-- Copyright (c) 2010-2014, David Amos. All rights reserved. {-# LANGUAGE TypeFamilies, EmptyDataDecls, MultiParamTypeClasses #-} -- |A module defining classes and example instances of categories, monoidal categories and braided categories module Math.QuantumAlgebra.TensorCategory where import Data.List as L class MCategory c where data Ob c :: * data Ar c :: * id_ :: Ob c -> Ar c source, target :: Ar c -> Ob c (>>>) :: Ar c -> Ar c -> Ar c -- Note that the class Category defined in Control.Category is about categories whose objects are Haskell types, -- whereas we want the objects to be values of a single type. class (MCategory a, MCategory b) => MFunctor a b where fob :: Ob a -> Ob b -- functor on objects far :: Ar a -> Ar b -- functor on arrows -- We could also define tensor functors and braided functors, which are just functors which commute appropriately -- with tensor and braiding operations -- Kassel p282 -- The following is actually definition of a _strict_ monoidal category -- Also called tensor category class MCategory c => Monoidal c where tunit :: Ob c tob :: Ob c -> Ob c -> Ob c -- tensor product of objects tar :: Ar c -> Ar c -> Ar c -- tensor product of arrows class Monoidal c => StrictMonoidal c where {} -- we want to be able to declare some tensor categories as strict class Monoidal c => WeakMonoidal c where assoc :: Ob c -> Ob c -> Ob c -> Ar c -- assoc u v w is an arrow (natural transformation?): (u `tob` v) `tob` w -> u `tob` (v `tob` w) lunit :: Ob c -> Ar c -- lunit v is an arrow (isomorphism): tunit `tob` v -> v runit :: Ob c -> Ar c -- runit v is an arrow (isomorphism): v `tob` tunit -> v {- instance (Monoidal c, Eq (Ar c), Show (Ar c)) => Num (Ar c) where (*) = tar -} class Monoidal c => Braided c where twist :: Ob c -> Ob c -> Ar c -- twist v w is a map from v tensor w to w tensor v -- twist must be natural, and satisfy certain commutative diagrams - Kock 161, 169 class Braided c => Symmetric c where {} -- if twist satisfies twist v w >>> twist w v == id_ (v tensor w), then the category is symmetric -- SIMPLEX CATEGORIES -- Kock, Frobenius Algebras ..., p178-9 -- The skeleton of FinOrd (finite ordered sets) -- The objects are the finite ordinals n == [0..n-1] -- The arrows are the order-preserving maps data FinOrd instance MCategory FinOrd where data Ob FinOrd = FinOrdOb Int deriving (Eq,Ord,Show) -- FinOrdOb n represents the oriented simplex n == [0..n-1] data Ar FinOrd = FinOrdAr Int Int [Int] deriving (Eq,Ord,Show) -- FinOrdAr s t fs represents the order-preserving map, zip [0..s-1] fs. -- For example FinOrdAr 3 2 [0,0,1] represents the map 0 -> 0, 1 -> 0, 2 -> 1 id_ (FinOrdOb n) = FinOrdAr n n [0..n-1] source (FinOrdAr s _ _) = FinOrdOb s target (FinOrdAr _ t _) = FinOrdOb t FinOrdAr sf tf fs >>> FinOrdAr sg tg gs | tf == sg = FinOrdAr sf tg [let j = fs !! i in gs !! j | i <- [0..sf-1] ] instance Monoidal FinOrd where tunit = FinOrdOb 0 tob (FinOrdOb m) (FinOrdOb n) = FinOrdOb (m+n) tar (FinOrdAr sf tf fs) (FinOrdAr sg tg gs) = FinOrdAr (sf+sg) (tf+tg) (fs ++ map (+tf) gs) finOrdAr s t fs | s == length fs && minimum fs >= 0 && maximum fs < t && isOrderPreserving fs = FinOrdAr s t fs where isOrderPreserving (f1:f2:fs) = f1 <= f2 && isOrderPreserving (f2:fs) isOrderPreserving _ = True -- The skeleton of FinSet -- The objects are the finite cardinals n == {0..n-1} (with no order) -- The arrows are the maps data FinCard instance MCategory FinCard where data Ob FinCard = FinCardOb Int deriving (Eq,Ord,Show) -- FinCardOb n represents the unoriented simplex n == {0..n-1} data Ar FinCard = FinCardAr Int Int [Int] deriving (Eq,Ord,Show) -- FinCardAr s t fs represents the map, zip [0..s-1] fs. -- For example FinCardAr 3 2 [0,1,0] represents the map 0 -> 0, 1 -> 1, 2 -> 0 id_ (FinCardOb n) = FinCardAr n n [0..n-1] source (FinCardAr s _ _) = FinCardOb s target (FinCardAr _ t _) = FinCardOb t FinCardAr sf tf fs >>> FinCardAr sg tg