{-# OPTIONS -XDeriveDataTypeable -XUndecidableInstances -XExistentialQuantification -XMultiParamTypeClasses -XTypeSynonymInstances -XFlexibleInstances -XScopedTypeVariables -XFunctionalDependencies -XFlexibleContexts -XRecordWildCards -XIncoherentInstances -XTypeFamilies -XTypeOperators -XOverloadedStrings #-} {- | This module implement stateful processes (flows) that are optionally persistent. This means that they automatically store and recover his execution state. They are executed by the MFlow app server. defined in the "MFlow" module. These processses interact with the user trough user interfaces made of widgets (see below) that return back statically typed responses to the calling process. Because flows are stateful, not request-response, the code is more understandable, because all the flow of request and responses is coded by the programmer in a single function. Allthoug single request-response flows and callbacks are possible. This module is abstract with respect to the formatting (here referred with the type variable @view@) . For an instantiation for "Text.XHtml" import "MFlow.Forms.XHtml", "MFlow.Hack.XHtml.All" or "MFlow.Wai.XHtml.All" . To use Haskell Server Pages import "MFlow.Forms.HSP". However the functionalities are documented here. `ask` is the only method for user interaction. It run in the @MFlow view m@ monad, with @m@ the monad chosen by the user, usually IO. It send user interfaces (in the @View view m@ monad) and return statically typed responses. The user interface definitions are based on a extension of formLets () with the addition of caching, links, formatting, attributes, extra combinators, callbaks and modifiers. The interaction with the user is stateful. In the same computation there may be many request-response interactions, in the same way than in the case of a console applications. * APPLICATION SERVER Therefore, session and state management is simple and transparent: it is in the haskell structures in the scope of the computation. `transient` (normal) procedures have no persistent session state and `stateless` procedures accept a single request and return a single response. `MFlow.Forms.step` is a lifting monad transformer that permit persistent server procedures that remember the execution state even after system shutdowns by using the package workflow () internally. This state management is transparent. There is no programer interface for session management. The programmer set the process timeout and the session timeout with `setTimeouts`. If the procedure has been stopped due to the process timeout or due to a system shutdowm, the procedure restart in the last state when a request for this procedure arrives (if the procedure uses the `step` monad transformer) * WIDGETS The correctness of the web responses is assured by the use of formLets. But unlike formLets in its current form, it permits the definition of widgets. /A widget is a combination of formLets and links within its own formatting template/, all in the same definition in the same source file, in plain declarative Haskell style. The formatting is abstract. It has to implement the 'FormInput' class. There are instances for Text.XHtml ("MFlow.Forms.XHtml"), Haskell Server Pages ("MFlow.Forms.HSP") and ByteString. So widgets can use any formatting that is instance of FormInput. It is possible to use more than one format in the same widget. Links defined with `wlink` are treated the same way than forms. They are type safe and return values to the same flow of execution. It is posssible to combine links and forms in the same widget by using applicative combinators but also additional applicative combinators like \<+> !