----------------------------------------------------------------------------- -- | -- Module : Data.ByteString.Builder -- Copyright : Lennart Kolmodin, Ross Paterson, George Giorgidze -- License : BSD3 -- -- Maintainer : George Giorgidze -- Stability : experimental -- Portability : Portable -- -- Efficient construction of lazy bytestrings. -- ----------------------------------------------------------------------------- module Data.ByteString.Builder ( -- * The Builder type Builder , toLazyByteString -- * Constructing Builders , empty , singleton , putWord8 , putInt8 , append , fromByteString -- :: S.ByteString -> Builder , fromLazyByteString -- :: L.ByteString -> Builder , putString -- * Flushing the buffer state , flush -- * Derived Builders -- ** Big-endian writes , putWord16be -- :: Word16 -> Builder , putWord24be -- :: Word32 -> Builder , putWord32be -- :: Word32 -> Builder , putWord64be -- :: Word64 -> Builder , putInt16be -- :: Int16 -> Builder , putInt32be -- :: Int32 -> Builder , putInt64be -- :: Int64 -> Builder -- ** Little-endian writes , putWord16le -- :: Word16 -> Builder , putWord24le -- :: Word32 -> Builder , putWord32le -- :: Word32 -> Builder , putWord64le -- :: Word64 -> Builder , putInt16le -- :: Int16 -> Builder , putInt32le -- :: Int32 -> Builder , putInt64le -- :: Int64 -> Builder -- ** Host-endian, unaligned writes , putWordHost -- :: Word -> Builder , putWord16host -- :: Word16 -> Builder , putWord32host -- :: Word32 -> Builder , putWord64host -- :: Word64 -> Builder -- Variable length numbers , putVarLenBe , putVarLenLe ) where import Foreign import Data.Monoid import Data.Word import qualified Data.ByteString as S import qualified Data.ByteString.Lazy as L import Data.ByteString.Internal (inlinePerformIO,c2w) import qualified Data.ByteString.Internal as S import qualified Data.ByteString.Lazy.Internal as L ------------------------------------------------------------------------ -- | A 'Builder' is an efficient way to build lazy 'L.ByteString's. -- There are several functions for constructing 'Builder's, but only one -- to inspect them: to extract any data, you have to turn them into lazy -- 'L.ByteString's using 'toLazyByteString'. -- -- Internally, a 'Builder' constructs a lazy 'L.Bytestring' by filling byte -- arrays piece by piece. As each buffer is filled, it is \'popped\' -- off, to become a new chunk of the resulting lazy 'L.ByteString'. -- All this is hidden from the user of the 'Builder'. newtype Builder = Builder { -- Invariant (from Data.ByteString.Lazy): -- The lists include no null ByteStrings. runBuilder :: (Buffer -> [S.ByteString]) -> Buffer -> [S.ByteString] } instance Monoid Builder where mempty = empty mappend = append ------------------------------------------------------------------------ -- | /O(1)./ The empty Builder, satisfying -- -- * @'toLazyByteString' 'empty' = 'L.empty'@ -- empty :: Builder empty = Builder id -- | /O(1)./ A Builder taking a single byte, satisfying -- -- * @'toLazyByteString' ('singleton' b) = 'L.singleton' b@ -- singleton :: Word8 -> Builder singleton = writeN 1 . flip poke putWord8 :: Word8 -> Builder putWord8 = singleton ------------------------------------------------------------------------ -- | /O(1)./ The concatenation of two Builders, an associative operation -- with identity 'empty', satisfying -- -- * @'toLazyByteString' ('append' x y) = 'L.append' ('toLazyByteString' x) ('toLazyByteString' y)@ -- append :: Builder -> Builder -> Builder append (Builder f) (Builder g) = Builder (f . g) -- | /O(1)./ A Builder taking a 'S.ByteString', satisfying -- -- * @'toLazyByteString' ('fromByteString' bs) = 'L.fromChunks' [bs]@ -- fromByteString :: S.ByteString -> Builder fromByteString bs | S.null bs = empty | otherwise = flush `append` mapBuilder (bs :) -- | /O(1)./ A Builder taking a lazy 'L.ByteString', satisfying -- -- * @'toLazyByteString' ('fromLazyByteString' bs) = bs@ -- fromLazyByteString :: L.ByteString -> Builder fromLazyByteString bss = flush `append` mapBuilder (L.toChunks bss ++) putString :: String -> Builder putString = fromLazyByteString . L.pack . map c2w ------------------------------------------------------------------------ -- Our internal buffer type data Buffer = Buffer {-# UNPACK #-} !