Copyright | (c) David Himmelstrup 2005, Bjorn Bringert 2007, Duncan Coutts 2008-2009 |
---|---|

Maintainer | cabal-devel@haskell.org |

Portability | portable |

Safe Haskell | None |

Language | Haskell98 |

An index of packages.

- type InstalledPackageIndex = PackageIndex InstalledPackageInfo
- data PackageIndex a
- type FakeMap = Map InstalledPackageId InstalledPackageId
- fromList :: PackageInstalled a => [a] -> PackageIndex a
- merge :: PackageInstalled a => PackageIndex a -> PackageIndex a -> PackageIndex a
- insert :: PackageInstalled a => a -> PackageIndex a -> PackageIndex a
- deleteInstalledPackageId :: PackageInstalled a => InstalledPackageId -> PackageIndex a -> PackageIndex a
- deleteSourcePackageId :: PackageInstalled a => PackageId -> PackageIndex a -> PackageIndex a
- deletePackageName :: PackageInstalled a => PackageName -> PackageIndex a -> PackageIndex a
- lookupInstalledPackageId :: PackageIndex a -> InstalledPackageId -> Maybe a
- lookupSourcePackageId :: PackageIndex a -> PackageId -> [a]
- lookupPackageId :: PackageIndex a -> PackageId -> Maybe a
- lookupPackageName :: PackageIndex a -> PackageName -> [(Version, [a])]
- lookupDependency :: PackageIndex a -> Dependency -> [(Version, [a])]
- searchByName :: PackageIndex a -> String -> SearchResult [a]
- data SearchResult a
- = None
- | Unambiguous a
- | Ambiguous [a]

- searchByNameSubstring :: PackageIndex a -> String -> [a]
- allPackages :: PackageIndex a -> [a]
- allPackagesByName :: PackageIndex a -> [(PackageName, [a])]
- allPackagesBySourcePackageId :: PackageInstalled a => PackageIndex a -> [(PackageId, [a])]
- brokenPackages :: PackageInstalled a => PackageIndex a -> [(a, [InstalledPackageId])]
- dependencyClosure :: PackageInstalled a => PackageIndex a -> [InstalledPackageId] -> Either (PackageIndex a) [(a, [InstalledPackageId])]
- reverseDependencyClosure :: PackageInstalled a => PackageIndex a -> [InstalledPackageId] -> [a]
- topologicalOrder :: PackageInstalled a => PackageIndex a -> [a]
- reverseTopologicalOrder :: PackageInstalled a => PackageIndex a -> [a]
- dependencyInconsistencies :: PackageInstalled a => PackageIndex a -> [(PackageName, [(PackageId, Version)])]
- dependencyCycles :: PackageInstalled a => PackageIndex a -> [[a]]
- dependencyGraph :: PackageInstalled a => PackageIndex a -> (Graph, Vertex -> a, InstalledPackageId -> Maybe Vertex)
- moduleNameIndex :: InstalledPackageIndex -> Map ModuleName [InstalledPackageInfo]
- fakeLookupInstalledPackageId :: FakeMap -> PackageIndex a -> InstalledPackageId -> Maybe a
- brokenPackages' :: PackageInstalled a => FakeMap -> PackageIndex a -> [(a, [InstalledPackageId])]
- dependencyClosure' :: PackageInstalled a => FakeMap -> PackageIndex a -> [InstalledPackageId] -> Either (PackageIndex a) [(a, [InstalledPackageId])]
- reverseDependencyClosure' :: PackageInstalled a => FakeMap -> PackageIndex a -> [InstalledPackageId] -> [a]
- dependencyInconsistencies' :: PackageInstalled a => FakeMap -> PackageIndex a -> [(PackageName, [(PackageId, Version)])]
- dependencyCycles' :: PackageInstalled a => FakeMap -> PackageIndex a -> [[a]]
- dependencyGraph' :: PackageInstalled a => FakeMap -> PackageIndex a -> (Graph, Vertex -> a, InstalledPackageId -> Maybe Vertex)

# Package index data type

type InstalledPackageIndex = PackageIndex InstalledPackageInfo Source

The default package index which contains `InstalledPackageInfo`

. Normally
use this.

data PackageIndex a Source

The collection of information about packages from one or more `PackageDB`

s.
These packages generally should have an instance of `PackageInstalled`

Packages are uniquely identified in by their `InstalledPackageId`

, they can
also be efficiently looked up by package name or by name and version.

