{------------------------------------------------------------------------------------- - - A Compiler from XQuery to Haskell - Programmer: Leonidas Fegaras - Email: fegaras@cse.uta.edu - Web: http://lambda.uta.edu/ - Creation: 02/15/08, last update: 04/10/08 - - Copyright (c) 2008 by Leonidas Fegaras, the University of Texas at Arlington. All rights reserved. - This material is provided as is, with absolutely no warranty expressed or implied. - Any use is at your own risk. Permission is hereby granted to use or copy this program - for any purpose, provided the above notices are retained on all copies. - --------------------------------------------------------------------------------------} {-# OPTIONS_GHC -fth -funbox-strict-fields #-} module XQueryCompiler where import Char(isDigit) import List(sortBy) import XMLParse(XMLEvent(..),parseDocument) import HXML(AttList) import Language.Haskell.TH import XQueryParser {--------------- XML Trees (rose trees) ----------------------------------------------} type Stream = [XMLEvent] type Tag = String data XTree = XElem Tag AttList !Int [XTree] -- Int is the preorder numbering for document order | XText String | XInt !Int | XFloat !Float | XBool !Bool deriving Eq type XSeq = [XTree] showAL :: AttList -> String showAL = foldr(\(a,v) r -> " "++a++"=\""++v++"\""++r) [] showXT :: XTree -> Bool -> String showXT (XElem tag al _ []) pad = "<"++tag++(showAL al)++"/>" showXT (XElem tag al _ xs) pad = "<"++tag++(showAL al)++">"++(showXS xs)++"" showXT (XText text) pad = text showXT (XInt n) pad = (if pad then " " else "")++(show n) showXT (XFloat n) pad = (if pad then " " else "")++(show n) showXT (XBool v) pad = (if pad then " " else "")++(if v then "true" else "false") showXS :: XSeq -> String showXS [] = "" showXS (x:xs) = (showXT x False) ++ (concatMap (\x -> showXT x True) xs) instance Show XTree where show t = showXT t False -- lazily materialize the SAX stream into a DOM tree materialize :: Stream -> XTree materialize stream = XElem "root" [] 1 [head (filter (\x -> case x of XElem _ _ _ _ -> True; _ -> False) ((\(x,_,_)->x) (ml stream 2)))] where m ((TextEvent t):xs) i = (XText t,xs,i) m ((EmptyEvent n atts):xs) i = (XElem n atts i [],xs,i+1) m ((StartEvent n atts):xs) i = let (el,xs',i') = ml xs (i+1) in (XElem n atts i el,xs',i') m (_:xs) i = (XText "unrecognized",xs,i) m [] i = (XText "unrecognized",[],i) ml ((EndEvent n):xs) i = ([],xs,i) ml xs i = let (e,xs',i') = m xs i (el,xs'',i'') = ml xs' i' in (e:el,xs'',i'') {--------------- XPath Steps ---------------------------------------------------------} -- XPath step /tag or /* child_step :: Tag -> XTree -> XSeq child_step m x = case x of (XElem _ _ _ bs) -> foldr (\b s -> case b of (XElem k _ _ _) | (k==m || m=="*") -> b:s _ -> s) [] bs _ -> [] -- XPath step //tag or //* descendant_step :: Tag -> XTree -> XSeq descendant_step m (x@(XElem t _ _ cs)) | m==t || m=="*" = x:(concatMap (descendant_step m) cs) descendant_step m (XElem t _ _ cs) = concatMap (descendant_step m) cs descendant_step m _ = [] -- XPath step /@attr or /@* attribute_step :: Tag -> XTree -> XSeq attribute_step m x = case x of (XElem _ al _ _) -> foldr (\(k,v) s -> if k==m || m=="*" then (XText v):s else s) [] al _ -> [] -- XPath step //@attr or //@* attribute_descendant_step :: Tag -> XTree -> XSeq attribute_descendant_step m (x@(XElem _ al _ cs)) = foldr (\(k,v) s -> if k==m || m=="*" then (XText v):s else s) (concatMap (attribute_descendant_step m) cs) al attribute_descendant_step m _ = [] {------------ Functions --------------------------------------------------------------} -- find the value of a variable in an association list findV var env = case filter (\(n,_) -> n==var) env of (_,b):_ -> b _ -> error ("Undefined variable: "++var) -- is the variable defined in the association list? memV var env = case filter (\(n,_) -> n==var) env of (_,b):_ -> True _ -> False -- like foldr but with an index foldir :: (a -> Int -> b -> b) -> b -> [a] -> Int -> b foldir c n [] i = n foldir c n (x:xs) i = c x i (foldir c n xs (i+1)) trueXT = XBool True readNum :: String -> Maybe XTree readNum cs = case span isDigit cs of (n,[]) -> Just (XInt (read n)) (n,'.':rest) -> case span isDigit rest of (k,[]) -> Just (XFloat (read (n++('.':k)))) _ -> Nothing _ -> Nothing text :: XSeq -> XSeq text xs = foldr (\x r -> case x of XElem _ _ _ [z@(XText _)] -> z:r XElem _ _ _ [z@(XInt _)] -> z:r XElem _ _ _ [z@(XFloat _)] -> z:r XElem _ _ _ [z@(XBool _)] -> z:r XText _ -> x:r XInt _ -> x:r XFloat _ -> x:r XBool _ -> x:r _ -> r) [] xs toString :: XSeq -> [String] toString xs = map (\x -> case x of XText t -> t XInt n -> show n XFloat n -> show n XBool n -> show n) (text xs) toNum :: XSeq -> XSeq toNum xs = foldr (\x r -> case x of XInt n -> x:r XFloat n -> x:r XText s -> case readNum s of Just t -> t:r _ -> r _ -> r) [] (text xs) toFloat :: XTree -> Float toFloat (XText s) = case readNum s of Just (XInt n) -> fromIntegral n Just (XFloat n) -> n toFloat (XInt n) = fromIntegral n toFloat (XFloat n) = n toFloat x = error("Cannot convert to a float: "++(show x)) contains :: String -> String -> Bool contains xs ys | ((take (length ys) xs) == ys) = True contains (_:xs) ys = contains xs ys contains [] ys = False distinct :: XSeq -> XSeq distinct = foldl (\r a -> if elem a r then r else r++[a]) [] arithmetic :: (Float -> Float -> Float) -> XTree -> XTree -> XTree arithmetic op (XInt n) (XInt m) = XInt (round (op (fromIntegral n) (fromIntegral m))) arithmetic op (XFloat n) (XFloat m) = XFloat (op n m) arithmetic op (XFloat n) (XInt m) = XFloat (op n (fromIntegral m)) arithmetic op (XInt n) (XFloat m) = XFloat (op (fromIntegral n) m) compareXTrees :: XTree -> XTree -> Ordering compareXTrees (XElem _ _ _ _) _ = EQ compareXTrees _ (XElem _ _ _ _) = EQ compareXTrees (XInt n) (XInt m) = compare n m compareXTrees (XFloat n) (XInt m) = compare n (fromIntegral m) compareXTrees (XInt n) (XFloat m) = compare (fromIntegral n) m compareXTrees (XFloat n) (XFloat m) = compare n m compareXTrees (XText n) (XText m) = compare n m compareXTrees x y = compare (toFloat x) (toFloat y) strictCompareOne [XInt n] [XInt m] = compare n m strictCompareOne [XFloat n] [XFloat m] = compare n m strictCompareOne [XFloat n] [XInt m] = compare n (fromIntegral m) strictCompareOne [XInt n] [XFloat m] = compare (fromIntegral