*> , |*|. * NEW IN THIS RELEASE: [@Back Button@] This is probably the first implementation of an stateful Web framework that works well with the back button thanks to monad magic. (See ) [@Cached widgets@] with `cachedWidget` it is possible to cache the rendering of a widget as a ByteString (maintaining type safety) , the caching can be permanent or for a certain time. this is very useful for complex widgets that present information. Specially if the widget content comes from a database and it is shared by all users. [@Callbacks@] `waction` add a callback to a widget. It is executed when its input is validated. The callback may initate a flow of interactions with the user or simply execute an internal computation. Callbacks are necessary for the creation of abstract container widgets that may not know the behaviour of its content. The widget manages its content as black boxes. [@Modifiers@] `wmodify` change the visualization and result returned by the widget. For example it may hide a login form and substitute it by the username if already logged. Example: @ ask $ wform userloginform \``validate`\` valdateProc \``waction`\` loginProc \``wmodify`\` hideIfLogged@ [@attributes for formLet elements@] it is not only possible to add Html formatting, but also to add atributes to a formlet element. This example has three formLet elements with the attribute "size" added, and a string prepended to the second password box. @ userFormLine= (User \<$> getString (Just "enter user") getPassword submitButton "login") \<+> fromString " password again" ++> getPassword {-# LANGUAGE ScopedTypeVariables, DeriveDataTypeable #-} > module Main where > import MFlow.Wai.XHtml.All > import Data.TCache > import Control.Monad.Trans > import Data.Typeable > import Control.Concurrent > import Control.Exception as E > import qualified Data.ByteString.Char8 as SB > import qualified Data.Vector as V > import Data.Maybe > > > > data Ops= Ints | Strings | Actions | Ajax | Shop deriving(Typeable,Read, Show) > > main= do > setFilesPath "" > addFileServerWF > addMessageFlows [("" ,transient $ runFlow mainf) > ,("shop" ,runFlow shopCart)] > forkIO $ run 80 waiMessageFlow > adminLoop > > > > stdheader c= p << "you can press the back button to go to the menu"+++ c > mainf= do > setHeader stdheader > r <- ask $ wlink Ints (bold << "increase an Int") > <|> br ++> wlink Strings (bold << "increase a String") > <|> br ++> wlink Actions (bold << "Example of a string widget with an action") > <|> br ++> wlink Ajax (bold << "Simple AJAX example") > <++ (br +++ linkShop) -- this is an ordinary XHtml link > > case r of > Ints -> clickn 0 > Strings -> clicks "1" > Actions -> actions 1 > Ajax -> ajaxsample > > mainf > where > linkShop= toHtml $ hotlink "shop" << "shopping" > > clickn (n :: Int)= do > setHeader stdheader > r <- ask $ wlink "menu" (p << "menu") > |+| getInt (Just n) <* submitButton "submit" > case r of > (Just _,_) -> breturn () > (_, Just n') -> clickn $ n'+1 > > > clicks s= do > setHeader stdheader > s' <- ask $ (getString (Just s) > <* submitButton "submit") > `validate` (\s -> return $ if length s > 5 then Just "length must be < 5" else Nothing ) > clicks $ s'++ "1" > > > ajaxheader html= thehtml << ajaxHead << p << "click the box" +++ html > > ajaxsample= do > setHeader ajaxheader > ajaxc <- ajaxCommand "document.getElementById('text1').value" > (\n -> return $ "document.getElementById('text1').value='"++show(read n +1)++"'") > ask $ (getInt (Just 0) breturn() > > actions n=do > ask $ wlink () (p << "exit from action") > <**((getInt (Just (n+1)) <** submitButton "submit" ) `waction` actions ) > breturn () > > -- A persistent flow (uses step). The process is killed after 10 seconds of inactivity > -- but it is restarted automatically. if you restart the program, it remember the shopping cart > -- defines a table with links enclosed that return ints and a link to the menu, that abandon this flow. > shopCart = do > setTimeouts 10 0 > shopCart1 (V.fromList [0,0,0:: Int]) > where > shopCart1 cart= do > i <- step . ask $ > table ! [border 1,thestyle "width:20%;margin-left:auto;margin-right:auto"] > <<< caption << "choose an item" > ++> thead << tr << concatHtml[ th << bold << "item", th << bold << "times chosen"] > ++> (tbody > <<< tr ! [rowspan 2] << td << linkHome > ++> (tr <<< td <<< wlink 0 (bold <<"iphone") <++ td << ( bold << show ( cart V.! 0)) > <|> tr <<< td <<< wlink 1 (bold <<"ipad") <++ td << ( bold << show ( cart V.! 1)) > <|> tr <<< td <<< wlink 2 (bold <<"ipod") <++ td << ( bold << show ( cart V.! 2))) > <++ tr << td << linkHome > ) > > let newCart= cart V.