-- Copyright (c) David Amos, 2010-2015. All rights reserved. {-# LANGUAGE MultiParamTypeClasses, NoMonomorphismRestriction #-} {-# LANGUAGE FlexibleInstances, TypeSynonymInstances #-} {-# LANGUAGE IncoherentInstances #-} -- |A module defining various algebraic structures that can be defined on vector spaces -- - specifically algebra, coalgebra, bialgebra, Hopf algebra, module, comodule module Math.Algebras.Structures where import Prelude hiding ( (*>) ) import Math.Algebras.VectorSpace import Math.Algebras.TensorProduct -- MONOID -- |Monoid class Mon m where munit :: m mmult :: m -> m -> m -- ALGEBRAS, COALGEBRAS, BIALGEBRAS, HOPF ALGEBRAS -- |Caution: If we declare an instance Algebra k b, then we are saying that the vector space Vect k b is a k-algebra. -- In other words, we are saying that b is the basis for a k-algebra. So a more accurate name for this class -- would have been AlgebraBasis. class Algebra k b where unit :: k -> Vect k b mult :: Vect k (Tensor b b) -> Vect k b -- |Sometimes it is more convenient to work with this version of unit. unit' :: (Eq k, Num k, Algebra k b) => Vect k () -> Vect k b unit' = unit . unwrap -- where unwrap = counit :: Num k => Trivial k -> k -- |An instance declaration for Coalgebra k b is saying that the vector space Vect k b is a k-coalgebra. class Coalgebra k b where counit :: Vect k b -> k comult :: Vect k b -> Vect k (Tensor b b) -- |Sometimes it is more convenient to work with this version of counit. counit' :: (Eq k, Num k, Coalgebra k b) => Vect k b -> Vect k () counit' = wrap . counit -- where wrap = unit :: Num k => k -> Trivial k -- unit' and counit' enable us to form tensors of these functions -- |A bialgebra is an algebra which is also a coalgebra, subject to the compatibility conditions -- that counit and comult must be algebra morphisms (or equivalently, that unit and mult must be coalgebra morphisms) class (Algebra k b, Coalgebra k b) => Bialgebra k b where {} class Bialgebra k b => HopfAlgebra k b where antipode :: Vect k b -> Vect k b instance (Eq k, Num k, Eq b, Ord b, Show b, Algebra k b) => Num (Vect k b) where x+y = x <+> y negate x = negatev x -- negate (V ts) = V $ map (\(b,x) -> (b, negate x)) ts x*y = mult (x `te` y) fromInteger n = unit (fromInteger n) abs _ = error "Prelude.Num.abs: inappropriate abstraction" signum _ = error "Prelude.Num.signum: inappropriate abstraction" -- This is the Frobenius form, provided some conditions are met -- pairing = counit . mult {- -- A class to be used to declare that a type b should be given the set coalgebra structure class SetCoalgebra b where {} instance (Num k, SetCoalgebra b) => Coalgebra k b where counit (V ts) = sum [x | (m,x) <- ts] -- trace comult = fmap (\m -> T m m) -- diagonal -} instance (Eq k, Num k) => Algebra k () where unit = wrap -- unit 0 = zero -- V [] -- unit x = V [( (),x)] mult = fmap (\((),())->()) -- mult = linear mult' where mult' ((),()) = return () -- mult (V [( ((),()), x)]) = V [( (),x)] -- mult (V []) = zerov instance (Eq k, Num k) => Coalgebra k () where counit = unwrap -- counit (V []) = 0 -- counit (V [( (),x)]) = x comult = fmap (\()->((),())) -- comult = linear comult' where comult' () = return ((),()) -- comult (V [( (),x)]) = V [( ((),()), x)] -- comult (V []) = zerov -- Kassel p4 -- |The direct sum of k-algebras can itself be given the structure of a k-algebra. -- This is the product object in the category of k-algebras. instance (Eq k, Num k, Ord a, Ord b, Algebra k a, Algebra k b) => Algebra k (DSum a b) where unit k = i1 (unit k) <+> i2 (unit k) -- unit == (i1 . unit) <<+>> (i2 . unit) mult = linear mult' where mult' (Left a1, Left a2) = i1 $ mult $ return (a1,a2) mult' (Right b1, Right b2) = i2 $ mult $ return (b1,b2) mult' _ = zerov -- This is the product algebra, which is the product in the category of algebras -- 1 = (1,1) -- (a1,b1) * (a2,b2) = (a1*a2, b1*b2) -- It's not a coproduct, because i1, i2 aren't algebra morphisms (they violate Unit axiom) -- |The direct sum of k-coalgebras can itself be given the structure of a k-coalgebra. -- This is the coproduct object in the category of k-coalgebras. instance (Eq k, Num k, Ord a, Ord b, Coalgebra k a, Coalgebra k b) => Coalgebra k (DSum a b) where counit = unwrap . linear counit' where counit' (Left a) = (wrap . counit) (return a) counit' (Right b) = (wrap . counit) (return b) -- counit = counit . p1 <<+>> counit . p2 comult = linear comult' where comult' (Left a) = fmap (\(a1,a2) -> (Left a1, Left a2)) $ comult $ return a comult' (Right b) = fmap (\(b1,b2) -> (Right b1, Right b2)) $ comult $ return b -- comult = ( (i1 `tf` i1) . comult . p1 ) <<+>> ( (i2 `tf` i2) . comult . p2 ) -- Kassel p32 -- |The tensor product of k-algebras can itself be given the structure of a k-algebra instance (Eq k, Num k, Ord a, Ord b, Algebra k a, Algebra k b) => Algebra k (Tensor a b) where -- unit 0 = V [] unit x = x *> (unit 1 `te` unit 1) mult = (mult `tf` mult) . fmap (\((a,b),(a',b')) -> ((a,a'),(b,b')) ) -- mult = linear m where -- m ((a,b),(a',b')) = (mult $ return (a,a')) `te` (mult $ return (b,b')) -- Kassel p42 -- |The tensor product of k-coalgebras can itself be given the structure of a k-coalgebra instance (Eq k, Num k, Ord a, Ord b, Coalgebra k a, Coalgebra k b) => Coalgebra k (Tensor a b) where counit = unwrap . linear counit' where counit' (a,b) = (wrap . counit . return) a * (wrap . counit . return) b -- (*) taking place in Vect k () -- what this really says is that counit (a `tensor` b) = counit a * counit b -- counit = counit . linear (\(x,y) -> counit' (return x) * counit' (return y)) comult = nf . fmap (\((a,a'),(b,b')) -> ((a,b),(a',b')) ) . (comult `tf` comult) -- comult = assocL . (id `tf` assocR) . (id `tf` (twist `tf` id)) -- . (id `tf` assocL) . assocR . (comult `tf` comult) newtype Op b = Op b deriving (Eq, Ord, Show) instance (Eq k, Num k, Ord b, Algebra k b) => Algebra k (Op b) where unit = fmap Op . unit mult = nf . fmap Op . mult . fmap (\(Op a, Op b) -> (b, a)) -- ie mult . twist instance (Eq k, Num k, Ord b, Coalgebra k b) => Coalgebra k (Op b) where counit = counit . fmap (\(Op b) -> b) comult = nf . fmap (\(a, b) -> (Op b, Op a)) . comult . fmap (\(Op b) -> b) -- ie twist . comult -- The set coalgebra - can be defined on any set instance (Eq k, Num k) => Coalgebra k EBasis where counit (V ts) = sum [x | (ei,x) <- ts] -- trace comult = fmap ( \ei -> (ei,ei) ) -- diagonal newtype SetCoalgebra b = SC b deriving (Eq,Ord,Show) instance (Eq k, Num k) => Coalgebra k (SetCoalgebra b) where counit (V ts) = sum [x | (m,x) <- ts] -- trace comult = fmap ( \m -> (m,m) ) -- diagonal newtype MonoidCoalgebra m = MC m deriving (Eq,Ord,Show) instance (Eq k, Num k, Ord m, Mon m) => Coalgebra k (MonoidCoalgebra m) where counit (V ts) = sum [if m == MC munit then x else 0 | (m,x) <- ts] comult = linear cm where cm m = if m == MC munit then return (m,m) else return (m, MC munit) <+> return (MC munit, m) -- Brzezinski and Wisbauer, Corings and Comodules, p5 -- Both of the above can be used to define coalgebra structure on polynomial algebras -- by using the definitions above on the generators (ie the indeterminates) and then extending multiplicatively -- They are then guaranteed to be algebra morphisms? -- MODULES AND COMODULES class Algebra k a => Module k a m where action :: Vect k (Tensor a m) -> Vect k m r *. m = action (r `te` m) class Coalgebra k c => Comodule k c n where coaction :: Vect k n -> Vect k (Tensor c n) instance Algebra k a => Module k a a where action = mult instance Coalgebra k c => Comodule k c c where coaction = comult -- module and comodule instances for tensor products -- Kassel p57-8 instance (Eq k, Num k, Ord a, Ord u, Ord v, Algebra k a, Module k a u, Module k a v) => Module k (Tensor a a) (Tensor u v) where -- action x = nf $ x >>= action' action = linear action' where action' ((a,a'), (u,v)) = (action $ return (a,u)) `te` (action $ return (a',v)) instance (Eq k, Num k, Ord a, Ord u, Ord v, Bialgebra k a, Module k a u, Module k a v) => Module k a (Tensor u v) where -- action x = nf $ x >>= action' action = linear action' where action' (a,(u,v)) = action $ (comult $ return a) `te` (return (u,v)) -- !! Overlapping instances -- If a == Tensor b b, then we have overlapping instance with the previous definition -- On the other hand, if a == Tensor u v, then we have overlapping instance with the earlier instance -- Kassel p63 instance (Eq k, Num k, Ord a, Ord m, Ord n, Bialgebra k a, Comodule k a m, Comodule k a n) => Comodule k a (Tensor m n) where coaction = (mult `tf` id) . twistm . (coaction `tf` coaction) where twistm x = nf $ fmap ( \((h,m), (h',n)) -> ((h,h'), (m,n)) ) x -- PAIRINGS -- |A pairing is a non-degenerate bilinear form U x V -> k. -- We are typically interested in pairings having additional properties. For example: -- -- * A bialgebra pairing is a pairing between bialgebras A and B such that the mult in A is adjoint to the comult in B, and vice versa, and the unit in A is adjoint to the counit in B, and vice versa. -- -- * A Hopf pairing is a bialgebra pairing between Hopf algebras A and B such that the antipodes in A and B are adjoint. class HasPairing k u v where pairing :: Vect k (Tensor u v) -> Vect k () -- |The pairing function with a more Haskellish type signature pairing' :: (Num k, HasPairing k u v) => Vect k u -> Vect k v -> k pairing' u v = unwrap (pairing (u `te` v)) instance (Eq k, Num k) => HasPairing k () () where pairing = mult instance (Eq k, Num k, HasPairing k u v, HasPairing k u' v') => HasPairing k (Tensor u u') (Tensor v v') where pairing = mult . (pairing `tf` pairing) . fmap (\((u,u'),(v,v')) -> ((u,v),(u',v'))) -- pairing = fmap (\((),()) -> ()) . (pairing `tf` pairing) . fmap (\((u,u'),(v,v')) -> ((u,v),(u',v')))