-- Copyright (c) David Amos, 2008. All rights reserved. module Math.Algebra.NonCommutative.TensorAlgebra where import Math.Algebra.Field.Base import Math.Algebra.NonCommutative.NCPoly hiding (X) import Math.Algebra.NonCommutative.GSBasis -- TENSOR ALGEBRA -- Tensor product satisfies the universal property that any multilinear map from the cartesian product can be factored through the tensor product -- The tensor algebra is the free algebra on the basis elts of the vector space data Basis = E Int deriving (Eq,Ord) instance Show Basis where show (E i) = 'e': show i e_ i = NP [(M [E i], 1)] :: NPoly Q Basis e1 = e_ 1 e2 = e_ 2 e3 = e_ 3 e4 = e_ 4 -- given an elt of the tensor algebra, return the dimension of the vector space it's defined over dim (NP ts) = maximum $ 0 : [i | (M bs,c) <- ts, E i <- bs] -- Monomial basis for tensor algebra over k^n - infinite tensorBasis n = mbasisQA [e_ i | i <- [1..n]] [] -- EXTERIOR ALGEBRA -- Exterior product satisfies the universal property that any alternating multilinear map from the cartesian product can be factored through the exterior product -- Exterior algebra over k^n is tensor algebra over k^n quotiented by these relations extRelations n = [e_ i * e_ i | i <- [1..n] ] ++ [e_ i * e_ j + e_ j * e_ i | i <- [1..n], j <- [i+1..n] ] extnf t = t %% (extRelations $ dim t) -- Monomial basis for exterior algebra over k^n - finite exteriorBasis n = mbasisQA [e_ i | i <- [1..n]] $ extRelations n -- SYMMETRIC ALGEBRA -- Symmetric product satisfies the universal property that any symmetric multilinear map from the cartesian product can be factored through the symmetric product -- Symmetric algebra over k^n is tensor algebra over k^n quotiented by these relations symRelations n = [e_ i * e_ j - e_ j * e_ i | i <- [1..n], j <- [i+1..n] ] symnf t = t %% (symRelations $ dim t) -- Monomial basis for symmetric algebra over k^n - infinite symmetricBasis n = mbasisQA [e_ i | i <- [1..n]] $ symRelations n -- WEYL ALGEBRAS -- http://en.wikipedia.org/wiki/Weyl_algebra -- Coutinho, A Primer of Algebraic D-modules, ch1 -- Given a symplectic form w, represented by -- [0 I] -- [-I 0] -- on R^2n -- The Weyl algebra is the tensor algebra quotiented by < u*v-v*u-w(u,v) > -- It has a natural interpretation as an operator algebra in which -- e_1 .. e_i .. e_n correspond to x_i (the "multiply by x_i" operator), -- e_n+1 .. e_n+i .. e_2*n correspond to d_x_i (the "differentiate wrt x_i" operator) -- Weyl algebra W(V) is a "quantization" of the Symmetric algebra Sym(V) weylRelations n = [e_ j * e_ i - e_ i * e_ j | i <- [1..2*n], j <- [i+1..2*n], j /= i+n ] ++ [e_ (i+n) * e_ i - e_ i * e_ (i+n) - 1 | i <- [1..n] ] weylnf n t = t %% (weylRelations n) weylBasis n = mbasisQA [e_ i | i <- [1..2*n]] $ weylRelations n -- Explicit construction of Weyl algebra in terms of d_x_i and x_i operators data WeylGens = X Int | D Int deriving (Eq,Ord) instance Show WeylGens where show (D i) = 'd': show i show (X i) = 'x': show i d_ i = NP [(M [D i], 1)] :: NPoly Q WeylGens x_ i = NP [(M [X i], 1)] :: NPoly Q WeylGens d1 = d_ 1 d2 = d_ 2 d3 = d_ 3 x1 = x_ 1 x2 = x_ 2 x3 = x_ 3 comm p q = p*q - q*p delta i j = if i == j then 1 else 0 weylRelations' n = [comm (x_ i) (x_ j) | i <- [1..n], j <- [i+1..n] ] ++ [comm (d_ i) (d_ j) | i <- [1..n], j <- [i+1..n] ] ++ [comm (d_ i) (x_ j) - delta i j | i <- [1..n], j <- [1..n] ] weylnf' f@(NP ts) = f %% weylRelations' n where n = maximum $ 0 : [i | (M bs,c) <- ts, X i <- bs] ++ [i | (M bs,c) <- ts, D i <- bs] weylBasis' n = mbasisQA (map x_ [1..n] ++ map d_ [1..n]) (weylRelations' n) {- -- HEISENBERG ALGEBRA data Heisenberg = D | U deriving (Eq,Ord) instance Show Heisenberg where show D = "d" show U = "u" d = NP [(M [D], 1)] :: NPoly Q Heisenberg u = NP [(M [U], 1)] :: NPoly Q Heisenberg heisenberg = [u*d-d*u-1] -- Monomial basis for Heisenberg algebra - infinite hBasis = mbasisQA [d,u] (gb heisenberg) -}