gs | tf == sg = FinCardAr sf tg [let j = fs !! i in gs !! j | i <- [0..sf-1] ] instance Monoidal FinCard where tunit = FinCardOb 0 tob (FinCardOb m) (FinCardOb n) = FinCardOb (m+n) tar (FinCardAr sf tf fs) (FinCardAr sg tg gs) = FinCardAr (sf+sg) (tf+tg) (fs ++ map (+tf) gs) finCardAr s t fs | s == length fs && minimum fs >= 0 && maximum fs < t -- for finite cardinals, the map doesn't have to be order-preserving = FinCardAr s t fs -- Finite permutations form a subcategory of FinCard -- having as objects the finite cardinals n == {0..n-1} -- and as arrows the bijections (== permutations) finPerm fs | L.sort fs == [0..n-1] = FinCardAr n n fs where n = length fs -- (Note that these are permutations of [0..n-1], rather than [1..n]) -- This is the forgetful functor FinOrd -> FinCard (FinSet) instance MFunctor FinOrd FinCard where fob (FinOrdOb n) = FinCardOb n far (FinOrdAr s t fs) = FinCardAr s t fs -- BRAID CATEGORY data Braid instance MCategory Braid where data Ob Braid = BraidOb Int deriving (Eq,Ord,Show) data Ar Braid = BraidAr Int [Int] deriving (Eq,Ord,Show) id_ (BraidOb n) = BraidAr n [] source (BraidAr n _) = BraidOb n target (BraidAr n _) = BraidOb n BraidAr m is >>> BraidAr n js | m == n = BraidAr m (cancel (reverse is) js) where cancel (x:xs) (y:ys) = if x+y == 0 then cancel xs ys else reverse xs ++ x:y:ys cancel xs ys = reverse xs ++ ys t n 0 = BraidAr n [] -- the identity braid t n i | 0 < i && i < n = BraidAr n [i] | -n < i && i < 0 = BraidAr n [i] -- The generators of B_n are [t n i | i <- [1..n-1]] -- The inverses of the braid generators t' n i | 0 < i && i < n = BraidAr n [-i] instance Monoidal Braid where tunit = BraidOb 0 tob (BraidOb m) (BraidOb n) = BraidOb (m+n) tar (BraidAr m is) (BraidAr n js) = BraidAr (m+n) (is ++ map (+m) js) instance Braided Braid where twist (BraidOb m) (BraidOb n) = BraidAr (m+n) $ concat [[i..i+n-1] | i <- [m,m-1..1]] -- Note that in FinCard we consider the objects as [0..n-1], whereas in Braid we consider them as [1..n], so that s_i twists [i,i+1] instance MFunctor Braid FinCard where fob (BraidOb n) = FinCardOb n far (BraidAr n ss) = foldr (>>>) (id_ (FinCardOb n)) [finPerm ([0..ti-1] ++ [ti+1,ti] ++ [ti+2..n-1]) | si <- ss, let ti = abs si - 1] -- VECT data Vect k instance Num k => MCategory (Vect k) where data Ob (Vect k) = VectOb Int deriving (Eq,Ord,Show) data Ar (Vect k) = VectAr Int Int [[Int]] deriving (Eq,Ord,Show) id_ (VectOb n) = VectAr n n idMx where idMx = [[if i == j then 1 else 0 | j <- [1..n]] | i <- [1..n]] source (VectAr m _ _) = VectOb m target (VectAr _ n _) = VectOb n VectAr r c xss >>> VectAr r' c' yss | c == r' = undefined -- matrix multiplication -- functor from FinPerm to Vect k -- 2-COBORDISMS data Cob2 -- works very similar to Tangle category instance MCategory Cob2 where data Ob Cob2 = O Int deriving (Eq,Ord,Show) data Ar Cob2 = Id Int | Unit | Mult | Counit | Comult | Par (Ar Cob2) (Ar Cob2) | Seq (Ar Cob2) (Ar Cob2) deriving (Eq,Ord,Show) id_ (O n) = Id n source (Id n) = O n source Unit = O 0 source Mult = O 2 source Counit = O 1 source Comult = O 1 source (Par a b) = O (sa + sb) where O sa = source a; O sb = source b source (Seq a b) = source a target (Id n) = O n target Unit = O 1 target Mult = O 1 target Counit = O 0 target Comult = O 2 target (Par a b) = O (ta + tb) where O ta = target a; O tb = target b target (Seq a b) = target b a >>> b | target a == source b = Seq a b instance Monoidal Cob2 where tunit = O 0 tob (O a) (O b) = O (a+b) tar a b = Par a b -- rewrite a Cob2 so that it is a Seq of Pars -- (this isn't necessarily going to help us towards a normal form - there may not even be one rewrite (Par (Seq a1 a2) (Seq b1 b2)) = Seq (Par idSourceA b1') ( (Seq (Par idSourceA b2') (Seq (Par a1' idTargetB) (Par a2' idTargetB) ) ) ) where idSourceA = id_ (source a1) idTargetB = id_ (target b2) a1' = rewrite a1 a2' = rewrite a2 b1' = rewrite b1 b2' = rewrite b2 rewrite x = x