/* Copyright (c) 2007 Scott Lembcke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include //#include #include #include "chipmunk_private.h" #pragma mark Post Step Callback Functions typedef struct PostStepCallback { cpPostStepFunc func; void *obj; void *data; } PostStepCallback; static cpBool postStepFuncSetEql(PostStepCallback *a, PostStepCallback *b){ return a->obj == b->obj; } static void * postStepFuncSetTrans(PostStepCallback *callback, void *ignored) { PostStepCallback *value = (PostStepCallback *)cpmalloc(sizeof(PostStepCallback)); (*value) = (*callback); return value; } void cpSpaceAddPostStepCallback(cpSpace *space, cpPostStepFunc func, void *obj, void *data) { if(!space->postStepCallbacks){ space->postStepCallbacks = cpHashSetNew(0, (cpHashSetEqlFunc)postStepFuncSetEql, (cpHashSetTransFunc)postStepFuncSetTrans); } PostStepCallback callback = {func, obj, data}; cpHashSetInsert(space->postStepCallbacks, (cpHashValue)(size_t)obj, &callback, NULL); } void * cpSpaceGetPostStepData(cpSpace *space, void *obj) { if(space->postStepCallbacks){ PostStepCallback query = {NULL, obj, NULL}; PostStepCallback *callback = (PostStepCallback *)cpHashSetFind(space->postStepCallbacks, (cpHashValue)(size_t)obj, &query); return (callback ? callback->data : NULL); } else { return NULL; } } #pragma mark Contact Buffer Functions #define CP_CONTACTS_BUFFER_SIZE ((CP_BUFFER_BYTES - sizeof(cpContactBufferHeader))/sizeof(cpContact)) typedef struct cpContactBuffer { cpContactBufferHeader header; cpContact contacts[CP_CONTACTS_BUFFER_SIZE]; } cpContactBuffer; static cpContactBufferHeader * cpSpaceAllocContactBuffer(cpSpace *space) { cpContactBuffer *buffer = (cpContactBuffer *)cpmalloc(sizeof(cpContactBuffer)); cpArrayPush(space->allocatedBuffers, buffer); return (cpContactBufferHeader *)buffer; } static cpContactBufferHeader * cpContactBufferHeaderInit(cpContactBufferHeader *header, cpTimestamp stamp, cpContactBufferHeader *splice) { header->stamp = stamp; header->next = (splice ? splice->next : header); header->numContacts = 0; return header; } static void cpSpacePushFreshContactBuffer(cpSpace *space) { cpTimestamp stamp = space->stamp; cpContactBufferHeader *head = space->contactBuffersHead; if(!head){ // No buffers have been allocated, make one space->contactBuffersHead = cpContactBufferHeaderInit(cpSpaceAllocContactBuffer(space), stamp, NULL); } else if(stamp - head->next->stamp > cp_contact_persistence){ // The tail buffer is available, rotate the ring cpContactBufferHeader *tail = head->next; space->contactBuffersHead = cpContactBufferHeaderInit(tail, stamp, tail); } else { // Allocate a new buffer and push it into the ring cpContactBufferHeader *buffer = cpContactBufferHeaderInit(cpSpaceAllocContactBuffer(space), stamp, head); space->contactBuffersHead = head->next = buffer; } } static cpContact * cpContactBufferGetArray(cpSpace *space) { if(space->contactBuffersHead->numContacts + CP_MAX_CONTACTS_PER_ARBITER > CP_CONTACTS_BUFFER_SIZE){ // contact buffer could overflow on the next collision, push a fresh one. cpSpacePushFreshContactBuffer(space); } cpContactBufferHeader *head = space->contactBuffersHead; return ((cpContactBuffer *)head)->contacts + head->numContacts; } static inline void cpSpacePushContacts(cpSpace *space, int count){ cpAssert(count <= CP_MAX_CONTACTS_PER_ARBITER, "Internal error, too many contact point overflow!"); space->contactBuffersHead->numContacts += count; } static inline void cpSpacePopContacts(cpSpace *space, int count){ space->contactBuffersHead->numContacts -= count; } #pragma mark Collision Detection Functions static inline cpBool queryReject(cpShape *a, cpShape *b) { return // BBoxes must overlap !cpBBintersects(a->bb, b->bb) // Don't collide shapes attached to the same body. || a->body == b->body // Don't collide objects in the same non-zero group || (a->group && a->group == b->group) // Don't collide objects that don't share at least on layer. || !