-- Copyright (c) 2011, David Amos. All rights reserved. {-# LANGUAGE GeneralizedNewtypeDeriving, MultiParamTypeClasses, FlexibleInstances, DeriveFunctor #-} -- |A module defining the algebra of commutative polynomials over a field k. -- Polynomials are represented as the free k-vector space with the monomials as basis. -- -- A monomial ordering is required to specify how monomials are to be ordered. -- The Lex, Glex, and Grevlex monomial orders are defined, with the possibility to add others. -- -- In order to make use of this module, some variables must be defined, for example: -- -- > [t,u,v,x,y,z] = map glexvar ["t","u","v","x","y","z"] module Math.CommutativeAlgebra.Polynomial where import Math.Core.Field import Math.Core.Utils (toSet) import Math.Algebras.VectorSpace import Math.Algebras.TensorProduct import Math.Algebras.Structures -- |In order to work with monomials, we need to be able to multiply them and divide them. -- Multiplication is defined by the Mon (monoid) class. Division is defined in this class. -- The functions here are primarily intended for internal use only. class (Eq m, Show m, Mon m) => Monomial m where mdivides :: m -> m -> Bool mdiv :: m -> m -> m mgcd :: m -> m -> m mlcm :: m -> m -> m mcoprime :: m -> m -> Bool mdeg :: m -> Int -- mlcm m1 m2 = let m = mgcd m1 m2 in mmult m1 (mdiv m2 m) mproperlydivides m1 m2 = m1 /= m2 && mdivides m1 m2 -- |We want to be able to construct monomials over any set of variables that we choose. -- Although we will often use String as the type of our variables, -- it is useful to define polymorphic types for monomials. class MonomialConstructor m where mvar :: v -> m v mindices :: m v -> [(v,Int)] -- |@var v@ creates a variable in the vector space of polynomials. -- For example, if we want to work in Q[x,y,z], we might define: -- -- > [x,y,z] = map var ["x","y","z"] :: [GlexPoly Q String] -- -- Notice that, in general, it is necessary to provide a type annotation so that -- the compiler knows which field and which term order to use. var :: (Num k, MonomialConstructor m) => v -> Vect k (m v) var = return . mvar -- class MonomialOrder m where -- isGraded :: m -> Bool -- MONOMIALS -- |The underlying implementation of monomials in variables of type v. Most often, we will be interested in MonImpl String, -- with the variable \"x\" represented by M 1 [(\"x\",1)]. However, other types can be used instead. -- -- No Ord instance is defined for MonImpl v, so it cannot be used as the basis for a free vector space of polynomials. -- Instead, several different newtype wrappers are provided, corresponding to different monomial orderings. data MonImpl v = M Int [(v,Int)] deriving (Eq, Functor) -- The initial Int is the degree of the monomial. Storing it speeds up equality tests and comparisons instance Show v => Show (MonImpl v) where show (M _ []) = "1" show (M _ xis) = concatMap (\(x,i) -> if i==1 then showVar x else showVar x ++ "^" ++ show i) xis where showVar x = filter ( /= '"' ) (show x) -- in case v == String instance (Ord v) => Mon (MonImpl v) where munit = M 0 [] mmult (M si xis) (M sj yjs) = M (si+sj) $ addmerge xis yjs instance (Ord v, Show v) => Monomial (MonImpl v) where mdivides (M si xis) (M sj yjs) = si <= sj && mdivides' xis yjs where mdivides' ((x,i):xis) ((y,j):yjs) = case compare x y of LT -> False GT -> mdivides' ((x,i):xis) yjs EQ -> if i<=j then mdivides' xis yjs else False mdivides' [] _ = True mdivides' _ [] = False mdiv (M si xis) (M sj yjs) = M (si-sj) $ addmerge xis $ map (\(y,j) -> (y,-j)) yjs -- we don't check that the result has no negative indices mgcd (M _ xis) (M _ yjs) = mgcd' 0 [] xis yjs where mgcd' s zks ((x,i):xis) ((y,j):yjs) = case compare x y of LT -> mgcd' s zks xis ((y,j):yjs) GT -> mgcd' s zks ((x,i):xis) yjs EQ -> let k = min i j in mgcd' (s+k) ((x,k):zks) xis yjs mgcd' s zks _ _ = M s (reverse zks) mlcm (M si xis) (M sj yjs) = mlcm' 0 [] xis yjs where mlcm' s zks ((x,i):xis) ((y,j):yjs) = case