(ForeignPtr Word8) {-# UNPACK #-} !Int -- offset {-# UNPACK #-} !Int -- used bytes {-# UNPACK #-} !Int -- length left ------------------------------------------------------------------------ -- | /O(n)./ Extract a lazy 'L.ByteString' from a 'Builder'. -- The construction work takes place if and when the relevant part of -- the lazy 'L.ByteString' is demanded. -- toLazyByteString :: Builder -> L.ByteString toLazyByteString m = L.fromChunks $ unsafePerformIO $ do buf <- newBuffer defaultSize return (runBuilder (m `append` flush) (const []) buf) -- | /O(1)./ Pop the 'S.ByteString' we have constructed so far, if any, -- yielding a new chunk in the result lazy 'L.ByteString'. flush :: Builder flush = Builder $ \ k buf@(Buffer p o u l) -> if u == 0 then k buf else S.PS p o u : k (Buffer p (o+u) 0 l) ------------------------------------------------------------------------ -- -- copied from Data.ByteString.Lazy -- defaultSize :: Int defaultSize = 32 * k - overhead where k = 1024 overhead = 2 * sizeOf (undefined :: Int) ------------------------------------------------------------------------ -- | Sequence an IO operation on the buffer unsafeLiftIO :: (Buffer -> IO Buffer) -> Builder unsafeLiftIO f = Builder $ \ k buf -> inlinePerformIO $ do buf' <- f buf return (k buf') -- | Get the size of the buffer withSize :: (Int -> Builder) -> Builder withSize f = Builder $ \ k buf@(Buffer _ _ _ l) -> runBuilder (f l) k buf -- | Map the resulting list of bytestrings. mapBuilder :: ([S.ByteString] -> [S.ByteString]) -> Builder mapBuilder f = Builder (f .) ------------------------------------------------------------------------ -- | Ensure that there are at least @n@ many bytes available. ensureFree :: Int -> Builder ensureFree n = n `seq` withSize $ \ l -> if n <= l then empty else flush `append` unsafeLiftIO (const (newBuffer (max n defaultSize))) -- | Ensure that @n@ many bytes are available, and then use @f@ to write some -- bytes into the memory. writeN :: Int -> (Ptr Word8 -> IO ()) -> Builder writeN n f = ensureFree n `append` unsafeLiftIO (writeNBuffer n f) writeNBuffer :: Int -> (Ptr Word8 -> IO ()) -> Buffer -> IO Buffer writeNBuffer n f (Buffer fp o u l) = do withForeignPtr fp (\p -> f (p `plusPtr` (o+u))) return (Buffer fp o (u+n) (l-n)) newBuffer :: Int -> IO Buffer newBuffer size = do fp <- S.mallocByteString size return $! Buffer fp 0 0 size ------------------------------------------------------------------------ -- Aligned, host order writes of storable values -- | Ensure that @n@ many bytes are available, and then use @f@ to write some -- storable values into the memory. writeNbytes :: Storable a => Int -> (Ptr a -> IO ()) -> Builder writeNbytes n f = ensureFree n `append` unsafeLiftIO (writeNBufferBytes n f) writeNBufferBytes :: Storable a => Int -> (Ptr a -> IO ()) -> Buffer -> IO Buffer writeNBufferBytes n f (Buffer fp o u l) = do withForeignPtr fp (\p -> f (p `plusPtr` (o+u))) return (Buffer fp o (u+n) (l-n)) ------------------------------------------------------------------------ -- -- We rely on the fromIntegral to do the right masking for us. -- The inlining here is critical, and can be worth 4x performance -- -- | Write a Word16 in big endian format putWord16be :: Word16 -> Builder putWord16be w = writeN 2 $ \p -> do poke p (fromIntegral (shiftR w 8) :: Word8) poke (p `plusPtr` 1) (fromIntegral (w) :: Word8) -- | Write a Word16 in little endian format putWord16le :: Word16 -> Builder putWord16le w = writeN 2 $ \p -> do poke p (fromIntegral (w) :: Word8) poke (p `plusPtr` 1) (fromIntegral (shiftR w 8) :: Word8) -- putWord16le w16 = writeN 2 (\p -> poke (castPtr p) w16) -- | Write a 24 bit number in big endian format represented as Word32 putWord24be :: Word32 -> Builder putWord24be w = writeN 3 $ \p -> do poke p (fromIntegral (shiftR w 16) :: Word8) poke (p `plusPtr` 1) (fromIntegral (shiftR w 8) :: Word8) poke (p `plusPtr` 2) (fromIntegral (w) :: Word8) -- | Write a 24 bit number in little endian format represented as Word32 putWord24le :: Word32 -> Builder putWord24le w = writeN 3 $ \p -> do poke p (fromIntegral (w) :: Word8) poke (p `plusPtr` 1) (fromIntegral (shiftR w 8) :: Word8) poke (p `plusPtr` 2) (fromIntegral (shiftR w 16) :: Word8) -- | Write a Word32 in big endian format putWord32be :: Word32 -> Builder putWord32be w = writeN 4 $ \p -> do poke