Read a => Read (PackageIndex a) | |

Show a => Show (PackageIndex a) | |

Generic (PackageIndex a) | |

PackageInstalled a => Monoid (PackageIndex a) | |

Binary a => Binary (PackageIndex a) | |

type Rep (PackageIndex a) |

type FakeMap = Map InstalledPackageId InstalledPackageId Source

Map from fake installed package IDs to real ones. See Note [FakeMap]

# Creating an index

fromList :: PackageInstalled a => [a] -> PackageIndex a Source

Build an index out of a bunch of packages.

If there are duplicates by `InstalledPackageId`

then later ones mask earlier
ones.

# Updates

merge :: PackageInstalled a => PackageIndex a -> PackageIndex a -> PackageIndex a Source

Merge two indexes.

Packages from the second mask packages from the first if they have the exact
same `InstalledPackageId`

.

For packages with the same source `PackageId`

, packages from the second are
"preferred" over those from the first. Being preferred means they are top
result when we do a lookup by source `PackageId`

. This is the mechanism we
use to prefer user packages over global packages.

insert :: PackageInstalled a => a -> PackageIndex a -> PackageIndex a Source

deleteInstalledPackageId :: PackageInstalled a => InstalledPackageId -> PackageIndex a -> PackageIndex a Source

Removes a single installed package from the index.

deleteSourcePackageId :: PackageInstalled a => PackageId -> PackageIndex a -> PackageIndex a Source

Removes all packages with this source `PackageId`

from the index.

deletePackageName :: PackageInstalled a => PackageName -> PackageIndex a -> PackageIndex a Source

Removes all packages with this (case-sensitive) name from the index.

# Queries

## Precise lookups

lookupInstalledPackageId :: PackageIndex a -> InstalledPackageId -> Maybe a Source

Does a lookup by source package id (name & version).

Since multiple package DBs mask each other by `InstalledPackageId`

,
then we get back at most one package.

lookupSourcePackageId :: PackageIndex a -> PackageId -> [a] Source

Does a lookup by source package id (name & version).

There can be multiple installed packages with the same source `PackageId`

but different `InstalledPackageId`

. They are returned in order of
preference, with the most preferred first.

lookupPackageId :: PackageIndex a -> PackageId -> Maybe a Source

Convenient alias of `lookupSourcePackageId`

, but assuming only
one package per package ID.

lookupPackageName :: PackageIndex a -> PackageName -> [(Version, [a])] Source

Does a lookup by source package name.

lookupDependency :: PackageIndex a -> Dependency -> [(Version, [a])] Source

Does a lookup by source package name and a range of versions.

We get back any number of versions of the specified package name, all satisfying the version range constraint.

## Case-insensitive searches

searchByName :: PackageIndex a -> String -> SearchResult [a] Source

Does a case-insensitive search by package name.

If there is only one package that compares case-insensitively to this name then the search is unambiguous and we get back all versions of that package. If several match case-insensitively but one matches exactly then it is also unambiguous.

If however several match case-insensitively and none match exactly then we have an ambiguous result, and we get back all the versions of all the packages. The list of ambiguous results is split by exact package name. So it is a non-empty list of non-empty lists.

data SearchResult a Source

None | |

Unambiguous a | |

Ambiguous [a] |

searchByNameSubstring :: PackageIndex a -> String -> [a] Source

Does a case-insensitive substring search by package name.

That is, all packages that contain the given string in their name.

## Bulk queries

allPackages :: PackageIndex a -> [a] Source

Get all the packages from the index.

allPackagesByName :: PackageIndex a -> [(PackageName, [a])] Source

Get all the packages from the index.

They are grouped by package name (case-sensitively).

allPackagesBySourcePackageId :: PackageInstalled a => PackageIndex a -> [(PackageId, [a])] Source

Get all the packages from the index.

They are grouped by source package id (package name and version).

