module Text.Earley.Grammar
  ( Prod(..)
  , satisfy
  , (<?>)
  , alts
  , Grammar(..)
  , rule
  , runGrammar
  ) where
import Control.Applicative
import Control.Monad
import Control.Monad.Fix
#if !MIN_VERSION_base(4,8,0)
import Data.Monoid
#endif
infixr 0 <?>
data Prod r e t a where
  
  Terminal    :: !(t -> Bool) -> !(Prod r e t (t -> b)) -> Prod r e t b
  NonTerminal :: !(r e t a) -> !(Prod r e t (a -> b)) -> Prod r e t b
  Pure        :: a -> Prod r e t a
  
  
  Alts        :: ![Prod r e t a] -> !(Prod r e t (a -> b)) -> Prod r e t b
  Many        :: !(Prod r e t a) -> !(Prod r e t ([a] -> b)) -> Prod r e t b
  
  Named       :: !(Prod r e t a) -> e -> Prod r e t a
satisfy :: (t -> Bool) -> Prod r e t t
satisfy p = Terminal p $ Pure id
(<?>) :: Prod r e t a -> e -> Prod r e t a
(<?>) = Named
instance Monoid (Prod r e t a) where
  mempty  = empty
  mappend = (<|>)
instance Functor (Prod r e t) where
  
  fmap f (Terminal b p)    = Terminal b $ fmap (f .) p
  fmap f (NonTerminal r p) = NonTerminal r $ fmap (f .) p
  fmap f (Pure x)          = Pure $ f x
  fmap f (Alts as p)       = Alts as $ fmap (f .) p
  fmap f (Many p q)        = Many p $ fmap (f .) q
  fmap f (Named p n)       = Named (fmap f p) n
alts :: [Prod r e t a] -> Prod r e t (a -> b) -> Prod r e t b
alts as p = case as >>= go of
  []  -> empty
  [a] -> a <**> p
  as' -> Alts as' p
  where
    go (Alts [] _)         = []
    go (Alts as' (Pure f)) = fmap f <$> as'
    go (Named p' n)        = map (<?> n) $ go p'
    go a                   = [a]
instance Applicative (Prod r e t) where
  pure = Pure
  
  Terminal b p    <*> q = Terminal b $ flip <$> p <*> q
  NonTerminal r p <*> q = NonTerminal r $ flip <$> p <*> q
  Pure f          <*> q = fmap f q
  Alts as p       <*> q = alts as $ flip <$> p <*> q
  Many a p        <*> q = Many a $ flip <$> p <*> q
  Named p n       <*> q = Named (p <*> q) n
instance Alternative (Prod r e t) where
  empty = Alts [] $ pure id
  Named p m <|> q         = Named (p <|> q) m
  p         <|> Named q n = Named (p <|> q) n
  p         <|> q         = alts [p, q] $ pure id
  many (Alts [] _) = pure []
  many p           = Many p $ Pure id
  some p           = (:) <$> p <*> many p
data Grammar r a where
  RuleBind :: Prod r e t a -> (Prod r e t a -> Grammar r b) -> Grammar r b
  FixBind  :: (a -> Grammar r a) -> (a -> Grammar r b) -> Grammar r b
  Return   :: a -> Grammar r a
instance Functor (Grammar r) where
  fmap f (RuleBind ps h) = RuleBind ps (fmap f . h)
  fmap f (FixBind g h)   = FixBind g (fmap f . h)
  fmap f (Return x)      = Return $ f x
instance Applicative (Grammar r) where
  pure  = return
  (<*>) = ap
instance Monad (Grammar r) where
  return = Return
  RuleBind ps f >>= k = RuleBind ps (f >=> k)
  FixBind f g   >>= k = FixBind f (g >=> k)
  Return x      >>= k = k x
instance MonadFix (Grammar r) where
  mfix f = FixBind f return
rule :: Prod r e t a -> Grammar r (Prod r e t a)
rule p = RuleBind p return
runGrammar :: MonadFix m
           => (forall e t a. Prod r e t a -> m (Prod r e t a))
           -> Grammar r b -> m b
runGrammar r grammar = case grammar of
  RuleBind p k -> do
    nt <- r p
    runGrammar r $ k nt
  Return a -> return a
  FixBind f k -> do
    a <- mfix $ runGrammar r <$> f
    runGrammar r $ k a