n) m strictCompareOne [XText n] [XText m] = compare n m strictCompareOne x y = error ("Illegal operands in strict comparison: "++(show x)++" "++(show y)) strictCompare :: XSeq -> XSeq -> Ordering strictCompare [XElem _ _ _ x] [XElem _ _ _ y] = strictCompareOne x y strictCompare x [XElem _ _ _ y] = strictCompareOne x y strictCompare [XElem _ _ _ x] y = strictCompareOne x y strictCompare x y = strictCompareOne x y compareXSeqs :: Bool -> XSeq -> XSeq -> Ordering compareXSeqs ord xs ys = let comps = [ compareXTrees x y | x <- xs, y <- ys ] in if ord then if all (\x -> x == LT) comps then LT else if all (\x -> x == GT) comps then GT else EQ else if all (\x -> x == LT) comps then GT else if all (\x -> x == GT) comps then LT else EQ conditionTest :: XSeq -> Bool conditionTest [] = False conditionTest [XText ""] = False conditionTest [XInt 0] = False conditionTest [XBool False] = False conditionTest _ = True -- XPath steps paths :: [(Tag,Q Exp)] paths = [ ( "child_step", [| child_step |] ), ( "descendant_step", [| descendant_step |] ), ( "attribute_step", [| attribute_step |] ), ( "attribute_descendant_step", [| attribute_descendant_step |] ) ] type Function = [Q Exp] -> Q Exp -- System functions: they can also be defined as Haskell functions of type (XSeq,...,XSeq) -> XSeq -- but here we make sure they are unfolded and fused with the rest of the query functions :: [(Tag,Int,Function)] functions = [ ( "=", 2, \[xs,ys] -> [| [ trueXT | x <- text $xs, y <- text $ys, compareXTrees x y == EQ ] |] ), ( "!=", 2, \[xs,ys] -> [| if null [ trueXT | x <- text $xs, y <- text $ys, compareXTrees x y == EQ ] then [trueXT] else [] |] ), ( ">", 2, \[xs,ys] -> [| [ trueXT | x <- text $xs, y <- text $ys, compareXTrees x y == GT ] |] ), ( "<", 2, \[xs,ys] -> [| [ trueXT | x <- text $xs, y <- text $ys, compareXTrees x y == LT ] |] ), ( ">=", 2, \[xs,ys] -> [| [ trueXT | x <- text $xs, y <- text $ys, compareXTrees x y `elem` [GT,EQ] ] |] ), ( "<=", 2, \[xs,ys] -> [| [ trueXT | x <- text $xs, y <- text $ys, compareXTrees x y `elem` [LT,EQ] ] |] ), ( "eq", 2, \[xs,ys] -> [| if strictCompare $xs $ys == EQ then [trueXT] else [] |] ), ( "neq", 2, \[xs,ys] -> [| if strictCompare $xs $ys /= EQ then [trueXT] else [] |] ), ( "lt", 2, \[xs,ys] -> [| if strictCompare $xs $ys == LT then [trueXT] else [] |] ), ( "gt", 2, \[xs,ys] -> [| if strictCompare $xs $ys == GT then [trueXT] else [] |] ), ( "le", 2, \[xs,ys] -> [| if strictCompare $xs $ys `elem` [LT,EQ] then [trueXT] else [] |] ), ( "ge", 2, \[xs,ys] -> [| if strictCompare $xs $ys `elem` [GT,EQ] then [trueXT] else [] |] ), ( "<<", 2, \[xs,ys] -> [| [ trueXT | XElem _ _ ox _ <- $xs, XElem _ _ oy _ <- $ys, ox < oy ] |] ), ( ">>", 2, \[xs,ys] -> [| [ trueXT | XElem _ _ ox _ <- $xs, XElem _ _ oy _ <- $ys, ox > oy ] |] ), ( "is", 2, \[xs,ys] -> [| [ trueXT | XElem _ _ ox _ <- $xs, XElem _ _ oy _ <- $ys, ox == oy ] |] ), ( "+", 2, \[xs,ys] -> [| [ arithmetic (+) x y | x <- toNum $xs, y <- toNum $ys ] |] ), ( "-", 2, \[xs,ys] -> [| [ arithmetic (-) x y | x <- toNum $xs, y <- toNum $ys ] |] ), ( "*", 2, \[xs,ys] -> [| [ arithmetic (*) x y | x <- toNum $xs, y <- toNum $ys ] |] ), ( "div", 2, \[xs,ys] -> [| [ arithmetic (/) x y | x <- toNum $xs, y <- toNum $ys ] |] ), ( "idiv", 2, \[xs,ys] -> [| [ XInt (div x y) | (XInt x) <- toNum $xs, (XInt y) <- toNum $ys ] |] ), ( "mod", 2, \[xs,ys] -> [| [ XInt (mod x y) | (XInt x) <- toNum $xs, (XInt y) <- toNum $ys ] |] ), ( "uplus", 1, \[xs] -> [| [ x | x <- toNum $xs ] |] ), ( "uminus", 1, \[xs] -> [| [ case x of XInt n -> XInt (-n); XFloat n -> XFloat (-n) | x <- toNum $xs ] |] ), ( "and", 2, \[xs,ys] -> [| if (conditionTest $xs) && (conditionTest $ys) then [trueXT] else [] |] ), ( "or", 2, \[xs,ys] -> [| if (conditionTest $xs) || (conditionTest $ys) then [trueXT] else [] |] ), ( "not", 1, \[xs] -> [| if (conditionTest $xs) then [] else [trueXT] |] ), ( "some", 1, \[xs] -> [| if (conditionTest $xs) then [trueXT] else [] |] ), ( "count", 1, \[xs] -> [| [ XInt (length $xs) ] |] ), ( "sum", 1, \[xs] -> [| [ XFloat (sum [ toFloat x | x <- toNum $xs ]) ] |] ), ( "avg", 1, \[xs] -> [| let ys = $xs in [ XFloat ((sum [ toFloat x | x <- toNum ys ]) / (fromIntegral (length ys))) ] |] ), ( "min", 1, \[xs] -> [| [ XFloat (minimum [ toFloat x | x <- toNum $xs ]) ] |] ), ( "max", 1, \[xs] -> [| [ XFloat (maximum [ toFloat x | x <- toNum $xs ]) ] |] ), ( "to", 2, \[xs,ys] -> [| [ XInt i | XInt n <- toNum $xs, XInt m <- toNum $ys, i <- [n..m] ] |] ), ( "text", 1, \[xs] -> [| text $xs |] ), ( "string", 1, \[xs] -> [| text $xs |] ), ( "data", 1, \[xs] -> [| text $xs |] ), ( "node", 1, \[xs] -> [| $xs |] ), ( "empty", 0, \[] -> [| [] |] ), ( "true", 0, \[] -> [| [trueXT] |] ), ( "false", 0, \[] -> [| [] |] ), ( "if", 3, \[cs,ts,es] -> [| if conditionTest $cs then $ts else $es |] ), ( "element", 2, \[tags,xs] -> [| [ x | tag <- toString $tags, x@(XElem t _ _ _) <- $xs, (t==tag || tag=="*") ] |] ), ( "attribute", 2, \[tags,xs] -> [| [ z | tag <- toString $tags, x <- $xs, z <- attribute_step tag x ] |] ), ( "name", 1, \[xs] -> [| [ XText tag | XElem tag _ _ _ <- $xs ] |] ), ( "contains", 2, \[xs,text] -> [| [ trueXT | x <- toString $xs, t <- toString $text, contains x t ] |] ), ( "concatenate", 2, \[xs,ys] -> [| $xs ++ $ys |] ), ( "concat", 2, \[xs,ys] -> [| [ XText (showXS ($xs ++ $ys)) ] |] ), ( "distinct-values", 1, \[xs] -> [| distinct $xs |] ), ( "union", 2, \[xs,ys] -> [| distinct ($xs ++ $ys) |] ), ( "intersect", 2, \[xs,ys] -> [| filter (\x -> elem x $ys) $xs |] ), ( "except", 2, \[xs,ys] -> [| filter (\x -> not (elem x $ys)) $xs |] ), ( "reverse", 1, \[xs] -> [| reverse $xs |] ) ] -- functions to be used by the interpreter -- when evaluated, it gives [(String,Int,[XSeq]->XSeq)] iFunctions :: Q Exp iFunctions = foldr (\(fname,len,f) r -> let vars = map (\i -> mkName ("v_"++(show i))) [1..len] entry = tupE [litE (StringL fname),litE (IntegerL (toInteger len)), lamE [listP (map varP vars)] (f (map varE vars))] in [| $entry : $r |]) [| [] |] functions -- XPath steps to be used by the interpreter -- when evaluated, it gives [(String,Tag->XTree->XSeq)] pFunctions = foldr (\(pname,p) r -> let pn = litE (StringL pname) in [| ($pn,$p) : $r |]) [| [] |] paths -- make a function call callF :: Tag -> Function callF fname args = case filter (\(n,_,_) -> n == fname || ("fn:"++n)==fname) functions