compare x y of LT -> mlcm' (s+i) ((x,i):zks) xis ((y,j):yjs) GT -> mlcm' (s+j) ((y,j):zks) ((x,i):xis) yjs EQ -> let k = max i j in mlcm' (s+k) ((x,k):zks) xis yjs mlcm' s zks xis yjs = let zks' = xis ++ yjs; s' = sum (map snd zks') -- either xis or yjs is null in M (s+s') (reverse zks ++ zks') mcoprime (M _ xis) (M _ yjs) = mcoprime' xis yjs where mcoprime' ((x,i):xis) ((y,j):yjs) = case compare x y of LT -> mcoprime' xis ((y,j):yjs) GT -> mcoprime' ((x,i):xis) yjs EQ -> False mcoprime' _ _ = True -- mcoprime m1 m2 = mgcd m1 m2 == munit mdeg (M s _) = s instance MonomialConstructor MonImpl where mvar v = M 1 [(v,1)] mindices (M si xis) = xis -- LEX ORDER -- |A type representing monomials with Lex ordering. -- -- Lex stands for lexicographic ordering. -- For example, in Lex ordering, monomials up to degree two would be ordered as follows: x^2+xy+xz+x+y^2+yz+y+z^2+z+1. newtype Lex v = Lex (MonImpl v) deriving (Eq, Functor, Mon, Monomial, MonomialConstructor) -- GeneralizedNewtypeDeriving instance Show v => Show (Lex v) where show (Lex m) = show m instance Ord v => Ord (Lex v) where compare (Lex (M si xis)) (Lex (M sj yjs)) = compare' xis yjs where compare' ((x,i):xis) ((y,j):yjs) = case compare x y of LT -> LT GT -> GT EQ -> case compare i j of LT -> GT GT -> LT EQ -> compare' xis yjs compare' [] [] = EQ compare' _ [] = LT compare' [] _ = GT -- unfortunately we can't use the following, because we want [] sorted after everything, not before -- compare [(x,-i) | (x,i) <- xis] [(y,-j) | (y,j) <- yjs] -- instance MonomialOrder Lex where isGraded _ = False -- |A type representing polynomials with Lex term ordering. type LexPoly k v = Vect k (Lex v) -- |@lexvar v@ creates a variable in the algebra of commutative polynomials over Q with Lex term ordering. -- It is provided as a shortcut, to avoid having to provide a type annotation, as with @var@. -- For example, the following code creates variables called x, y and z: -- -- > [x,y,z] = map lexvar ["x","y","z"] lexvar :: v -> LexPoly Q v lexvar v = return $ Lex $ M 1 [(v,1)] -- lexvar = var instance (Eq k, Num k, Ord v, Show v) => Algebra k (Lex v) where unit x = x *> return munit mult xy = nf $ fmap (\(a,b) -> a `mmult` b) xy -- GLEX ORDER -- |A type representing monomials with Glex ordering. -- -- Glex stands for graded lexicographic. Thus monomials are ordered first by degree, then by lexicographic order. -- For example, in Glex ordering, monomials up to degree two would be ordered as follows: x^2+xy+xz+y^2+yz+z^2+x+y+z+1. newtype Glex v = Glex (MonImpl v) deriving (Eq, Functor, Mon, Monomial, MonomialConstructor) -- GeneralizedNewtypeDeriving instance Show v => Show (Glex v) where show (Glex m) = show m instance Ord v => Ord (Glex v) where compare (Glex (M si xis)) (Glex (M sj yjs)) = compare (-si, [(x,-i) | (x,i) <- xis]) (-sj, [(y,-j) | (y,j) <- yjs]) -- instance MonomialOrder Glex where isGraded _ = True -- |A type representing polynomials with Glex term ordering. type GlexPoly k v = Vect k (Glex v) -- |@glexvar v@ creates a variable in the algebra of commutative polynomials over Q with Glex term ordering. -- It is provided as a shortcut, to avoid having to provide a type annotation, as with @var@. -- For example, the following code creates variables called x, y and z: -- -- > [x,y,z] = map glexvar ["x","y","z"] glexvar :: v -> GlexPoly Q v glexvar v = return $ Glex $ M 1 [(v,1)] -- glexvar = var instance (Eq k, Num k, Ord v, Show v) => Algebra k (Glex v) where unit x = x *> return munit mult xy = nf $ fmap (\(a,b) -> a `mmult` b) xy -- GREVLEX ORDER -- |A type representing monomials with Grevlex ordering. -- -- Grevlex stands for graded reverse lexicographic. Thus monomials are ordered first by degree, then by reverse lexicographic order. -- For example, in Grevlex ordering, monomials up to degree two would be ordered as follows: x^2+xy+y^2+xz+yz+z^2+x+y+z+1. -- -- In general, Grevlex leads to the smallest Groebner