p (fromIntegral (shiftR w 24) :: Word8) poke (p `plusPtr` 1) (fromIntegral (shiftR w 16) :: Word8) poke (p `plusPtr` 2) (fromIntegral (shiftR w 8) :: Word8) poke (p `plusPtr` 3) (fromIntegral (w) :: Word8) -- -- a data type to tag Put/Check. writes construct these which are then -- inlined and flattened. matching Checks will be more robust with rules. -- -- | Write a Word32 in little endian format putWord32le :: Word32 -> Builder putWord32le w = writeN 4 $ \p -> do poke p (fromIntegral (w) :: Word8) poke (p `plusPtr` 1) (fromIntegral (shiftR w 8) :: Word8) poke (p `plusPtr` 2) (fromIntegral (shiftR w 16) :: Word8) poke (p `plusPtr` 3) (fromIntegral (shiftR w 24) :: Word8) -- on a little endian machine: -- putWord32le w32 = writeN 4 (\p -> poke (castPtr p) w32) -- | Write a Word64 in big endian format putWord64be :: Word64 -> Builder putWord64be w = writeN 8 $ \p -> do poke p (fromIntegral (shiftR w 56) :: Word8) poke (p `plusPtr` 1) (fromIntegral (shiftR w 48) :: Word8) poke (p `plusPtr` 2) (fromIntegral (shiftR w 40) :: Word8) poke (p `plusPtr` 3) (fromIntegral (shiftR w 32) :: Word8) poke (p `plusPtr` 4) (fromIntegral (shiftR w 24) :: Word8) poke (p `plusPtr` 5) (fromIntegral (shiftR w 16) :: Word8) poke (p `plusPtr` 6) (fromIntegral (shiftR w 8) :: Word8) poke (p `plusPtr` 7) (fromIntegral (w) :: Word8) -- | Write a Word64 in little endian format putWord64le :: Word64 -> Builder putWord64le w = writeN 8 $ \p -> do poke p (fromIntegral (w) :: Word8) poke (p `plusPtr` 1) (fromIntegral (shiftR w 8) :: Word8) poke (p `plusPtr` 2) (fromIntegral (shiftR w 16) :: Word8) poke (p `plusPtr` 3) (fromIntegral (shiftR w 24) :: Word8) poke (p `plusPtr` 4) (fromIntegral (shiftR w 32) :: Word8) poke (p `plusPtr` 5) (fromIntegral (shiftR w 40) :: Word8) poke (p `plusPtr` 6) (fromIntegral (shiftR w 48) :: Word8) poke (p `plusPtr` 7) (fromIntegral (shiftR w 56) :: Word8) -- on a little endian machine: -- putWord64le w64 = writeN 8 (\p -> poke (castPtr p) w64) ----------------------------------------------------------------------- putInt8 :: Int8 -> Builder putInt8 = putWord8 . fromIntegral putInt16le :: Int16 -> Builder putInt16le = putWord16le . fromIntegral putInt16be :: Int16 -> Builder putInt16be = putWord16be . fromIntegral putInt32le :: Int32 -> Builder putInt32le = putWord32le . fromIntegral putInt32be :: Int32 -> Builder putInt32be = putWord32be . fromIntegral putInt64le :: Int64 -> Builder putInt64le = putWord64le . fromIntegral putInt64be :: Int64 -> Builder putInt64be = putWord64be . fromIntegral ------------------------------------------------------------------------ -- Unaligned, word size ops -- | /O(1)./ A Builder taking a single native machine word. The word is -- written in host order, host endian form, for the machine you're on. -- On a 64 bit machine the Word is an 8 byte value, on a 32 bit machine, -- 4 bytes. Values written this way are not portable to -- different endian or word sized machines, without conversion. -- putWordHost :: Word -> Builder putWordHost w = writeNbytes (sizeOf (undefined :: Word)) (\p -> poke p w) -- | Write a Word16 in native host order and host endianness. -- 2 bytes will be written, unaligned. putWord16host :: Word16 -> Builder putWord16host w16 = writeNbytes (sizeOf (undefined :: Word16)) (\p -> poke p w16) -- | Write a Word32 in native host order and host endianness. -- 4 bytes will be written, unaligned. putWord32host :: Word32 -> Builder putWord32host w32 = writeNbytes (sizeOf (undefined :: Word32)) (\p -> poke p w32) -- | Write a Word64 in native host order. -- On a 32 bit machine we write two host order Word32s, in big endian form. -- 8 bytes will be written, unaligned. putWord64host :: Word64 -> Builder putWord64host w = writeNbytes (sizeOf (undefined :: Word64)) (\p -> poke p w) ------------------------------------------------------------------------ putVarLenBe :: Word64 -> Builder putVarLenBe w = varLenAux2 $ reverse $ varLenAux1 w putVarLenLe :: Word64 -> Builder putVarLenLe w = varLenAux2 $ varLenAux1 w varLenAux1 :: Word64 -> [Word8] varLenAux1 0 = [] varLenAux1 w = (fromIntegral $ w .&. 0x7F) : (varLenAux1 $ shiftR w 7) varLenAux2 :: [Word8] -> Builder varLenAux2 [] = putWord8 0 varLenAux2 [w] = putWord8 w varLenAux2 (w : ws) = putWord8 (setBit w 7) `append` varLenAux2 ws