(a->layers & b->layers); } // Callback from the spatial hash. static void queryFunc(cpShape *a, cpShape *b, cpSpace *space) { // Reject any of the simple cases if(queryReject(a,b)) return; // Find the collision pair function for the shapes. struct{cpCollisionType a, b;} ids = {a->collision_type, b->collision_type}; cpHashValue collHashID = CP_HASH_PAIR(a->collision_type, b->collision_type); cpCollisionHandler *handler = (cpCollisionHandler *)cpHashSetFind(space->collFuncSet, collHashID, &ids); cpBool sensor = a->sensor || b->sensor; if(sensor && handler == &space->defaultHandler) return; // Shape 'a' should have the lower shape type. (required by cpCollideShapes() ) if(a->klass->type > b->klass->type){ cpShape *temp = a; a = b; b = temp; } // Narrow-phase collision detection. cpContact *contacts = cpContactBufferGetArray(space); int numContacts = cpCollideShapes(a, b, contacts); if(!numContacts) return; // Shapes are not colliding. cpSpacePushContacts(space, numContacts); // Get an arbiter from space->contactSet for the two shapes. // This is where the persistant contact magic comes from. cpShape *shape_pair[] = {a, b}; cpHashValue arbHashID = CP_HASH_PAIR((size_t)a, (size_t)b); cpArbiter *arb = (cpArbiter *)cpHashSetInsert(space->contactSet, arbHashID, shape_pair, space); cpArbiterUpdate(arb, contacts, numContacts, handler, a, b); // Call the begin function first if it's the first step if(arb->state == cpArbiterStateFirstColl && !handler->begin(arb, space, handler->data)){ cpArbiterIgnore(arb); // permanently ignore the collision until separation } if( // Ignore the arbiter if it has been flagged (arb->state != cpArbiterStateIgnore) && // Call preSolve handler->preSolve(arb, space, handler->data) && // Process, but don't add collisions for sensors. !sensor ){ cpArrayPush(space->arbiters, arb); } else { cpSpacePopContacts(space, numContacts); arb->contacts = NULL; arb->numContacts = 0; // Normally arbiters are set as used after calling the post-step callback. // However, post-step callbacks are not called for sensors or arbiters rejected from pre-solve. if(arb->state != cpArbiterStateIgnore) arb->state = cpArbiterStateNormal; } // Time stamp the arbiter so we know it was used recently. arb->stamp = space->stamp; } // Iterator for active/static hash collisions. static void active2staticIter(cpShape *shape, cpSpace *space) { cpSpaceHashQuery(space->staticShapes, shape, shape->bb, (cpSpaceHashQueryFunc)queryFunc, space); } // Hashset filter func to throw away old arbiters. static cpBool contactSetFilter(cpArbiter *arb, cpSpace *space) { if(space->sleepTimeThreshold != INFINITY){ cpBody *a = arb->a->body; cpBody *b = arb->b->body; // both bodies are either static or sleeping cpBool sleepingNow = (cpBodyIsStatic(a) || cpBodyIsSleeping(a)) && (cpBodyIsStatic(b) || cpBodyIsSleeping(b)); if(sleepingNow){ arb->state = cpArbiterStateSleep; return cpTrue; } else if(arb->state == cpArbiterStateSleep){ // wake up the arbiter and continue as normal arb->state = cpArbiterStateNormal; // TODO is it possible that cpArbiterStateIgnore should be set here instead? } } cpTimestamp ticks = space->stamp - arb->stamp; // was used last frame, but not this one if(ticks >= 1 && arb->state != cpArbiterStateCached){ arb->handler->separate(arb, space, arb->handler->data); arb->state = cpArbiterStateCached; } if(ticks >= cp_contact_persistence){ arb->contacts = NULL; arb->numContacts = 0; cpArrayPush(space->pooledArbiters, arb); return cpFalse; } return cpTrue; } // Hashset filter func to call and throw away post step callbacks. static void postStepCallbackSetIter(PostStepCallback *callback, cpSpace *space) { callback->func(space, callback->obj, callback->data); cpfree(callback); } #pragma mark All Important cpSpaceStep() Function void cpSpaceProcessComponents(cpSpace *space, cpFloat dt); static void updateBBCache(cpShape *shape, void *unused){cpShapeCacheBB(shape);} void cpSpaceStep(cpSpace *space, cpFloat dt) { if(!dt) return; // don't step if the timestep is 0! cpFloat dt_inv = 1.0f/dt; cpArray *bodies = space->bodies; cpArray *constraints = space->constraints; // Empty the arbiter list. space->arbiters->num = 0; // Integrate positions. for(int i=0; inum; i++){ cpBody *body = (cpBody *)bodies->arr[i]; body->position_func(body, dt); } // Pre-cache BBoxes and shape data. cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)updateBBCache, NULL); cpSpaceLock(space); // Collide! cpSpacePushFreshContactBuffer(space); if(space->staticShapes->handleSet->entries) cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)active2staticIter, space); cpSpaceHashQueryRehash(space->activeShapes, (cpSpaceHashQueryFunc)queryFunc, space); cpSpaceUnlock(space); // If body sleeping is enabled, do that now. if(space->sleepTimeThreshold != INFINITY){ cpSpaceProcessComponents(space, dt); bodies = space->bodies; // rebuilt by processContactComponents() } // Clear out old cached arbiters and dispatch untouch functions cpHashSetFilter(space->contactSet, (cpHashSetFilterFunc)contactSetFilter, space); // Prestep the arbiters. cpArray *arbiters = space->arbiters; for(int i=0; inum; i++) cpArbiterPreStep((cpArbiter *)arbiters->arr[i], dt_inv); // Prestep the constraints. for(int i=0; inum; i++){ cpConstraint *constraint = (cpConstraint *)constraints->arr[i]; constraint->klass->preStep(constraint, dt, dt_inv); } for(int i=0; ielasticIterations; i++){ for(int j=0; jnum; j++) cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j], 1.0f); for(int j=0; jnum; j++){ cpConstraint *constraint = (cpConstraint *)constraints->arr[j]; constraint->klass->applyImpulse(constraint); } } // Integrate velocities. cpFloat damping = cpfpow(1.0f/space->damping, -dt); for(int i=0; inum; i++){ cpBody *body = (cpBody *)bodies->arr[i]; body->velocity_func(body, space->gravity, damping, dt); } for(int i=0; inum; i++) cpArbiterApplyCachedImpulse((cpArbiter *)arbiters->arr[i]); // run the old-style elastic solver if elastic iterations are disabled cpFloat elasticCoef = (space->elasticIterations ? 0.0f : 1.0f); // Run the impulse solver. for(int i=0; iiterations; i++){ for(int j=0; jnum; j++) cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j], elasticCoef); for(int j=0; jnum; j++){ cpConstraint *constraint = (cpConstraint *)constraints->arr[j]; constraint->klass->applyImpulse(constraint); } } cpSpaceLock(space); // run the post solve callbacks for(int i=0; inum; i++){ cpArbiter *arb = (cpArbiter *) arbiters->arr[i]; cpCollisionHandler *handler = arb->handler; handler->postSolve(arb, space, handler->data); arb->state = cpArbiterStateNormal; } cpSpaceUnlock(space); // Run the post step callbacks // Loop because post step callbacks may create more post step callbacks while(space->postStepCallbacks){ cpHashSet *callbacks = space->postStepCallbacks; space->postStepCallbacks = NULL; cpHashSetEach(callbacks, (cpHashSetIterFunc)postStepCallbackSetIter, space); cpHashSetFree(callbacks); } // Increment the stamp. space->stamp++; }