bases. newtype Grevlex v = Grevlex (MonImpl v) deriving (Eq, Functor, Mon, Monomial, MonomialConstructor) -- GeneralizedNewtypeDeriving instance Show v => Show (Grevlex v) where show (Grevlex m) = show m instance Ord v => Ord (Grevlex v) where compare (Grevlex (M si xis)) (Grevlex (M sj yjs)) = compare (-si, reverse xis) (-sj, reverse yjs) -- instance MonomialOrder Grevlex where isGraded _ = True -- |A type representing polynomials with Grevlex term ordering. type GrevlexPoly k v = Vect k (Grevlex v) -- |@grevlexvar v@ creates a variable in the algebra of commutative polynomials over Q with Grevlex term ordering. -- It is provided as a shortcut, to avoid having to provide a type annotation, as with @var@. -- For example, the following code creates variables called x, y and z: -- -- > [x,y,z] = map grevlexvar ["x","y","z"] grevlexvar :: v -> GrevlexPoly Q v grevlexvar v = return $ Grevlex $ M 1 [(v,1)] -- grevlexvar = var instance (Eq k, Num k, Ord v, Show v) => Algebra k (Grevlex v) where unit x = x *> return munit mult xy = nf $ fmap (\(a,b) -> a `mmult` b) xy -- ELIMINATION ORDER data Elim2 a b = Elim2 !a !b deriving (Eq, Functor) instance (Ord a, Ord b) => Ord (Elim2 a b) where compare (Elim2 a1 b1) (Elim2 a2 b2) = compare (a1,b1) (a2,b2) instance (Show a, Show b) => Show (Elim2 a b) where show (Elim2 ma mb) = case (show ma, show mb) of ("1","1") -> "1" (ma',"1") -> ma' ("1",mb') -> mb' (ma',mb') -> ma' ++ mb' instance (Mon a, Mon b) => Mon (Elim2 a b) where munit = Elim2 munit munit mmult (Elim2 a1 b1) (Elim2 a2 b2) = Elim2 (mmult a1 a2) (mmult b1 b2) instance (Monomial a, Monomial b) => Monomial (Elim2 a b) where mdivides (Elim2 a1 b1) (Elim2 a2 b2) = mdivides a1 a2 && mdivides b1 b2 mdiv (Elim2 a1 b1) (Elim2 a2 b2) = Elim2 (mdiv a1 a2) (mdiv b1 b2) mgcd (Elim2 a1 b1) (Elim2 a2 b2) = Elim2 (mgcd a1 a2) (mgcd b1 b2) mlcm (Elim2 a1 b1) (Elim2 a2 b2) = Elim2 (mlcm a1 a2) (mlcm b1 b2) mcoprime (Elim2 a1 b1) (Elim2 a2 b2) = mcoprime a1 a2 && mcoprime b1 b2 mdeg (Elim2 a b) = mdeg a + mdeg b instance (Eq k, Num k, Ord a, Mon a, Ord b, Mon b) => Algebra k (Elim2 a b) where unit x = x *> return munit mult xy = nf $ fmap (\(a,b) -> a `mmult` b) xy -- VARIABLE SUBSTITUTION -- |Given (Num k, MonomialConstructor m), then Vect k (m v) is the free commutative algebra over v. -- As such, it is a monad (in the mathematical sense). The following pseudo-code (not legal Haskell) -- shows how this would work: -- -- > instance (Num k, Monomial m) => Monad (\v -> Vect k (m v)) where -- > return = var -- > (>>=) = bind -- -- bind corresponds to variable substitution, so @v `bind` f@ returns the result of making the substitutions -- encoded in f into v. -- -- Note that the type signature is slightly more general than that required by (>>=). -- For a monad, we would only require: -- -- > bind :: (MonomialConstructor m, Num k, Ord (m v), Show (m v), Algebra k (m v)) => -- > Vect k (m u) -> (u -> Vect k (m v)) -> Vect k (m v) -- -- Instead, the given type signature allows us to substitute in elements of any algebra. -- This is occasionally useful. -- |bind performs variable substitution bind :: (Eq k, Num k, MonomialConstructor m, Ord a, Show a, Algebra k a) => Vect k (m v) -> (v -> Vect k a) -> Vect k a v `bind` f = linear (\m -> product [f x ^ i | (x,i) <- mindices m]) v -- V ts `bind` f = sum [c *> product [f x ^ i | (x,i) <- mindices m] | (m, c) <- ts] -- We can't express the Monad instance directly in Haskell, firstly because of the Ord v constraint (? - not used), -- secondly because Haskell doesn't support type functions. flipbind f = linear (\m -> product [f x ^ i | (x,i) <- mindices m]) -- |Evaluate a polynomial at a point. -- For example @eval (x^2+y^2) [(x,1),(y,2)]@ evaluates x^2+y^2 at the point (x,y)=(1,2). eval :: (Eq k, Num k, MonomialConstructor m, Eq (m v), Show v) => Vect k (m v) -> [(Vect k (m v), k)] -> k eval f vs = unwrap $ f `bind` sub where sub x = case lookup (var