-- Copyright (c) 2010, David Amos. All rights reserved. {-# LANGUAGE TypeSynonymInstances, FlexibleInstances, FlexibleContexts, MultiParamTypeClasses, NoMonomorphismRestriction #-} -- |A module defining the quantum plane and its symmetries module Math.QuantumAlgebra.QuantumPlane where -- Refs: -- Kassel, Quantum Groups -- Street, Quantum Groups import Math.Algebra.Field.Base hiding (powers) import Math.Algebras.VectorSpace import Math.Algebras.TensorProduct import Math.Algebras.Structures import Math.Algebras.LaurentPoly import Math.Algebras.NonCommutative import qualified Data.List as L qvar v = let V [(m,1)] = var v in V [(m,1 :: LaurentPoly Q)] a = qvar "a" b = qvar "b" c = qvar "c" d = qvar "d" detq = a*d-unit q'*b*c x = qvar "x" y = qvar "y" -- z = qvar "z" u = qvar "u" v = qvar "v" -- Quantum plane Aq20 aq20 = [y*x-unit q*x*y] -- Kassel p72, Street p10 newtype Aq20 v = Aq20 (NonComMonomial v) deriving (Eq,Ord) instance (Eq v, Show v) => Show (Aq20 v) where show (Aq20 m) = show m instance Monomial Aq20 where var v = V [(Aq20 (NCM 1 [v]),1)] powers (Aq20 m) = powers m instance Algebra (LaurentPoly Q) (Aq20 String) where unit 0 = zerov -- V [] unit x = V [(munit,x)] where munit = Aq20 (NCM 0 []) mult x = x''' where x' = mult $ fmap ( \(Aq20 a, Aq20 b) -> (a,b) ) x -- unwrap and multiply x'' = x' %% aq20 -- quotient by m2q relations while unwrapped x''' = fmap Aq20 x'' -- wrap the monomials up as Aq20 again -- Quantum superplane Aq02 aq02 = [u^2, v^2, u*v+unit q*v*u] -- Street p10 newtype Aq02 v = Aq02 (NonComMonomial v) deriving (Eq,Ord) instance (Eq v, Show v) => Show (Aq02 v) where show (Aq02 m) = show m instance Monomial Aq02 where var v = V [(Aq02 (NCM 1 [v]),1)] powers (Aq02 m) = powers m instance Algebra (LaurentPoly Q) (Aq02 String) where unit 0 = zerov -- V [] unit x = V [(munit,x)] where munit = Aq02 (NCM 0 []) mult x = x''' where x' = mult $ fmap ( \(Aq02 a, Aq02 b) -> (a,b) ) x -- unwrap and multiply x'' = x' %% aq02 -- quotient by m2q relations while unwrapped x''' = fmap Aq02 x'' -- wrap the monomials up as Aq02 again -- M2q m2q = [a*b-unit q'*b*a, a*c-unit q'*c*a, c*d-unit q'*d*c, b*d-unit q'*d*b, b*c-c*b, a*d-d*a-unit (q'-q)*b*c] -- Kassel p78, Street p9 -- I think this is already a Groebner basis newtype M2q v = M2q (NonComMonomial v) deriving (Eq,Ord) instance (Eq v, Show v) => Show (M2q v) where show (M2q m) = show m instance Monomial M2q where var v = V [(M2q (NCM 1 [v]),1)] powers (M2q m) = powers m instance Algebra (LaurentPoly Q) (M2q String) where unit 0 = zerov -- V [] unit x = V [(munit,x)] where munit = M2q (NCM 0 []) mult x = x''' where x' = mult $ fmap ( \(M2q a, M2q b) -> (a,b) ) x -- unwrap and multiply x'' = x' %% m2q -- quotient by m2q relations while unwrapped x''' = fmap M2q x'' -- wrap the monomials up as M2q again -- Kassel p82-3 instance Coalgebra (LaurentPoly Q) (M2q String) where counit x = case x `bind` cu of V [] -> 0 V [(M2q (NCM 0 []), c)] -> c where cu "a" = 1 :: Vect (LaurentPoly Q) (M2q String) cu "b" = 0 cu "c" = 0 cu "d" = 1 comult x = x `bind` cm where cm "a" = a `te` a + b `te` c cm "b" = a `te` b + b `te` d cm "c" = c `te` a + d `te` c cm "d" = c `te` b + d `te` d instance Bialgebra (LaurentPoly Q) (M2q String) where {} {- -- The following shows that the M2q relations are *sufficient* -- for M2q to be symmetries of Aq20 and Aq02 > let x' = a*x+b*y :: Vect (LaurentPoly Q) (NonComMonomial String) > let y' = c*x+d*y :: Vect (LaurentPoly Q) (NonComMonomial String) > (y'*x'-unit q*x'*y') %% (m2q ++ aq20 ++ [s*t-t*s | s <- [a,b,c,d], t <- [x,y]]) 0 > let u' = a*u+b*v :: Vect (LaurentPoly Q) (NonComMonomial String) > let v' = c*u+d*v :: Vect (LaurentPoly Q) (NonComMonomial String) > (u'^2) %% (m2q ++ aq02 ++ [s*t-t*s | s <- [a,b,c,d], t <- [u,v]]) 0 > (v'^2) %% (m2q ++ aq02 ++ [s*t-t*s | s <- [a,b,c,d], t <- [u,v]]) 0 > (u'*v'+unit q*v'*u') %% (m2q ++ aq02 ++ [s*t-t*s | s <- [a,b,c,d], t <- [u,v]]) 0 -- To show that the M2q relations are necessary, -- set the coefficients of x^2, yx, y^2, and vu == 0 in all of the following > (y'*x'-unit q*x'*y') %% (aq20 ++ [p*q-q*p | p <- [a,b,c,d], q <- [x,y]]) -qx^2ac+x^2ca-yxad-qyxbc+q^-1yxcb+yxda-qy^2bd+y^2db > (u'^2) %% (aq02 ++ [p*q-q*p | p <- [a,b,c,d], q <- [u,v]]) -qvuab+vuba > (v'^2) %% (aq02 ++ [p*q-q*p | p <- [a,b,c,d], q <- [u,v]]) -qvucd+vudc > (u'*v'+unit q*v'*u') %% (aq02 ++ [p*q-q*p | p <- [a,b,c,d], q <- [u,v]]) -qvuad+vubc-q^2vucb+qvuda -- yx => -ad-qbc+q^-1cb+da == 0 -- vu => -qad+bc-q^2cb+qda == 0 -- qyx-vu => -q^2bc+cb-bc+q^2cb == 0 => bc == cb -- Now substitute back into yx -- We could probably have got gb to do this for us -} -- Kassel p85 instance Comodule (LaurentPoly Q) (M2q String) (Aq20 String) where coaction xy = xy `bind` ca where ca "x" = (a `te` x) + (b `te` y) -- we can use (+) instead of add since Aq20 is an algebra ca "y" = (c `te` x) + (d `te` y) -- coaction (x) = (a b) `te` (x) -- (y) (c d) (y) -- SL2q sl2q = [a*b-unit q'*b*a, a*c-unit q'*c*a, c*d-unit q'*d*c, b*d-unit q'*d*b, b*c-c*b, a*d-d*a-unit (q'-q)*b*c, -unit q*c*b + d*a - 1] -- det q, but reduced -- a*d-unit q'*b*c-1] -- det_q -- We have to hand-reduce detq, or else call gb newtype SL2q v = SL2q (NonComMonomial v) deriving (Eq,Ord) instance (Eq v, Show v) => Show (SL2q v) where show (SL2q m) = show m instance Monomial SL2q where var v = V [(SL2q (NCM 1 [v]),1)] powers (SL2q m) = powers m instance Algebra (LaurentPoly Q) (SL2q String) where unit 0 = zerov -- V [] unit x = V [(munit,x)] where munit = SL2q (NCM 0 []) mult x = x''' where x' = mult $ fmap ( \(SL2q a, SL2q b) -> (a,b) ) x -- unwrap and multiply x'' = x' %% sl2q -- quotient by sl2q relations while unwrapped x''' = fmap SL2q x'' -- wrap the monomials up as SL2q again instance Coalgebra (LaurentPoly Q) (SL2q String) where counit x = case x `bind` cu of V [] -> 0 V [(SL2q (NCM 0 []), c)] -> c where cu "a" = 1 :: Vect (LaurentPoly Q) (SL2q String) cu "b" = 0 cu "c" = 0 cu "d" = 1 comult x = x `bind` cm where cm "a" = a `te` a + b `te` c cm "b" = a `te` b + b `te` d cm "c" = c `te` a + d `te` c cm "d" = c `te` b + d `te` d instance Bialgebra (LaurentPoly Q) (SL2q String) where {} -- Kassel p84 instance HopfAlgebra (LaurentPoly Q) (SL2q String) where antipode x = x `bind` antipode' where antipode' "a" = d antipode' "b" = - unit q * b antipode' "c" = - unit q' * c antipode' "d" = a -- in the GL2q case we would need 1/detq factor as well -- !! The following probably needs to be rehoused in separate module at some point -- YANG-BAXTER OPERATOR -- This is a Yang-Baxter operator, but not the only possible such -- Street, p93 yb x = nf $ x >>= yb' where yb' (a,b) = case compare a b of GT -> return (b,a) LT -> return (b,a) + unit (q-q') * return (a,b) EQ -> unit q * return (a,a)