## Special queries

brokenPackages :: PackageInstalled a => PackageIndex a -> [(a, [InstalledPackageId])] Source

All packages that have immediate dependencies that are not in the index.

Returns such packages along with the dependencies that they're missing.

dependencyClosure :: PackageInstalled a => PackageIndex a -> [InstalledPackageId] -> Either (PackageIndex a) [(a, [InstalledPackageId])] Source

Tries to take the transitive closure of the package dependencies.

If the transitive closure is complete then it returns that subset of the
index. Otherwise it returns the broken packages as in `brokenPackages`

.

- Note that if the result is
`Right []`

it is because at least one of the original given`PackageId`

s do not occur in the index.

reverseDependencyClosure :: PackageInstalled a => PackageIndex a -> [InstalledPackageId] -> [a] Source

Takes the transitive closure of the packages reverse dependencies.

- The given
`PackageId`

s must be in the index.

topologicalOrder :: PackageInstalled a => PackageIndex a -> [a] Source

reverseTopologicalOrder :: PackageInstalled a => PackageIndex a -> [a] Source

dependencyInconsistencies :: PackageInstalled a => PackageIndex a -> [(PackageName, [(PackageId, Version)])] Source

Given a package index where we assume we want to use all the packages
(use `dependencyClosure`

if you need to get such a index subset) find out
if the dependencies within it use consistent versions of each package.
Return all cases where multiple packages depend on different versions of
some other package.

Each element in the result is a package name along with the packages that depend on it and the versions they require. These are guaranteed to be distinct.

dependencyCycles :: PackageInstalled a => PackageIndex a -> [[a]] Source

Find if there are any cycles in the dependency graph. If there are no
cycles the result is `[]`

.

This actually computes the strongly connected components. So it gives us a list of groups of packages where within each group they all depend on each other, directly or indirectly.

dependencyGraph :: PackageInstalled a => PackageIndex a -> (Graph, Vertex -> a, InstalledPackageId -> Maybe Vertex) Source

Builds a graph of the package dependencies.

Dependencies on other packages that are not in the index are discarded.
You can check if there are any such dependencies with `brokenPackages`

.

moduleNameIndex :: InstalledPackageIndex -> Map ModuleName [InstalledPackageInfo] Source

A rough approximation of GHC's module finder, takes a `InstalledPackageIndex`

and
turns it into a map from module names to their source packages. It's used to
initialize the `build-deps`

field in `cabal init`

.

## Variants of special queries supporting fake map

fakeLookupInstalledPackageId :: FakeMap -> PackageIndex a -> InstalledPackageId -> Maybe a Source

Variant of `lookupInstalledPackageId`

which accepts a `FakeMap`

. See Note [FakeMap].

brokenPackages' :: PackageInstalled a => FakeMap -> PackageIndex a -> [(a, [InstalledPackageId])] Source

Variant of `brokenPackages`

which accepts a `FakeMap`

. See Note [FakeMap].

dependencyClosure' :: PackageInstalled a => FakeMap -> PackageIndex a -> [InstalledPackageId] -> Either (PackageIndex a) [(a, [InstalledPackageId])] Source

Variant of `dependencyClosure`

which accepts a `FakeMap`

. See Note [FakeMap].

reverseDependencyClosure' :: PackageInstalled a => FakeMap -> PackageIndex a -> [InstalledPackageId] -> [a] Source

Variant of `reverseDependencyClosure`

which accepts a `FakeMap`

. See Note [FakeMap].

dependencyInconsistencies' :: PackageInstalled a => FakeMap -> PackageIndex a -> [(PackageName, [(PackageId, Version)])] Source

Variant of `dependencyInconsistencies`

which accepts a `FakeMap`

. See Note [FakeMap].

dependencyCycles' :: PackageInstalled a => FakeMap -> PackageIndex a -> [[a]] Source

Variant of `dependencyCycles`

which accepts a `FakeMap`

. See Note [FakeMap].

dependencyGraph' :: PackageInstalled a => FakeMap -> PackageIndex a -> (Graph, Vertex -> a, InstalledPackageId -> Maybe Vertex) Source

Variant of `dependencyGraph`

which accepts a `FakeMap`

. See Note [FakeMap].