; RUN: opt < %s -indvars -S | FileCheck %s ; ; Make sure that indvars isn't inserting canonical IVs. ; This is kinda hard to do until linear function test replacement is removed. target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64" define i32 @sum(i32* %arr, i32 %n) nounwind { entry: %precond = icmp slt i32 0, %n br i1 %precond, label %ph, label %return ph: br label %loop ; CHECK: loop: ; ; We should only have 2 IVs. ; CHECK: phi ; CHECK: phi ; CHECK-NOT: phi ; ; sext should be eliminated while preserving gep inboundsness. ; CHECK-NOT: sext ; CHECK: getelementptr inbounds ; CHECK: exit: loop: %i.02 = phi i32 [ 0, %ph ], [ %iinc, %loop ] %s.01 = phi i32 [ 0, %ph ], [ %sinc, %loop ] %ofs = sext i32 %i.02 to i64 %adr = getelementptr inbounds i32* %arr, i64 %ofs %val = load i32* %adr %sinc = add nsw i32 %s.01, %val %iinc = add nsw i32 %i.02, 1 %cond = icmp slt i32 %iinc, %n br i1 %cond, label %loop, label %exit exit: %s.lcssa = phi i32 [ %sinc, %loop ] br label %return return: %s.0.lcssa = phi i32 [ %s.lcssa, %exit ], [ 0, %entry ] ret i32 %s.0.lcssa } define i64 @suml(i32* %arr, i32 %n) nounwind { entry: %precond = icmp slt i32 0, %n br i1 %precond, label %ph, label %return ph: br label %loop ; CHECK: loop: ; ; We should only have 2 IVs. ; CHECK: phi ; CHECK: phi ; CHECK-NOT: phi ; ; %ofs sext should be eliminated while preserving gep inboundsness. ; CHECK-NOT: sext ; CHECK: getelementptr inbounds ; %vall sext should obviously not be eliminated ; CHECK: sext ; CHECK: exit: loop: %i.02 = phi i32 [ 0, %ph ], [ %iinc, %loop ] %s.01 = phi i64 [ 0, %ph ], [ %sinc, %loop ] %ofs = sext i32 %i.02 to i64 %adr = getelementptr inbounds i32* %arr, i64 %ofs %val = load i32* %adr %vall = sext i32 %val to i64 %sinc = add nsw i64 %s.01, %vall %iinc = add nsw i32 %i.02, 1 %cond = icmp slt i32 %iinc, %n br i1 %cond, label %loop, label %exit exit: %s.lcssa = phi i64 [ %sinc, %loop ] br label %return return: %s.0.lcssa = phi i64 [ %s.lcssa, %exit ], [ 0, %entry ] ret i64 %s.0.lcssa } define void @outofbounds(i32* %first, i32* %last, i32 %idx) nounwind { %precond = icmp ne i32* %first, %last br i1 %precond, label %ph, label %return ; CHECK: ph: ; It's not indvars' job to perform LICM on %ofs ; CHECK-NOT: sext ph: br label %loop ; CHECK: loop: ; ; Preserve exactly one pointer type IV. ; CHECK: phi i32* ; CHECK-NOT: phi ; ; Don't create any extra adds. ; CHECK-NOT: add ; ; Preserve gep inboundsness, and don't factor it. ; CHECK: getelementptr inbounds i32* %ptriv, i32 1 ; CHECK-NOT: add ; CHECK: exit: loop: %ptriv = phi i32* [ %first, %ph ], [ %ptrpost, %loop ] %ofs = sext i32 %idx to i64 %adr = getelementptr inbounds i32* %ptriv, i64 %ofs store i32 3, i32* %adr %ptrpost = getelementptr inbounds i32* %ptriv, i32 1 %cond = icmp ne i32* %ptrpost, %last br i1 %cond, label %loop, label %exit exit: br label %return return: ret void } %structI = type { i32 } define void @bitcastiv(i32 %start, i32 %limit, i32 %step, %structI* %base) nounwind { entry: br label %loop ; CHECK: loop: ; ; Preserve casts ; CHECK: phi i32 ; CHECK: bitcast ; CHECK: getelementptr ; CHECK: exit: loop: %iv = phi i32 [%start, %entry], [%next, %loop] %p = phi %structI* [%base, %entry], [%pinc, %loop] %adr = getelementptr %structI* %p, i32 0, i32 0 store i32 3, i32* %adr %pp = bitcast %structI* %p to i32* store i32 4, i32* %pp %pinc = getelementptr %structI* %p, i32 1 %next = add i32 %iv, 1 %cond = icmp ne i32 %next, %limit br i1 %cond, label %loop, label %exit exit: ret void } define void @maxvisitor(i32 %limit, i32* %base) nounwind { entry: br label %loop ; Test inserting a truncate at a phi use. ; ; CHECK: loop: ; CHECK: phi i64 ; CHECK: trunc ; CHECK: exit: loop: %idx = phi i32 [ 0, %entry ], [ %idx.next, %loop.inc ] %max = phi i32 [ 0, %entry ], [ %max.next, %loop.inc ] %idxprom = sext i32 %idx to i64 %adr = getelementptr inbounds i32* %base, i64 %idxprom %val = load i32* %adr %cmp19 = icmp sgt i32 %val, %max br i1 %cmp19, label %if.then, label %if.else if.then: br label %loop.inc if.else: br label %loop.inc loop.inc: %max.next = phi i32 [ %idx, %if.then ], [ %max, %if.else ] %idx.next = add nsw i32 %idx, 1 %cmp = icmp slt i32 %idx.next, %limit br i1 %cmp, label %loop, label %exit exit: ret void } define void @identityphi(i32 %limit) nounwind { entry: br label %loop ; Test an edge case of removing an identity phi that directly feeds ; back to the loop iv. ; ; CHECK: loop: ; CHECK-NOT: phi ; CHECK: exit: loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %control ] br i1 undef, label %if.then, label %control if.then: br label %control control: %iv.next = phi i32 [ %iv, %loop ], [ undef, %if.then ] %cmp = icmp slt i32 %iv.next, %limit br i1 %cmp, label %loop, label %exit exit: ret void } define i64 @cloneOr(i32 %limit, i64* %base) nounwind { entry: ; ensure that the loop can't overflow %halfLim = ashr i32 %limit, 2 br label %loop ; This test originally checked that the OR instruction was cloned. Now the ; ScalarEvolution is able to understand the loop evolution and that '%iv' at the ; end of the loop is an even value. Thus '%val' is computed at the end of the ; loop and the OR instruction is replaced by an ADD keeping the result ; equivalent. ; ; CHECK: loop: ; CHECK: phi i64 ; CHECK-NOT: sext ; CHECK: icmp slt i32 ; CHECK: exit: ; CHECK: add i64 loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %loop ] %t1 = sext i32 %iv to i64 %adr = getelementptr i64* %base, i64 %t1 %val = load i64* %adr %t2 = or i32 %iv, 1 %t3 = sext i32 %t2 to i64 %iv.next = add i32 %iv, 2 %cmp = icmp slt i32 %iv.next, %halfLim br i1 %cmp, label %loop, label %exit exit: %result = and i64 %val, %t3 ret i64 %result } ; The i induction variable looks like a wrap-around, but it really is just ; a simple affine IV. Make sure that indvars simplifies through. define i32 @indirectRecurrence() nounwind { entry: br label %loop ; ReplaceLoopExitValue should fold the return value to constant 9. ; CHECK: loop: ; CHECK: phi i32 ; CHECK: ret i32 9 loop: %j.0 = phi i32 [ 1, %entry ], [ %j.next, %cond_true ] %i.0 = phi i32 [ 0, %entry ], [ %j.0, %cond_true ] %tmp = icmp ne i32 %j.0, 10 br i1 %tmp, label %cond_true, label %return cond_true: %j.next = add i32 %j.0, 1 br label %loop return: ret i32 %i.0 } ; Eliminate the congruent phis j, k, and l. ; Eliminate the redundant IV increments k.next and l.next. ; Two phis should remain, one starting at %init, and one at %init1. ; Two increments should remain, one by %step and one by %step1. ; CHECK: loop: ; CHECK: phi i32 ; CHECK: phi i32 ; CHECK-NOT: phi ; CHECK: add i32 ; CHECK: add i32 ; CHECK: add i32 ; CHECK-NOT: add ; CHECK: return: ; ; Five live-outs should remain. ; CHECK: lcssa = phi ; CHECK: lcssa = phi ; CHECK: lcssa = phi ; CHECK: lcssa = phi ; CHECK: lcssa = phi ; CHECK-NOT: phi ; CHECK: ret define i32 @isomorphic(i32 %init, i32 %step, i32 %lim) nounwind { entry: %step1 = add i32 %step, 1 %init1 = add i32 %init, %step1 %l.0 = sub i32 %init1, %step1 br label %loop loop: %ii = phi i32 [ %init1, %entry ], [ %ii.next, %loop ] %i = phi i32 [ %init, %entry ], [ %ii, %loop ] %j = phi i32 [ %init, %entry ], [ %j.next, %loop ] %k = phi i32 [ %init1, %entry ], [ %k.next, %loop ] %l = phi i32 [ %l.0, %entry ], [ %l.next, %loop ] %ii.next = add i32 %ii, %step1 %j.next = add i32 %j, %step1 %k.next = add i32 %k, %step1 %l.step = add i32 %l, %step %l.next = add i32 %l.step, 1 %cmp = icmp ne i32 %ii.next, %lim br i1 %cmp, label %loop, label %return return: %sum1 = add i32 %i, %j.next %sum2 = add i32 %sum1, %k.next %sum3 = add i32 %sum1, %l.step %sum4 = add i32 %sum1, %l.next ret i32 %sum4 } ; Test a GEP IV that is derived from another GEP IV by a nop gep that ; lowers the type without changing the expression. %structIF = type { i32, float } define void @congruentgepiv(%structIF* %base) nounwind uwtable ssp { entry: %first = getelementptr inbounds %structIF* %base, i64 0, i32 0 br label %loop ; CHECK: loop: ; CHECK: phi %structIF* ; CHECK-NOT: phi ; CHECK: getelementptr inbounds ; CHECK-NOT: getelementptr ; CHECK: exit: loop: %ptr.iv = phi %structIF* [ %ptr.inc, %latch ], [ %base, %entry ] %next = phi i32* [ %next.inc, %latch ], [ %first, %entry ] store i32 4, i32* %next br i1 undef, label %latch, label %exit latch: ; preds = %for.inc50.i %ptr.inc = getelementptr inbounds %structIF* %ptr.iv, i64 1 %next.inc = getelementptr inbounds %structIF* %ptr.inc, i64 0, i32 0 br label %loop exit: ret void } ; Test a widened IV that is used by a phi on different paths within the loop. ; ; CHECK: for.body: ; CHECK: phi i64 ; CHECK: trunc i64 ; CHECK: if.then: ; CHECK: for.inc: ; CHECK: phi i32 ; CHECK: for.end: define void @phiUsesTrunc() nounwind { entry: br i1 undef, label %for.body, label %for.end for.body: %iv = phi i32 [ %inc, %for.inc ], [ 1, %entry ] br i1 undef, label %if.then, label %if.else if.then: br i1 undef, label %if.then33, label %for.inc if.then33: br label %for.inc if.else: br i1 undef, label %if.then97, label %for.inc if.then97: %idxprom100 = sext i32 %iv to i64 br label %for.inc for.inc: %kmin.1 = phi i32 [ %iv, %if.then33 ], [ 0, %if.then ], [ %iv, %if.then97 ], [ 0, %if.else ] %inc = add nsw i32 %iv, 1 br i1 undef, label %for.body, label %for.end for.end: ret void }