/* Copyright (c) 2007 Scott Lembcke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include "chipmunk.h" int cp_contact_persistence = 3; #pragma mark Contact Set Helpers // Equal function for contactSet. static int contactSetEql(cpShape **shapes, cpArbiter *arb) { cpShape *a = shapes[0]; cpShape *b = shapes[1]; return ((a == arb->a && b == arb->b) || (b == arb->a && a == arb->b)); } // Transformation function for contactSet. static void * contactSetTrans(cpShape **shapes, cpSpace *space) { cpShape *a = shapes[0]; cpShape *b = shapes[1]; return cpArbiterNew(a, b, space->stamp); } #pragma mark Collision Pair Function Helpers // Collision pair function wrapper struct. typedef struct collFuncData { cpCollFunc func; void *data; } collFuncData; // Equals function for collFuncSet. static int collFuncSetEql(cpCollisionType *ids, cpCollPairFunc *pair) { cpCollisionType a = ids[0]; cpCollisionType b = ids[1]; return ((a == pair->a && b == pair->b) || (b == pair->a && a == pair->b)); } // Transformation function for collFuncSet. static void * collFuncSetTrans(cpCollisionType *ids, collFuncData *funcData) { cpCollPairFunc *pair = (cpCollPairFunc *)malloc(sizeof(cpCollPairFunc)); pair->a = ids[0]; pair->b = ids[1]; pair->func = funcData->func; pair->data = funcData->data; return pair; } #pragma mark Misc Helper Funcs // Default collision pair function. static int alwaysCollide(cpShape *a, cpShape *b, cpContact *arr, int numCon, cpFloat normal_coef, void *data) { return 1; } // BBfunc callback for the spatial hash. static cpBB shapeBBFunc(cpShape *shape){return shape->bb;} // Iterator functions for destructors. static void freeWrap(void *ptr, void *unused){ free(ptr);} static void shapeFreeWrap(cpShape *ptr, void *unused){ cpShapeFree(ptr);} static void arbiterFreeWrap(cpArbiter *ptr, void *unused){ cpArbiterFree(ptr);} static void bodyFreeWrap(cpBody *ptr, void *unused){ cpBodyFree(ptr);} static void constraintFreeWrap(cpConstraint *ptr, void *unused){cpConstraintFree(ptr);} #pragma mark Memory Management Functions cpSpace* cpSpaceAlloc(void) { return (cpSpace *)calloc(1, sizeof(cpSpace)); } #define DEFAULT_DIM_SIZE 100.0f #define DEFAULT_COUNT 1000 #define DEFAULT_ITERATIONS 10 #define DEFAULT_ELASTIC_ITERATIONS 0 cpSpace* cpSpaceInit(cpSpace *space) { space->iterations = DEFAULT_ITERATIONS; space->elasticIterations = DEFAULT_ELASTIC_ITERATIONS; // space->sleepTicks = 300; space->gravity = cpvzero; space->damping = 1.0f; space->stamp = 0; space->staticShapes = cpSpaceHashNew(DEFAULT_DIM_SIZE, DEFAULT_COUNT, (cpSpaceHashBBFunc)shapeBBFunc); space->activeShapes = cpSpaceHashNew(DEFAULT_DIM_SIZE, DEFAULT_COUNT, (cpSpaceHashBBFunc)shapeBBFunc); space->bodies = cpArrayNew(0); space->arbiters = cpArrayNew(0); space->contactSet = cpHashSetNew(0, (cpHashSetEqlFunc)contactSetEql, (cpHashSetTransFunc)contactSetTrans); space->constraints = cpArrayNew(0); cpCollPairFunc pairFunc = {0, 0, alwaysCollide, NULL}; space->defaultPairFunc = pairFunc; space->collFuncSet = cpHashSetNew(0, (cpHashSetEqlFunc)collFuncSetEql, (cpHashSetTransFunc)collFuncSetTrans); space->collFuncSet->default_value = &space->defaultPairFunc; return space; } cpSpace* cpSpaceNew(void) { return cpSpaceInit(cpSpaceAlloc()); } void cpSpaceDestroy(cpSpace *space) { cpSpaceHashFree(space->staticShapes); cpSpaceHashFree(space->activeShapes); cpArrayFree(space->bodies); cpArrayFree(space->constraints); if(space->contactSet) cpHashSetEach(space->contactSet, (cpHashSetIterFunc)&arbiterFreeWrap, NULL); cpHashSetFree(space->contactSet); cpArrayFree(space->arbiters); if(space->collFuncSet) cpHashSetEach(space->collFuncSet, &freeWrap, NULL); cpHashSetFree(space->collFuncSet); } void cpSpaceFree(cpSpace *space) { if(space) cpSpaceDestroy(space); free(space); } void cpSpaceFreeChildren(cpSpace *space) { cpSpaceHashEach(space->staticShapes, (cpSpaceHashIterator)&shapeFreeWrap, NULL); cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)&shapeFreeWrap, NULL); cpArrayEach(space->bodies, (cpArrayIter)&bodyFreeWrap, NULL); cpArrayEach(space->constraints, (cpArrayIter)&constraintFreeWrap, NULL); } #pragma mark Collision Pair Function Management void cpSpaceAddCollisionPairFunc(cpSpace *space, cpCollisionType a, cpCollisionType b, cpCollFunc func, void *data) { cpCollisionType ids[] = {a, b}; cpHashValue hash = CP_HASH_PAIR(a, b); // Remove any old function so the new one will get added. cpSpaceRemoveCollisionPairFunc(space, a, b); collFuncData funcData = {func, data}; cpHashSetInsert(space->collFuncSet, hash, ids, &funcData); } void cpSpaceRemoveCollisionPairFunc(cpSpace *space, cpCollisionType a, cpCollisionType b) { cpCollisionType ids[] = {a, b}; cpHashValue hash = CP_HASH_PAIR(a, b); cpCollPairFunc *old_pair = (cpCollPairFunc *)cpHashSetRemove(space->collFuncSet, hash, ids); free(old_pair); } void cpSpaceSetDefaultCollisionPairFunc(cpSpace *space, cpCollFunc func, void *data) { cpCollPairFunc pairFunc = {0, 0, (func ? func : alwaysCollide), (func ? data : NULL)}; space->defaultPairFunc = pairFunc; } #pragma mark Body, Shape, and Joint Management cpShape * cpSpaceAddShape(cpSpace *space, cpShape *shape) { assert(shape->body); cpSpaceHashInsert(space->activeShapes, shape, shape->id, shape->bb); return shape; } cpShape * cpSpaceAddStaticShape(cpSpace *space, cpShape *shape) { assert(shape->body); cpShapeCacheBB(shape); cpSpaceHashInsert(space->staticShapes, shape, shape->id, shape->bb); return shape; } cpBody * cpSpaceAddBody(cpSpace *space, cpBody *body) { cpArrayPush(space->bodies, body); return body; } cpConstraint * cpSpaceAddConstraint(cpSpace *space, cpConstraint *constraint) { cpArrayPush(space->constraints, constraint); return constraint; } static void shapeRemovalArbiterReject(cpSpace *space, cpShape *shape) { cpArray *old_ary = space->arbiters; int num = old_ary->num; if(num == 0) return; // make a new arbiters array and copy over all valid arbiters cpArray *new_ary = cpArrayNew(num); for(int i=0; iarr[i]; if(arb->a != shape && arb->b != shape){ cpArrayPush(new_ary, arb); } } space->arbiters = new_ary; cpArrayFree(old_ary); } void cpSpaceRemoveShape(cpSpace *space, cpShape *shape) { cpSpaceHashRemove(space->activeShapes, shape, shape->id); shapeRemovalArbiterReject(space, shape); } void cpSpaceRemoveStaticShape(cpSpace *space, cpShape *shape) { cpSpaceHashRemove(space->staticShapes, shape, shape->id); shapeRemovalArbiterReject(space, shape); } void cpSpaceRemoveBody(cpSpace *space, cpBody *body) { cpArrayDeleteObj(space->bodies, body); } void cpSpaceRemoveConstraint(cpSpace *space, cpConstraint *constraint) { cpArrayDeleteObj(space->constraints, constraint); } #pragma mark Point Query Functions typedef struct pointQueryContext { cpLayers layers; cpGroup group; cpSpacePointQueryFunc func; void *data; } pointQueryContext; static void pointQueryHelper(cpVect *point, cpShape *shape, pointQueryContext *context) { if(cpShapePointQuery(shape, *point, context->layers, context->group)) context->func(shape, context->data); } void cpSpacePointQuery(cpSpace *space, cpVect point, cpLayers layers, cpGroup group, cpSpacePointQueryFunc func, void *data) { pointQueryContext context = {layers, group, func, data}; cpSpaceHashPointQuery(space->activeShapes, point, (cpSpaceHashQueryFunc)pointQueryHelper, &context); cpSpaceHashPointQuery(space->staticShapes, point, (cpSpaceHashQueryFunc)pointQueryHelper, &context); } static void rememberLastPointQuery(cpShape *shape, cpShape **outShape) { (*outShape) = shape; } cpShape * cpSpacePointQueryFirst(cpSpace *space, cpVect point, cpLayers layers, cpGroup group) { cpShape *shape = NULL; cpSpacePointQuery(space, point, layers, group, (cpSpacePointQueryFunc)rememberLastPointQuery, &shape); return shape; } void cpSpaceEachBody(cpSpace *space, cpSpaceBodyIterator func, void *data) { cpArray *bodies = space->bodies; for(int i=0; inum; i++) func((cpBody *)bodies->arr[i], data); } #pragma mark Spatial Hash Management // Iterator function used for updating shape BBoxes. static void updateBBCache(cpShape *shape, void *unused) { cpShapeCacheBB(shape); } void cpSpaceResizeStaticHash(cpSpace *space, cpFloat dim, int count) { cpSpaceHashResize(space->staticShapes, dim, count); cpSpaceHashRehash(space->staticShapes); } void cpSpaceResizeActiveHash(cpSpace *space, cpFloat dim, int count) { cpSpaceHashResize(space->activeShapes, dim, count); } void cpSpaceRehashStatic(cpSpace *space) { cpSpaceHashEach(space->staticShapes, (cpSpaceHashIterator)&updateBBCache, NULL); cpSpaceHashRehash(space->staticShapes); } #pragma mark Collision Detection Functions static inline int queryReject(cpShape *a, cpShape *b) { return // BBoxes must overlap !cpBBintersects(a->bb, b->bb) // Don't collide shapes attached to the same body. || a->body == b->body // Don't collide objects in the same non-zero group || (a->group && b->group && a->group == b->group) // Don't collide objects that don't share at least on layer. || !(a->layers & b->layers); } // Callback from the spatial hash. static void queryFunc(cpShape *a, cpShape *b, cpSpace *space) { // Reject any of the simple cases if(queryReject(a,b)) return; // Shape 'a' should have the lower shape type. (required by cpCollideShapes() ) if(a->klass->type > b->klass->type){ cpShape *temp = a; a = b; b = temp; } // Narrow-phase collision detection. cpContact *contacts = NULL; int numContacts = cpCollideShapes(a, b, &contacts); if(!numContacts) return; // Shapes are not colliding. // Get an arbiter from space->contactSet for the two shapes. // This is where the persistant contact magic comes from. cpShape *shape_pair[] = {a, b}; cpArbiter *arb = (cpArbiter *)cpHashSetInsert(space->contactSet, CP_HASH_PAIR(a, b), shape_pair, space); // Timestamp the arbiter. arb->stamp = space->stamp; // For collisions between two similar primitive types, the order could have been swapped. arb->a = a; arb->b = b; // Inject the new contact points into the arbiter. cpArbiterInject(arb, contacts, numContacts); // Add the arbiter to the list of active arbiters. cpArrayPush(space->arbiters, arb); } // Iterator for active/static hash collisions. static void active2staticIter(cpShape *shape, cpSpace *space) { cpSpaceHashQuery(space->staticShapes, shape, shape->bb, (cpSpaceHashQueryFunc)&queryFunc, space); } // Hashset reject func to throw away old arbiters. static