p -> inCompGenL a (rnExp p) ProcRepInterleave a p -> inCompGenL a (rnExp p) ProcRepExternalChoice a p -> inCompGenL a (rnExp p) ProcRepAParallel comp a p -> inCompGenL comp (rnExp a >> rnExp p) ProcRepLinkParallel comp l p -> rnLinkList l >> inCompGenL comp (rnExp p) ProcRepSharing comp s p -> rnExp s >> inCompGenL comp (rnExp p) PrefixExp chan fields proc -> localScope $ do rnExp chan mapM_ rnCommField fields rnExp proc {- Catch these cases to make the match total. These Constructors may only appear in later stages. -} ExprWithFreeNames {} -> error "Rename.hs : no match for ExprWithFreeNames" LambdaI {} -> error "Rename.hs : no match for LambdaI" LetI {} -> error "Rename.hs : no match for LetI" PrefixI {} -> error "Rename.hs : no match for PrefixI" rnRange :: LRange -> RM () rnRange r = case unLabel r of RangeEnum l -> rnExpList l RangeOpen a -> rnExp a RangeClosed a b -> rnExp a >> rnExp b rnPatList :: [LPattern] -> RM () rnPatList = mapM_ rnPattern rnPattern :: LPattern -> RM () rnPattern p = case unLabel p of IntPat _ -> nop TruePat -> nop FalsePat -> nop WildCard -> nop VarPat lIdent -> bindNewUniqueIdent VarID lIdent Also l -> rnPatList l Append l -> rnPatList l DotPat l -> rnPatList l SingleSetPat a -> rnPattern a EmptySetPat -> nop ListEnumPat l -> rnPatList l TuplePat l -> rnPatList l ConstrPat {} -> error "Rename.hs : no match for ConstrPat" -- Where have they gone ? Selectors {} -> error "Rename.hs : no match for Selectors" Selector {} -> error "Rename.hs : no match for Selector" rnCommField :: LCommField -> RM () rnCommField f = case unLabel f of InComm pat -> rnPattern pat InCommGuarded p g -> rnExp g >> rnPattern p OutComm e -> rnExp e inCompGenL :: LCompGenList -> RM () -> RM () inCompGenL l r = inCompGen (unLabel l) r inCompGen :: [LCompGen] -> RM () -> RM () inCompGen (h:t) ret = localScope $ do rnCompGen h inCompGen t ret inCompGen [] ret = ret rnCompGen :: LCompGen -> RM () rnCompGen g = case unLabel g of Generator pat e -> rnExp e >> rnPattern pat Guard e -> rnExp e reRename :: LRename -> RM () reRename = r2 . unLabel where r2 (Rename e1 e2) = rnExp e1 >> rnExp e2 rnLinkList :: LLinkList -> RM () rnLinkList = rnLink2 . unLabel where rnLink2 (LinkList l) = mapM_ rnLink l rnLink2 (LinkListComprehension a b) = inCompGen a (mapM_ rnLink b) rnLink = (\(Link a b) ->rnExp a >> rnExp b) . unLabel -- rename a recursive binding group rnDeclList :: [LDecl] -> RM () rnDeclList declList = do modify $ \s -> s {prologMode = PrologGround ,bindType = LetBound} forM_ declList declLHS modify $ \s -> s {prologMode = PrologVariable ,bindType = NotLetBound} forM_ declList declRHS declLHS :: LDecl -> RM () declLHS d = case unLabel d of PatBind pat _ -> rnPattern pat --todo : proper type-checking/counting number of Funargs FunBind i _ -> bindNewUniqueIdent (FunID (-1)) i Assert {} -> nop Transparent tl -> mapM_ (bindNewTopIdent TransparentID) tl SubType i clist -> do bindNewTopIdent DataTypeID i -- fix this mapM_ rnSubtypeLHS clist DataType i clist -> do bindNewTopIdent DataTypeID i mapM_ rnConstructorLHS clist NameType i _ -> bindNewTopIdent NameTypeID i Channel chList _ -> mapM_ (bindNewTopIdent ChannelID) chList Print _ -> nop where rnConstructorLHS :: LConstructor -> RM () rnConstructorLHS a = do let (Constructor c _ ) = unLabel a bindNewTopIdent (ConstrID "someConstructor") c --Todo -- fix rnSubtypeLHS :: LConstructor -> RM () rnSubtypeLHS a = do let (Constructor c _ ) = unLabel a useIdent Nothing