of (_,len,f):_ -> if (length args) == len then f args else error ("wrong number of arguments in function call: " ++ fname) _ -> -- otherwise, it must be a Haskell function of type (XSeq,...,XSeq) -> XSeq let itp = case args of [] -> [t| () |] [_] -> [t| XSeq |] _ -> foldr (\_ r -> appT r [t| XSeq |]) (appT (tupleT (length args)) [t| XSeq |]) (tail args) fn = sigE (varE (mkName fname)) (appT (appT arrowT itp) [t| XSeq |]) in appE fn (tupE args) {------------ Preprocessing, Remove Backward Steps and Optimize ------------------------------------} -- collect attribute constructions inside element constructions collect_attributes :: Ast -> (Ast,[Ast]) collect_attributes (Ast "attribute_construction" [attr,value]) = (Ast "call" [Avar "empty"],[Ast "pair" [attr,value]]) collect_attributes (Ast "call" [Avar "concatenate",x,y]) = let (cx,ax) = collect_attributes x (cy,ay) = collect_attributes y in (Ast "call" [Avar "concatenate",cx,cy],ax++ay) collect_attributes (Ast "step" (e:es)) = let (ce,ae) = collect_attributes e in (Ast "step" (ce:es),ae) collect_attributes e = (e,[]) -- does the expression contain a $var/.. ? parentOfVar :: Ast -> String -> Bool parentOfVar (Ast "step" [Ast "parent_step" [Ast "step" [Avar x]]]) var = x == var parentOfVar (Ast "let" [Avar v,s,_]) var | var == v = parentOfVar s var parentOfVar (Ast "for" [Avar v,Avar i,s,_]) var | var == v || var == i = parentOfVar s var parentOfVar (Ast _ args) var = or (map (\x -> parentOfVar x var) args) parentOfVar _ _ = False -- replace $var/.. with $nvar replaceParentOfVar :: Ast -> String -> String -> Ast replaceParentOfVar (Ast "step" [Ast "parent_step" [Ast "step" [Avar x]]]) var nvar | x == var = Avar nvar replaceParentOfVar (Ast "let" [Avar v,s,b]) var nvar | var == v = Ast "let" [Avar v,replaceParentOfVar s var nvar,b] replaceParentOfVar (Ast "for" [Avar v,Avar i,s,b]) var nvar | var == v || var == i = Ast "for" [Avar v,Avar i,replaceParentOfVar s var nvar,b] replaceParentOfVar (Ast f args) var nvar = Ast f (map (\x -> replaceParentOfVar x var nvar) args) replaceParentOfVar e _ _ = e -- Rules to extract the parent of an XQuery expression -- For every XQuery x and predicates p1 ... pn and for s in [tag,*,@attr]: -- x/s[p1]...[pn]/.. -> x[s[p1]...[pn]] -- x//s[p1]...[pn]/.. -> x//*[s[p1]...[pn]] removeParent :: Ast -> (Ast,Ast,Bool,Ast) removeParent (Ast "predicate" [c,x]) = let (nx,cond,childp,tag) = removeParent x in (Ast "predicate" [c,nx],cond,childp,tag) removeParent (Ast "step" ((Ast "child_step" [tag,x]):preds)) = (Ast "step" ((Ast "child_step" [tag,Avar "."]):preds),x,True,tag) removeParent (Ast "step" ((Ast "descendant_step" [tag,x]):preds)) = (Ast "step" ((Ast "child_step" [tag,Avar "."]):preds), Ast "step" ((Ast "descendant_step" [Astring "*",x]):preds),True,tag) removeParent (Ast "step" ((Ast "attribute_step" [tag,x]):preds)) = (Ast "step" ((Ast "attribute_step" [tag,Avar "."]):preds),x,False,tag) removeParent (Ast "step" ((Ast "descendant_attribute_step" [tag,x]):preds)) = (Ast "step" ((Ast "attribute_step" [tag,Avar "."]):preds), Ast "step" ((Ast "descendant_step" [Astring "*",x]):preds),False,tag) removeParent (Ast "step" (x:xs)) = let (nx,cond,childp,tag) = removeParent x in (Ast "step" (nx:xs),cond,childp,tag) removeParent e = error ("Cannot remove this parent step "++(show e)) optimize :: Ast -> Ast -- must be done bottom-up: /../.. optimize (Ast "step" [Ast "parent_step" [Ast "step" [Ast "parent_step" x]]]) = let nx = optimize (Ast "step" [Ast "parent_step" x]) in optimize (Ast "step" [Ast "parent_step" [nx]]) -- get rid of a parent step optimize (Ast "step" [Ast "parent_step" [x]]) = let (nx,cond,_,_) = removeParent x in Ast "predicate" [optimize nx,optimize cond] -- remove $var/.. in a let-FLWOR optimize (Ast "let" [Avar var,source,body]) | parentOfVar body var = let (nx,cond,childp,tag) = removeParent source in optimize (Ast "let" [Avar (var++"_parent"),Ast "predicate" [nx,cond], Ast "let" [Avar var, Ast "step" [ Ast (if childp then "child_step" else "attribute_step") [tag,Avar (var++"_parent")] ], replaceParentOfVar body var (var++"_parent")]]) -- remove $var/.. from a for-FLWOR optimize (Ast "for" [Avar var,Avar "$",source,body]) | parentOfVar body var = let (nx,cond,childp,tag) = removeParent source in optimize (Ast "for" [Avar (var++"_parent"),Avar "$",Ast "predicate" [nx,cond], Ast "for" [Avar var,Avar "$", Ast "step" [ Ast (if childp then "child_step" else "attribute_step") [tag,Avar (var++"_parent")] ], replaceParentOfVar body var (var++"_parent")]]) optimize (Ast "element_construction" [tag,content]) = let (nc,attrs) = collect_attributes content in optimize (Ast "construction" [tag,Ast "attributes" attrs,nc]) -- needs more rules optimize (Ast n args) = Ast n (map optimize args) optimize e = e {------------ Compiler ---------------------------------------------------------------} undef1 = [| error "Undefined XQuery context (.)" |] undef2 = [| error "Undefined position()" |] undef3 = [| error "Undefined last()" |] -- does the expression contain a last()? containsLast :: Ast -> Bool containsLast (Ast "step" [Ast "call" [Avar "last"]]) = True containsLast (Ast f _) | elem f ["let","for","predicate"] = False containsLast (Ast "step" _) = False containsLast (Ast _ args) = or (map containsLast args) containsLast _ = False -- Each XPath predicate must calculate position() and last() from its input XSeq -- if last() is used, then the evaluation is blocking (need to store the whole input XSeq) compilePredicates :: [Ast] -> Q Exp -> Q Exp compilePredicates [] xs = xs compilePredicates (pred:preds) xs | containsLast pred -- blocking: use only when last() is used in the predicate = compilePredicates preds [| let bl = $xs len = length bl in foldir (\x i r -> if case $(compile pred [| x |] [| [XInt i] |] [| [XInt len] |] "") of [XInt k] -> k == i -- indexing b -> conditionTest b then x:r else r) [] bl 1 |] compilePredicates (pred:preds) xs = compilePredicates preds [| foldir (\x i r -> if case $(compile pred [| x |] [| [XInt i] |] undef3 "") of [XInt k] -> k == i -- indexing b -> conditionTest b then x:r else r) [] $xs 1 |] -- extract the QName qName :: XSeq -> Tag qName [XText s] = s qName e = error ("Invalid QName: "++(show e)) -- Compile the AST e into Haskell code -- context: context node (XPath .) -- position: the element position