module Types.Unify (unify) where import Control.Arrow (second) import Control.Monad (liftM) import Data.List (foldl') import qualified Data.Set as Set import qualified Data.Map as Map import Guid import Types import Types.Constrain import Types.Substitutions --import System.IO.Unsafe prints xs v = v --} unsafePerformIO (putStrLn "----------" >> mapM print xs) `seq` v unify hints modul = run $ do (escapees, cs) <- constrain hints modul subs <- solver cs Map.empty prints cs $ return ((,) escapees `liftM` subs) eq ctx t1 t2 = Context ctx (t1 :=: t2) solver [] subs = prints (Map.toList subs) $ return $ Right subs -------- Destruct Type-constructors -------- solver ((Context ctx (t1@(ADT n1 ts1) :=: t2@(ADT n2 ts2))) : cs) subs = if n1 /= n2 then uniError ctx t1 t2 else solver (zipWith (eq ctx) ts1 ts2 ++ cs) subs solver ((Context ctx (LambdaT t1 t2 :=: LambdaT t1' t2')) : cs) subs = solver ([ eq ctx t1 t1', eq ctx t2 t2' ] ++ cs) subs -------- Type-equality -------- solver (Context ctx (VarT x :=: VarT y) : cs) subs | x == y = solver cs subs | otherwise = case (Map.lookup x subs, Map.lookup y subs) of (Just (Super xts), Just (Super yts)) -> let ts = Set.intersection xts yts setXY t = Map.insert x t . Map.insert y t in case Set.toList ts of [] -> unionError ctx xts yts [t] -> solver (map (cSub x t . cSub y t) cs) $ setXY t subs _ -> solver cs $ setXY (Super ts) subs (Just (Super xts), _) -> solver (map (cSub y (VarT x)) cs) $ Map.insert y (VarT x) subs (_, _) -> solver (map (cSub x (VarT y)) cs) $ Map.insert x (VarT y) subs solver (Context ctx (VarT x :=: t) : cs) subs = case Map.lookup x subs of Nothing -> solver (map (cSub x t) cs) . Map.map (tSub x t) $ Map.insert x t subs Just (Super ts) -> let ts' = Set.intersection ts (Set.singleton t) in case Set.toList ts' of [] -> solver (Context ctx (t :<: Super ts) : cs) subs [t'] -> solver (map (cSub x t') cs) $ Map.insert x t' subs _ -> solver cs $ Map.insert x (Super ts') subs Just t' -> solver (Context ctx (t' :=: t) : cs) subs solver ((Context ctx (t :=: VarT x)) : cs) subs = solver ((Context ctx (VarT x :=: t)) : cs) subs solver ((Context ctx (t1 :=: t2)) : cs) subs | t1 == t2 = solver cs subs | otherwise = uniError ctx t1 t2 -------- subtypes -------- solver (Context ctx (VarT x :<: Super ts) : cs) subs = case Map.lookup x subs of Nothing -> solver cs $ Map.insert x (Super ts) subs Just (Super ts') -> case Set.toList $ Set.intersection ts ts' of [] -> unionError ctx ts ts' [t] -> solver (map (cSub x t) cs) $ Map.insert x t subs ts'' -> solver cs $ Map.insert x (Super $ Set.fromList ts'') subs solver (Context ctx (ADT "List" [t] :<: Super ts) : cs) subs | any f (Set.toList ts) = solver cs subs | otherwise = subtypeError ctx (ADT "List" [t]) (Super ts) where f (ADT "List" [VarT _]) = True f (ADT "List" [t']) = t == t' f _ = False solver (Context ctx (t :<: Super ts) : cs) subs | Set.member t ts = solver cs subs | otherwise = subtypeError ctx t (Super ts) solver (Context ctx (x :<<: s) : cs) subs | any (\(Context _ c) -> x `elem` cFreeVars c) cs = do cs' <- concat `liftM` mapM (schemeSub x s) cs prints cs' $ solver cs' subs | otherwise = do (t,cs') <- concretize s let cs'' = (cs ++ Context ctx (VarT x :=: t) : map (extendCtx ctx) cs') prints cs'' $ solver cs'' subs uniError ctx t1 t2 = return . Left $ "Type error: " ++ show t1 ++ " is not equal to " ++ show t2 ++ " in context " ++ ctx unionError ctx ts ts' = return . Left $ concat [ "Type error: There are no types in both " , show (Super ts), " and ", show (Super ts') , " in context ", ctx ] subtypeError ctx t s = return . Left $ concat [ "Type error: ", show t, " is not a ", show s , " in context ", ctx ]