-- Copyright (c) 2011, David Amos. All rights reserved. {-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances, OverlappingInstances #-} -- |A module for arithmetic in quadratic number fields. A quadratic number field is a field of the form Q(sqrt d), -- where d is a square-free integer. For example, we can perform the following calculation in Q(sqrt 2): -- -- > (1 + sqrt 2) / (2 + sqrt 2) -- -- It is also possible to mix different square roots in the same calculation. For example: -- -- > (1 + sqrt 2) * (1 + sqrt 3) -- -- Square roots of negative numbers are also permitted. For example: -- -- > i * sqrt(-3) module Math.NumberTheory.QuadraticField where import Prelude hiding (sqrt) import Data.List as L import Math.Core.Field import Math.Core.Utils (powersetdfs) import Math.Algebras.VectorSpace import Math.Algebras.TensorProduct import Math.Algebras.Structures import Math.NumberTheory.Factor import Math.Algebra.LinearAlgebra hiding (inverse, (*>) ) import Math.CommutativeAlgebra.Polynomial -- Q(sqrt n) -- |A basis for quadratic number fields Q(sqrt d), where d is a square-free integer. data QNFBasis = One | Sqrt Integer deriving (Eq,Ord) instance Show QNFBasis where show One = "1" show (Sqrt d) | d == -1 = "i" | otherwise = "sqrt(" ++ show d ++ ")" -- |The type for elements of quadratic number fields type QNF = Vect Q QNFBasis -- |Although this has the same name as the Prelude.sqrt function, it should be thought of as more like a constructor -- for creating elements of quadratic fields. -- -- Note that for d positive, sqrt d means the positive square root, and sqrt (-d) should be interpreted as the square root -- with positive imaginary part, that is i * sqrt d. This has the consequence that for example, sqrt (-2) * sqrt (-3) = - sqrt 6. sqrt :: Integer -> QNF sqrt d | fr == 1 = fromInteger sq | otherwise = fromInteger sq * return (Sqrt fr) where (sq,fr) = squaredFree 1 1 (pfactors d) squaredFree squared free (d1:d2:ds) = if d1 == d2 then squaredFree (d1*squared) free ds else squaredFree squared (d1*free) (d2:ds) squaredFree squared free ds = (squared, free * product ds) sqrt2 = sqrt 2 sqrt3 = sqrt 3 sqrt5 = sqrt 5 sqrt6 = sqrt 6 sqrt7 = sqrt 7 i :: QNF i = sqrt (-1) instance (Eq k, Num k) => Algebra k QNFBasis where unit x = x *> return One mult = linear mult' where mult' (One,x) = return x mult' (x,One) = return x mult' (Sqrt m, Sqrt n) | m == n = unit (fromInteger m) | otherwise = let (i,d) = interdiff (pfactors m) (pfactors n) 1 1 in fromInteger i *> return (Sqrt d) -- if squarefree a == product ps, b == product qs -- then sqrt a * sqrt b = product (intersect ps qs) * sqrt (product (symdiff ps qs)) -- the following calculates these two products -- in particular, it correctly handles the case that either or both contain -1 interdiff (p:ps) (q:qs) i d = case compare p q of LT -> interdiff ps (q:qs) i (d*p) EQ -> interdiff ps qs (i*p) d GT -> interdiff (p:ps) qs i (d*q) interdiff ps qs i d = (i, d * product (ps ++ qs)) {- instance HasConjugation Q QNFBasis where conj = (>>= conj') where conj' One = return One conj' sqrt_d = -1 *> return sqrt_d -- ie conj = linear conj', but avoiding unnecessary nf call sqnorm x = coeff One (x * conj x) -} newtype XVar = X Int deriving (Eq, Ord, Show) instance Fractional QNF where recip x@(V ts) = let ds = [d | (Sqrt d, _) <- terms x] fs = (if any (<0) ds then [-1] else []) ++ pfactors (foldl lcm 1 ds) -- lcm is always positive rs = map (\d -> case d of 1 -> One; d' -> Sqrt d') $ map product $ powersetdfs $ fs -- for example, for x == sqrt2 + sqrt3, we would have rs == [One, Sqrt 2, Sqrt 3, Sqrt 6] n = length rs y = V $ zip rs $ map (glexvar . X) [1..n] -- x1*1+x2*r2+...+xn*rn x' = V $ map (\(s,c) -> (s, unit c)) ts -- lift the coefficients in x into the polynomial algebra one = x' * y m = [ [coeff (mvar (X j)) c | j <- [1..n]] | i <- rs, let c = coeff i one] -- matrix of the linear system b = 1 : replicate (n-1) 0 in case solveLinearSystem m b of -- find v such that m v == b - ie find the values of x1, x2, ... xn Just v -> nf $ V $ zip rs v Nothing -> error "QNF.recip 0" fromRational q = fromRational q *> 1