in the parent sequence (XPath position()) -- last: the length of the parent sequence (XPath last()) -- effective_axis: the XPath axis in /axis::tag(exp) -- (eg, the effective axis of //(A | B) is "descendant_step" compile :: Ast -> Q Exp -> Q Exp -> Q Exp -> String -> Q Exp compile e context position last effective_axis = case e of Avar "." -> [| [ $context :: XTree ] |] Avar v -> let x = varE (mkName v) in [| $x :: XSeq |] Aint n -> let x = litE (IntegerL (toInteger n)) in [| [ XInt $x ] |] Afloat n -> let x = litE (RationalL (toRational n)) in [| [ XFloat $x ] |] Astring s -> let x = litE (StringL s) in [| [ XText $x ] |] Ast "context" [v,Astring dp,body] -> [| foldr (\x r -> $(compile body [| x |] position last dp)++r) [] $(compile v context position last effective_axis) |] Ast "doc" [Aint n] -> let d = varE (mkName ("_doc"++(show n))) in [| [ $d ] |] Ast "call" [Avar "position"] -> position Ast "call" [Avar "last"] -> last Ast "step" [Ast "child_step" [tag, Avar "."]] | effective_axis /= "" -> compile (Ast "step" [Ast effective_axis [tag, Avar "."]]) context position last "" Ast "step" [Ast path_step [Astring tag,body]] | memV path_step paths -> let bc = compile body context position last effective_axis tc = litE (stringL tag) in [| foldr (\a s -> ($(findV path_step paths) $tc a)++s) [] $bc |] Ast "step" ((Ast path_step [Astring tag,body]):predicates) | memV path_step paths -> let bc = compile body context position last effective_axis tc = litE (stringL tag) in [| foldr (\x r -> $(compilePredicates predicates [| $(findV path_step paths) $tc x |])++r) [] $bc |] Ast "step" [exp] -> compile exp context position last effective_axis Ast "step" (exp:predicates) -> compilePredicates predicates (compile exp context position last effective_axis) Ast "predicate" [condition,body] -> compilePredicates [condition] (compile body context position last effective_axis) Ast "call" ((Avar f):args) -> callF f (map (\x -> compile x context position last effective_axis) args) Ast "construction" [Astring tag,Ast "attributes" [],body] -> let ct = litE (StringL tag) bc = compile body context position last effective_axis in [| [ XElem $ct [] 0 $bc ] |] Ast "construction" [tag,Ast "attributes" al,body] -> let alc = foldr (\(Ast "pair" [a,v]) r -> let ac = compile a context position last effective_axis vc = compile v context position last effective_axis in [| (qName $ac,showXS (text $vc)) : $r |]) [| [] |] al ct = compile tag context position last effective_axis bc = compile body context position last effective_axis in [| [ XElem (qName $ct) $alc 0 $bc ] |] Ast "let" [Avar var,source,body] -> do s <- compile source context position last effective_axis b <- compile body context position last effective_axis return (AppE (LamE [VarP (mkName var)] b) s) Ast "for" [Avar var,Avar "$",source,body] -- a for-loop without an index -> let b = compile body [| head $(varE (mkName var)) |] undef2 undef3 "" f = lamE [varP (mkName var)] [| \r -> $b ++ r |] s = compile source context position last effective_axis in [| foldr (\x -> $f [x]) [] $s |] Ast "for" [Avar var,Avar ivar,source,body] -- a for-loop with an index -> let b = compile body [| head $(varE (mkName var)) |] [| $(varE (mkName ivar)) |] undef3 "" f = lamE [varP (mkName var)] (lamE [varP (mkName ivar)] [| \r -> $b ++ r |]) s = compile source context position last effective_axis in [| foldir (\x i -> $f [x] [XInt i]) [] $s 1 |] Ast "sortTuple" (exp:orderBys) -- prepare each FLWOR tuple for sorting -> let res = foldl (\r a -> let ac = compile a context position last effective_axis in [| $r++[text $ac] |] ) [| [ $(compile exp context position last effective_axis) ] |] orderBys in [| [ $res ] |] Ast "sort" (exp:ordList) -> let ce = compile exp context position last effective_axis ordering = foldr (\(Avar ord) r -> let asc = if ord == "ascending" then [| True |] else [| False |] in [| \(x:xs) (y:ys) -> case compareXSeqs $asc x y of EQ -> $r xs ys o -> o |]) [| \xs ys -> EQ |] ordList in [| concatMap head (sortBy (\(_:xs) (_:ys) -> $ordering xs ys) ($ce::[[XSeq]])) |] _ -> error ("Illegal XQuery: "++(show e)) -- collect all input documents and assign them a unique number getDocs :: Ast -> Int -> (Ast, Int, [(Int, Ast)]) getDocs query count = case query of Ast "call" [Avar "doc",file] -> (Ast "doc" [Aint count], count+1, [(count,file)]) Ast "call" [Avar "fn:doc",file] -> (Ast "doc" [Aint count], count+1, [(count,file)]) Ast n args -> let (s,c,ns) = foldr (\a r c -> let (e,c1,n1) = getDocs a c (s,c2,n2) = r c1 in (e:s,c2,docUnion n1 n2)) (\c -> ([],c,[])) args count in (Ast n s,c,ns) _ -> (query,count,[]) where docUnion xs ((n,s):ys) = (n,foldr(\(m,d) r -> if s==d then Aint m else r) s xs):(docUnion xs ys) docUnion xs [] = xs -- optimize and compile an AST compileAst :: Ast -> Q Exp compileAst ast = compile (optimize ast) undef1 undef2 undef3 "" -- compile an XQuery AST that reads XML documents compileQuery :: [Ast] -> Q Exp compileQuery ((Ast "function" ((Avar f):b:args)):xs) = let lvars = case args of [Astring a] -> [varP (mkName a)] _ -> [tupP (map (\(Avar a) -> varP (mkName a)) args)] in letE [valD (varP (mkName f)) (normalB (lamE lvars (compileAst b))) []] (compileQuery xs) compileQuery ((Ast "variable" [Avar v,u]):xs) = letE [valD (varP (mkName v)) (normalB (compileAst u)) []] (compileQuery xs) compileQuery [query] = let (ast,_,ns) = getDocs query 0 code = compileAst ast in foldl (\r (n,file) -> let d = lamE [varP (mkName ("_doc"++(show n)))] r in case file of Aint m -> [| $d $(varE (mkName ("_doc"++(show m)))) |] _ -> [| do let [XText f] = $(compileAst file) doc <- readFile f $d (materialize (parseDocument doc)) |]) [| return $code |] ns -- Debugging: display the AST and the Haskell code of an input XQuery cq :: String -> IO () cq query = do putStrLn "Abstract Syntax Tree:" let ast = parse (scan query) putStrLn (show ast) let opt = optimize (last ast) putStrLn "Optimized AST:" putStrLn (show opt) putStrLn "Haskell Code:" let code = compileQuery ast runQ code >>= putStrLn.pprint -- Run an XQuery expression that does not read XML documents -- When evaluated, it returns XSeq xe :: String -> Q Exp xe query = compileAst (last (parse (scan query))) -- Run an XQuery that reads XML documents -- When evaluated, it returns IO XSeq xq :: String -> Q Exp xq query = compileQuery (parse (scan query))