-- Copyright (c) David Amos, 2008. All rights reserved. {-# OPTIONS_GHC -fglasgow-exts #-} module Math.Projects.RootSystem where import Data.Ratio import qualified Data.List as L import qualified Data.Set as S import Math.Algebra.LinearAlgebra import Math.Algebra.Group.PermutationGroup hiding (elts, order, closure) import Math.Algebra.Group.SchreierSims as SS import Math.Algebra.Group.StringRewriting as SG import Math.Algebra.Field.Base -- for Q data Type = A | B | C | D | E | F | G -- Humphreys, Reflection Groups and Coxeter Groups -- SIMPLE SYSTEMS -- sometimes called fundamental systems -- The ith basis vector in K^n basisElt :: Int -> Int -> [Q] -- this type signature determines all the rest basisElt n i = replicate (i-1) 0 ++ 1 : replicate (n-i) 0 -- We need to work over the rationals to ensure that arithmetic is exact -- So long as our simple systems are rational, then reflection matrices are rational -- A simple system is like a basis for the root system (see Humphreys p8 for full definition) -- simpleSystem :: Type -> Int -> [[Q]] simpleSystem A n | n >= 1 = [e i <-> e (i+1) | i <- [1..n]] where e = basisElt (n+1) simpleSystem B n | n >= 2 = [e i <-> e (i+1) | i <- [1..n-1]] ++ [e n] where e = basisElt n simpleSystem C n | n >= 2 = [e i <-> e (i+1) | i <- [1..n-1]] ++ [2 *> e n] where e = basisElt n simpleSystem D n | n >= 4 = [e i <-> e (i+1) | i <- [1..n-1]] ++ [e (n-1) <+> e n] where e = basisElt n simpleSystem E n | n `elem` [6,7,8] = take n simpleroots where e = basisElt 8 simpleroots = ((1/2) *> (e 1 <-> e 2 <-> e 3 <-> e 4 <-> e 5 <-> e 6 <-> e 7 <+> e 8)) : (e 1 <+> e 2) : [e (i-1) <-> e (i-2) | i <- [3..8]] simpleSystem F 4 = [e 2 <-> e 3, e 3 <-> e 4, e 4, (1/2) *> (e 1 <-> e 2 <-> e 3 <-> e 4)] where e = basisElt 4 simpleSystem G 2 = [e 1 <-> e 2, ((-2) *> e 1) <+> e 2 <+> e 3] where e = basisElt 3 -- ROOT SYSTEMS -- Calculating the full root system from the fundamental roots -- Humphreys p3 -- Weyl group element corresponding to a root -- w r is the reflection in the hyperplane orthogonal to r w r s = s <-> (2 * (s <.> r) / (r <.> r)) *> r -- Given a simple system, return the full root system -- The closure of a set of roots under reflection closure rs = S.toList $ closure' S.empty (S.fromList rs) where closure' interior boundary | S.null boundary = interior | otherwise = let interior' = S.union interior boundary boundary' = S.fromList [w r s | r <- rs, s <- S.toList boundary] S.\\ interior' in closure' interior' boundary' -- WEYL GROUP -- The finite reflection group generated by the root system -- Generators of the Weyl group as permutation group on the roots weylPerms t n = let rs = simpleSystem t n xs = closure rs toPerm r = fromPairs [(x, w r x) | x <- xs] in map toPerm rs -- Generators of the Weyl group as a matrix group weylMatrices t n = map wMx (simpleSystem t n) -- The Weyl group element corresponding to a root, represented as a matrix wMx r = map (w r) [e i | i <- [1..d]] -- matrix for reflection in hyperplane orthogonal to r where d = length r -- dimension of the space e = basisElt d -- the images of the basis elts form the columns of the matrix -- however, reflection matrices are symmetric, so they also form the rows -- CARTAN MATRIX, DYNKIN DIAGRAM, COXETER SYSTEM cartanMatrix t n = [[2 * (ai <.> aj) / (ai <.> ai) | aj <- roots] | ai <- roots] where roots = simpleSystem t n -- Note: The Cartan matrices for A, D, E systems are symmetric. -- Those of B, C, F, G are not -- Carter, Simple Groups of Lie Type, p44-5 gives the expected answers -- They agree with our answers except for G2, which is the transpose -- (So probably Carter defines the roots of G2 the other way round to Humphreys) -- set the diagonal entries of (square) matrix mx to constant c setDiag c mx@((x:xs):rs) = (c:xs) : zipWith (:) (map head rs) (setDiag c $ map tail rs) setDiag _ [[]] = [[]] -- Carter, Segal, Macdonald p17-18 -- given a Cartan matrix, derive the corresponding matrix describing the Dynkin diagram -- nij = Aij * Aji, nii = 0 dynkinFromCartan aij = setDiag 0 $ (zipWith . zipWith) (*) aij (L.transpose aij) dynkinDiagram t n = dynkinFromCartan $ cartanMatrix t n -- given the Dynkin diagram nij, derive the coefficients mij of the Coxeter group (so mii == 1) -- using nij = 4 cos^2 theta_ij -- nij == 0 <=> theta = pi/2 -- nij == 1 <=> theta = pi/3 -- nij == 2 <=> theta = pi/4 -- nij == 3 <=> theta = pi/6 coxeterFromDynkin nij = setDiag 1 $ (map . map) f nij where f 0 = 2; f 1 = 3; f 2 = 4; f 3 = 6 -- The mij coefficients of the Coxeter group , as a matrix coxeterMatrix t n = coxeterFromDynkin $ dynkinDiagram t n -- Given the matrix of coefficients mij, return the Coxeter group -- We assume but don't check that mii == 1 and mij == mji fromCoxeterMatrix mx = (gs,rs) where n = length mx gs = map s_ [1..n] rs = rules mx 1 rules [] _ = [] rules ((1:xs):rs) i = ([s_ i, s_ i],[]) : [powerRelation i j m | (j,m) <- zip [i+1..] xs] ++ rules (map tail rs) (i+1) powerRelation i j m = (concat $ replicate m [s_ i, s_ j],[]) -- Another presentation for the Coxeter group, using braid relations fromCoxeterMatrix2 mx = (gs,rs) where n = length mx gs = map s_ [1..n] rs = rules mx 1 rules [] _ = [] rules ((1:xs):rs) i = ([s_ i, s_ i],[]) : [braidRelation i j m | (j,m) <- zip [i+1..] xs] ++ rules (map tail rs) (i+1) braidRelation i j m = (take m $ cycle [s_ j, s_ i], take m $ cycle [s_ i, s_ j]) coxeterPresentation t n = fromCoxeterMatrix $ coxeterMatrix t n eltsCoxeter t n = SG.elts $ fromCoxeterMatrix2 $ coxeterMatrix t n -- it's just slightly faster to use the braid presentation poincarePoly t n = map length $ L.group $ map length $ eltsCoxeter t n -- LIE ALGEBRAS elemMx n i j = replicate (i-1) z ++ e j : replicate (n-i) z where z = replicate n 0 e = basisElt n lieMult x y = x*y - y*x -- for gluing matrices together (+|+) = zipWith (++) -- glue two matrices together side by side (+-+) = (++) -- glue two matrices together above and below form D n = (zMx n +|+ idMx n) +-+ (idMx n +|+ zMx n) form C n = (2 : replicate (2*n) 0) : (map (0:) (form D n)) form B n = let id' = (-1) *>> idMx n in (zMx n +|+ idMx n) +-+ (id' +|+ zMx n) -- TESTING -- The expected values of the root system, number of roots, order of Weyl group -- for comparison against the calculated values -- !! Not yet got root systems for E6,7,8, F4 -- Humphreys p41ff -- The full root system -- L.sort (rootSystem t n) == closure (simpleSystem t n) -- rootSystem :: Type -> Int -> [[QQ]] rootSystem A n | n >= 1 = [e i <-> e j | i <- [1..n+1], j <- [1..n+1], i /= j] where e = basisElt (n+1) rootSystem B n | n >= 2 = shortRoots ++ longRoots where e = basisElt n shortRoots = [e i | i <- [1..n]] ++ [[] <-> e i | i <- [1..n]] longRoots = [e i <+> e j | i <- [1..n], j <- [i+1..n]] ++ [e i <-> e j | i <- [1..n], j <- [i+1..n]] ++ [[] <-> e i <+> e j | i <- [1..n], j <- [i+1..n]] ++ [[] <-> e i <-> e j | i <- [1..n], j <- [i+1..n]] rootSystem C n | n >= 2 = longRoots ++ shortRoots where e = basisElt n longRoots = [2 *> e i | i <- [1..n]] ++ [[] <-> (2 *> e i) | i <- [1..n]] shortRoots = [e i <+> e j | i <- [1..n], j <- [i+1..n]] ++ [e i <-> e j | i <- [1..n], j <- [i+1..n]] ++ [[] <-> e i <+> e j | i <- [1..n], j <- [i+1..n]] ++ [[] <-> e i <-> e j | i <- [1..n], j <- [i+1..n]] rootSystem D n | n >= 4 = [e i <+> e j | i <- [1..n], j <- [i+1..n]] ++ [e i <-> e j | i <- [1..n], j <- [i+1..n]] ++ [[] <-> e i <+> e j | i <- [1..n], j <- [i+1..n]] ++ [[] <-> e i <-> e j | i <- [1..n], j <- [i+1..n]] where e = basisElt n rootSystem G 2 = shortRoots ++ longRoots where e = basisElt 3 shortRoots = [e i <-> e j | i <- [1..3], j <- [1..3], i /= j] longRoots = concatMap (\r-> [r,[] <-> r]) [2 *> e i <-> e j <-> e k | i <- [1..3], [j,k] <- [[1..3] L.\\ [i]] ] -- numRoots t n == length (closure $ simpleSystem t n) numRoots A n = n*(n+1) numRoots B n = 2*n*n numRoots C n = 2*n*n numRoots D n = 2*n*(n-1) numRoots E 6 = 72 numRoots E 7 = 126 numRoots E 8 = 240 numRoots F 4 = 48 numRoots G 2 = 12 -- The order of the Weyl group -- orderWeyl t n == S.order (weylPerms t n) orderWeyl A n = factorial (n+1) orderWeyl B n = 2^n * factorial n orderWeyl C n = 2^n * factorial n orderWeyl D n = 2^(n-1) * factorial n orderWeyl E 6 = 2^7 * 3^4 * 5 orderWeyl E 7 = 2^10 * 3^4 * 5 * 7 orderWeyl E 8 = 2^14 * 3^5 * 5^2 * 7 orderWeyl F 4 = 2^7 * 3^2 orderWeyl G 2 = 12 factorial n = product [1..toInteger n] test1 = all (\(t,n) -> orderWeyl t n == L.genericLength (eltsCoxeter t n)) [(A,3),(A,4),(A,5),(B,3),(B,4),(B,5),(C,3),(C,4),(C,5),(D,4),(D,5),(F,4),(G,2)] test2 = all (\(t,n) -> orderWeyl t n == SS.order (weylPerms t n)) [(A,3),(A,4),(A,5),(B,3),(B,4),(B,5),(C,3),(C,4),(C,5),(D,4),(D,5),(E,6),(F,4),(G,2)]