c -- <- fix this Nothing <-> dont check declRHS :: LDecl -> RM () declRHS d = case unLabel d of PatBind _ e -> rnExp e FunBind _ cases -> mapM_ rnFunCase cases Assert a -> case unLabel a of AssertBool e -> rnExp e AssertRefine _ p1 _ p2 -> rnExp p1 >> rnExp p2 AssertTauPrio _ p1 _ p2 e -> rnExp p1 >> rnExp p2 >> rnExp e AssertModelCheck _ p _ _ -> rnExp p Transparent _ -> nop SubType _ clist -> forM_ clist rnConstructorRHS DataType _ clist -> forM_ clist rnConstructorRHS NameType _ td -> rnTypeDef td Channel _ Nothing -> nop Channel _ (Just td) -> rnTypeDef td Print e -> rnExp e where rnFunCase c = case c of --todo:uses Labeled version FunCase pat e -> localScope (mapM_ rnPatList pat >> rnExp e) FunCaseI {} -> error "Rename.hs : no match for FunCaseI" rnConstructorRHS :: LConstructor -> RM () rnConstructorRHS = rc . unLabel where rc (Constructor _ Nothing ) = nop rc (Constructor _ (Just t)) = rnTypeDef t rnTypeDef :: LTypeDef -> RM () rnTypeDef t = case unLabel t of TypeTuple l -> rnExpList l TypeDot l -> rnExpList l -- | 'applyRenaming' uses SYB to replace turn every 'Ident' in the 'Module' into to the -- 'UIdent' version, i.e. set the 'UniqueIdent'. -- At the same time, we also replace VarPat x with ConstrPat x if x an toplevel constant -- It is an error if the 'Module' contains occurences of 'Ident' that are not covered by -- the 'AstAnnotation's. applyRenaming :: (Bindings,AstAnnotation UniqueIdent,AstAnnotation UniqueIdent) -> ModuleFromParser -> ModuleFromRenaming applyRenaming (_,defIdent,usedIdent) ast = applyRenamingNew ast defIdent usedIdent applyRenamingNew :: ModuleFromParser -> AstAnnotation UniqueIdent -> AstAnnotation UniqueIdent -> ModuleFromRenaming applyRenamingNew ast defIdent usedIdent = castModule $ everywhere (mkT patchVarPat . mkT patchIdent) ast where patchIdent :: LIdent -> LIdent patchIdent l = let nodeID = unNodeId $ nodeId l in case IntMap.lookup nodeID usedIdent of Just u -> l { unLabel = UIdent u} Nothing -> case IntMap.lookup nodeID defIdent of Just d -> l { unLabel = UIdent d} Nothing -> error $ "internal error: patchIdent nodeId :" ++ show nodeID patchVarPat :: Pattern -> Pattern patchVarPat p@(VarPat x) = case idType $ unUIdent $ unLabel x of VarID -> p _ -> ConstrPat x patchVarPat x = x -- | If function is defined via pattern matching for serveral cases, -- | the parser returns each case as a individual declaration. -- | mergeFunBinds merges contiguous cases of the same function into one declaration. mergeFunBinds :: ModuleFromParser -> ModuleFromParser mergeFunBinds = everywhere (mkT patchModule . mkT patchLet) where patchModule :: ModuleFromParser -> ModuleFromParser patchModule m = m {moduleDecls = mergeDecls $ moduleDecls m} patchLet :: Exp -> Exp patchLet (Let decls expr) = Let (mergeDecls decls) expr patchLet x = x mergeDecls :: [LDecl] -> [LDecl] mergeDecls = map joinGroup . List.groupBy sameFunction sameFunction a b = case (unLabel a, unLabel b) of (FunBind n1 _, FunBind n2 _) -> unLabel n1 == unLabel n2 _ -> False joinGroup :: [LDecl] -> LDecl joinGroup l@(firstCase : _) = case unLabel firstCase of FunBind fname _ -> setNode firstCase $ FunBind fname $ map getFunCase l _ -> firstCase joinGroup [] = error "unreachable : groupBy empty group ?" getFunCase :: LDecl -> FunCase getFunCase d = case unLabel d of FunBind _ [funCase] -> funCase FunBind _ _ -> error "mergeFunBinds: function already has several cases !" _ -> error "mergeFunBinds : internal error"