x) vs of Just xval -> xval *> return () Nothing -> error ("eval: no binding given for " ++ show x) -- |Perform variable substitution on a polynomial. -- For example @subst (x*z-y^2) [(x,u^2),(y,u*v),(z,v^2)]@ performs the substitution x -> u^2, y -> u*v, z -> v^2. subst :: (Eq k, Num k, MonomialConstructor m, Eq (m u), Show u, Ord (m v), Show (m v), Algebra k (m v)) => Vect k (m u) -> [(Vect k (m u), Vect k (m v))] -> Vect k (m v) subst f vs = f `bind` sub where sub x = case lookup (var x) vs of Just xsub -> xsub Nothing -> error ("eval: no binding given for " ++ show x) -- The type could be more general than this, but haven't so far found a use case -- |List the variables used in a polynomial vars :: (Num k, Ord k, MonomialConstructor m, Ord (m v)) => Vect k (m v) -> [Vect k (m v)] vars f = toSet [ var v | (m,_) <- terms f, v <- map fst (mindices m) ] -- DIVISION ALGORITHM FOR POLYNOMIALS lt (V (t:ts)) = t -- leading term lm = fst . lt -- leading monomial lc = snd . lt -- leading coefficient -- deg :: (Num k, Monomial m, MonomialOrder m) => Vect k m -> Int deg (V []) = -1 deg f = maximum $ [mdeg m | (m,c) <- terms f] {- deg f | isGraded (lm f) = mdeg (lm f) | otherwise = maximum $ [mdeg m | (m,c) <- terms f] -} -- the true degree of the polynomial, not the degree of the leading term -- required for sugar strategy when computing Groebner basis toMonic 0 = 0 toMonic f = (1 / lc f) *> f -- tdivmaybe (m1,x1) (m2,x2) = fmap (\m -> (m,x1/x2)) $ mdivmaybe m1 m2 tdivides (m1,x1) (m2,x2) = mdivides m1 m2 tdiv (m1,x1) (m2,x2) = (mdiv m1 m2, x1/x2) tgcd (m1,_) (m2,_) = (mgcd m1 m2, 1) -- tlcm (m1,_) (m2,_) = (mlcm m1 m2, 1) tmult (m,c) (m',c') = (mmult m m',c*c') infixl 7 *-> t *-> V ts = V $ map (tmult t) ts -- preserves term order -- given f, gs, find as, r such that f = sum (zipWith (*) as gs) + r, with r not divisible by any g quotRemMP f gs = quotRemMP' f (replicate n 0, 0) where n = length gs quotRemMP' 0 (us,r) = (us,r) quotRemMP' h (us,r) = divisionStep h (gs,[],us,r) divisionStep h (g:gs,us',u:us,r) = if lt g `tdivides` lt h then let t = V [lt h `tdiv` lt g] h' = h - t*g u' = u+t in quotRemMP' h' (reverse us' ++ u':us, r) else divisionStep h (gs,u:us',us,r) divisionStep h ([],us',[],r) = let (lth,h') = splitlt h in quotRemMP' h' (reverse us', r+lth) splitlt (V (t:ts)) = (V [t], V ts) rewrite f gs = rewrite' (f,0) gs where rewrite' (0,r) _ = r rewrite' (l,r) (h:hs) = if lt h `tdivides` lt l -- if lhs of "rewrite rule" h matches then let l' = l - V [lt l `tdiv` lt h] * h -- apply rewrite rule to eliminate leading term in rewrite' (l',r) gs -- then start again and try to eliminate the new lt. else rewrite' (l,r) hs -- else try the next potential divisor rewrite' (l,r) [] = -- none of the rewrite rules matches lt l let (h,t) = split l in rewrite' (t, r + h) gs -- so move it into the remainder r, and try to rewrite the other terms split (V (t:ts)) = (V [t], V ts) infixl 7 %% -- |@f %% gs@ is the reduction of a polynomial f with respect to a list of polynomials gs. -- In the case where the gs are a Groebner basis for an ideal I, -- then @f %% gs@ is the equivalence class representative of f in R/I, -- and is zero if and only if f is in I. (%%) :: (Eq k, Fractional k, Monomial m, Ord m, Algebra k m) => Vect k m -> [Vect k m] -> Vect k m f %% gs = rewrite f gs -- f %% gs = r where (_,r) = quotRemMP f gs -- |As a convenience, a partial instance of Fractional is defined for polynomials. -- The instance is well-defined only for scalars, and gives an error if used on other values. -- The purpose of this is to allow entry of fractional scalars, in expressions such as @x/2@. -- On the other hand, an expression such as @2/x@ will return an error. instance (Eq k, Fractional k, Monomial m, Ord m, Algebra k m) => Fractional (Vect k m) where recip (V [(m,c)]) | m == munit = V [(m,1/c)] | otherwise = error "Polynomial recip: only defined for scalars" fromRational x = V [(munit, fromRational x)]