-- Copyright (c) David Amos, 2010. All rights reserved. {-# LANGUAGE TypeFamilies, EmptyDataDecls #-} module Math.QuantumAlgebra.OrientedTangle where import Math.Algebra.Field.Base import Math.Algebras.LaurentPoly -- hiding (lvar, q, q') import Math.QuantumAlgebra.TensorCategory import Math.Algebras.VectorSpace import Math.Algebras.TensorProduct import Math.Algebras.Structures -- import MathExperiments.Algebra.TAlgebra -- ORIENTED TANGLE CATEGORY data Oriented = Plus | Minus deriving (Eq,Ord,Show) data HorizDir = ToL | ToR deriving (Eq,Ord,Show) data OrientedTangle -- In GHCi 6.12.1, we appear to be limited to 8 value constructors within an associated data family instance Category OrientedTangle where data Ob OrientedTangle = OT [Oriented] deriving (Eq,Ord,Show) data Ar OrientedTangle = IdT [Oriented] | CapT HorizDir | CupT HorizDir | XPlus | XMinus | SeqT [Ar OrientedTangle] | ParT [Ar OrientedTangle] deriving (Eq,Ord,Show) id_ (OT os) = IdT os source (IdT os) = OT os source (CapT _) = OT [] source (CupT toR) = OT [Plus,Minus] source (CupT toL) = OT [Minus,Plus] source XPlus = OT [Plus,Plus] source XMinus = OT [Plus,Plus] source (ParT as) = OT $ concatMap ((\(OT os) -> os) . source) as source (SeqT as) = source (head as) target (IdT os) = OT os target (CapT toR) = OT [Minus,Plus] target (CapT toL) = OT [Plus,Minus] target (CupT _) = OT [] target XPlus = OT [Plus,Plus] target XMinus = OT [Plus,Plus] target (ParT as) = OT $ concatMap ((\(OT os) -> os) . target) as target (SeqT as) = target (last as) a >>> b | target a == source b = SeqT [a,b] instance TensorCategory OrientedTangle where tunit = OT [] tob (OT as) (OT bs) = OT (as++bs) tar a b = ParT [a,b] idV = id idV' = id evalV = \(T (E i) (E j)) -> if i + j == 0 then return () else zero evalV' = \(T (E i) (E j)) -> if i + j == 0 then return () else zero coevalV m = foldl (<+>) zero [e i `te` e (-i) | i <- [1..m] ] coevalV' m = foldl (<+>) zero [e (-i) `te` e i | i <- [1..m] ] lambda m = q' ^ m -- q^-m c m (T (E i) (E j)) = case compare i j of EQ -> (lambda m * q) *> return (T (E i) (E i)) LT -> lambda m *> return (T (E j) (E i)) GT -> lambda m *> (return (T (E j) (E i)) <+> (q - q') *> return (T (E i) (E j))) -- inverse of c c' m (T (E i) (E j)) = case compare i j of EQ -> (1/(lambda m * q)) *> return (T (E i) (E i)) LT -> (1/lambda m) *> (return (T (E j) (E i)) <+> (q'-q) *> return (T (E i) (E j))) GT -> (1/lambda m) *> return (T (E j) (E i)) testcc' m v = nf $ v >>= c m >>= c' m mu m (E i) = (1 / (lambda m * q ^ (2*i-1))) *> return (E i) mu' m (E i) = (lambda m * q ^ (2*i-1)) *> return (E i) -- The following are modified from Kassel. We compose diagrams downwards, whereas he composes them upwards. capRL m = coevalV m capLR m = do T i j <- coevalV' m k <- mu' m j return (T i k) cupRL m = evalV cupLR m (T i j) = do k <- mu m i evalV' (T k j) -- linear evalV' . (linear (mu' m) `tf` idV) xplus m = c m xminus m = c' m yplus m (T p q) = do T r s <- capRL m T t u <- xplus m (T q r) cupRL m (T p t) return (T u s) yminus m (T p q) = do T r s <- capRL m T t u <- xminus m (T q r) cupRL m (T p t) return (T u s) tplus m (T p q) = do T r s <- capLR m T t u <- xplus m (T s p) cupLR m (T u q) return (T r t) tminus m (T p q) = do T r s <- capLR m T t u <- xminus m (T s p) cupLR m (T u q) return (T r t) zplus m (T p q) = do T r u <- capLR m T s t <- capLR m T v w <- xplus m (T t u) cupLR m (T v q) cupLR m (T w p) return (T r s) zminus m (T p q) = do T r u <- capLR m T s t <- capLR m T v w <- xminus m (T t u) cupLR m (T v q) cupLR m (T w p) return (T r s) {- Then we have for example the following: > let v = e1 `te` e2 in nf $ v >>= xplus 2 >>= xminus 2 T e1 e2 > let v = e (-1) `te` e2 in nf $ v >>= yplus 2 >>= tminus 2 T e-1 e2 > let v = e (-1) `te` e (-2) in nf $ v >>= zplus 2 >>= zminus 2 T e-1 e-2 -} oloop m = nf $ do T a b <- capLR m cupRL m (T a b) -- oriented trefoil otrefoil m = nf $ do T p q <- capLR m T r s <- capLR m T t u <- tminus m (T q r) T v w <- zminus m (T p t) T x y <- xminus m (T u s) cupRL m (T w x) cupRL m (T v y) -- oriented the other way otrefoil' m = nf $ do T p q <- capRL m T r s <- capRL m T t u <- yminus m (T q r) T v w <- xminus m (T p t) T x y <- zminus m (T u s) cupLR m (T w x) cupLR m (T v y) {- -- REPRESENTATIONS OF THE TANGLE CATEGORY IN VECTOR SPACE CATEGORY -- But we need to convert the above code to use TensorAlgebra first kauffman :: Ar Tangle -> TangleRep [Oriented] -> TangleRep [Oriented] kauffman (IdT n) = id -- could be tf of n ids kauffman CapT = linear cap kauffman CupT = linear cup kauffman OverT = linear over kauffman UnderT = linear under kauffman (SeqT fs) = foldl (>>>) id $ map kauffman fs where g >>> h = h . g kauffman (ParT [f]) = kauffman f kauffman (ParT (f:fs)) = tf m (kauffman f) (kauffman (ParT fs)) where OT m = source f tf m f' fs' = linear (\xs -> let (ls,rs) = splitAt m xs in f' (return ls) * fs' (return rs) ) -}