int contactSetReject(cpArbiter *arb, cpSpace *space) { if((space->stamp - arb->stamp) > cp_contact_persistence){ cpArbiterFree(arb); return 0; } return 1; } static void filterArbiterByCallback(cpSpace *space) { int num = space->arbiters->num; // copy to the stack cpArbiter *ary[num]; memcpy(ary, space->arbiters->arr, num*sizeof(void *)); for(int i=0; ia; cpShape *b = arb->b; cpFloat normal_coef = 1.0f; // Find the collision pair function for the shapes. cpCollisionType ids[] = {a->collision_type, b->collision_type}; cpHashValue hash = CP_HASH_PAIR(a->collision_type, b->collision_type); cpCollPairFunc *pairFunc = (cpCollPairFunc *)cpHashSetFind(space->collFuncSet, hash, ids); if(!pairFunc->func) continue; // A NULL pair function means don't collide at all. // Swap them if necessary. if(a->collision_type != pairFunc->a){ cpShape *temp = a; a = b; b = temp; normal_coef = -1.0f; } if(!pairFunc->func(a, b, arb->contacts, arb->numContacts, normal_coef, pairFunc->data)){ cpArrayDeleteObj(space->arbiters, arb); } } } #pragma mark All Important cpSpaceStep() Function void cpSpaceStep(cpSpace *space, cpFloat dt) { if(!dt) return; // prevents div by zero. cpFloat dt_inv = 1.0f/dt; cpArray *bodies = space->bodies; cpArray *constraints = space->constraints; // Empty the arbiter list. cpHashSetReject(space->contactSet, (cpHashSetRejectFunc)&contactSetReject, space); space->arbiters->num = 0; // Integrate positions. for(int i=0; inum; i++){ cpBody *body = (cpBody *)bodies->arr[i]; body->position_func(body, dt); } // Pre-cache BBoxes and shape data. cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)&updateBBCache, NULL); // Collide! cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)&active2staticIter, space); cpSpaceHashQueryRehash(space->activeShapes, (cpSpaceHashQueryFunc)&queryFunc, space); // Filter arbiter list based on collision callbacks filterArbiterByCallback(space); // Prestep the arbiters. cpArray *arbiters = space->arbiters; for(int i=0; inum; i++) cpArbiterPreStep((cpArbiter *)arbiters->arr[i], dt_inv); // Prestep the constraints. for(int i=0; inum; i++){ cpConstraint *constraint = (cpConstraint *)constraints->arr[i]; constraint->klass->preStep(constraint, dt, dt_inv); } for(int i=0; ielasticIterations; i++){ for(int j=0; jnum; j++) cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j], 1.0f); for(int j=0; jnum; j++){ cpConstraint *constraint = (cpConstraint *)constraints->arr[j]; constraint->klass->applyImpulse(constraint); } } // Integrate velocities. cpFloat damping = cpfpow(1.0f/space->damping, -dt); for(int i=0; inum; i++){ cpBody *body = (cpBody *)bodies->arr[i]; body->velocity_func(body, space->gravity, damping, dt); } for(int i=0; inum; i++) cpArbiterApplyCachedImpulse((cpArbiter *)arbiters->arr[i]); // Run the impulse solver. // run the old-style elastic solver if elastic iterations are disabled cpFloat elasticCoef = (space->elasticIterations ? 0.0f : 1.0f); for(int i=0; iiterations; i++){ for(int j=0; jnum; j++) cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j], elasticCoef); for(int j=0; jnum; j++){ cpConstraint *constraint = (cpConstraint *)constraints->arr[j]; constraint->klass->applyImpulse(constraint); } } // cpFloat dvsq = cpvdot(space->gravity, space->gravity); // dvsq *= dt*dt * space->damping*space->damping; // for(int i=0; inum; i++) // cpBodyMarkLowEnergy(bodies->arr[i], dvsq, space->sleepTicks); // Increment the stamp. space->stamp++; }