// [(i, cart V.! i + 1 )] > shopCart1 newCart > where > linkHome= (toHtml $ hotlink noScript << bold << "home") -} module MFlow.Forms( -- * Basic definitions FormLet(..), FlowM,View, FormInput(..) -- * Users ,userRegister, userValidate, isLogged, User(userName), setAdminUser, getAdminName ,getCurrentUser,getUserSimple, getUser, userFormLine, userLogin, userWidget, -- * User interaction ask, clearEnv, -- * formLets -- | they mimic the HTML form elements. -- It is possible to modify their attributes with the `),(|*>),(|+|), (**>),(<**),wconcat,(<|>),(<*),(<$>),(<*>), -- * Normalized (convert to ByteString) widget combinators -- | these dot operators are indentical to the non dot operators, with the addition of the conversion of the arguments to lazy byteStrings -- -- The purpose is to combine heterogeneous formats into byteString-formatted widgets that -- can be cached with `cachedWidget` (.<+>.), (.|*>.), (.|+|.), (.**>.),(.<**.), (.<|>.), -- * Formatting combinators (<<<),(<++),(++>),(.) -- * ByteString tags ,btag,bhtml,bbody -- * Normalization , flatten, normalize, ToByteString(..) -- * Running the flow monad ,runFlow,MFlow.Forms.step, goingBack,breturn -- * Setting parameters ,setHeader ,getHeader ,setTimeouts -- * Cookies ,setCookie -- * Internal use ,MFlowState, getNewName ) where import Data.TCache import Data.TCache.DefaultPersistence import Data.TCache.Memoization import MFlow import MFlow.Cookies import Data.RefSerialize hiding((<|>)) import Data.ByteString.Lazy.Char8 as B(ByteString,cons,pack,unpack,append,empty,fromChunks) import qualified Data.CaseInsensitive as CI import Data.Typeable import Data.Monoid import Control.Monad.State.Strict import Control.Monad.Trans.Maybe import Data.Maybe import Control.Applicative import Control.Exception import Control.Workflow as WF(step,exec1,Workflow, waitUntilSTM, moveState, unsafeIOtoWF) import Control.Monad.Identity import Unsafe.Coerce import Data.List(intersperse) import Data.IORef import System.IO.Unsafe import Data.Char(isNumber) import Network.HTTP.Types.Header --import Debug.Trace --import System.IO (hFlush,stdout) --(!>)= flip trace instance Serialize a => Serializable a where serialize= runW . showp deserialize= runR readp data User= User { userName :: String , upassword :: String } deriving (Read, Show, Typeable) eUser= User (error1 "username") (error1 "password") error1 s= error $ s ++ " undefined" userPrefix= "User#" instance Indexable User where key User{userName= user}= keyUserName user -- | return the key name of an user keyUserName n= userPrefix++n -- | Register an user/password userRegister :: MonadIO m => String -> String -> m (DBRef User) userRegister user password = liftIO . atomically $ newDBRef $ User user password -- | Authentication against `userRegister`ed users. -- to be used with `validate` userValidate :: MonadIO m => (UserStr,PasswdStr) -> m (Maybe String) userValidate (u,p) = let user= eUser{userName=u} in liftIO $ atomically $ withSTMResources [user] $ \ mu -> case mu of [Nothing] -> resources{toReturn= err } [Just (User _ pass )] -> resources{toReturn= case pass==p of True -> Nothing False -> err } where err= Just "Username or password invalid" data Config = Config UserStr deriving (Read, Show, Typeable) keyConfig= "MFlow.Config" instance Indexable Config where key _= keyConfig rconf= getDBRef keyConfig setAdminUser :: MonadIO m => UserStr -> PasswdStr -> m () setAdminUser user password= liftIO $ atomically $ do newDBRef $ User user password writeDBRef rconf $ Config user getAdminName :: MonadIO m => m UserStr getAdminName= liftIO $ atomically ( readDBRef rconf `onNothing` error "admin user not set" ) >>= \(Config u) -> return u --test= runBackT $ do -- liftRepeat $ print "hola" -- n2 <- lift $ getLine -- lift $ print "n3" -- -- n3 <- lift $ getLine -- if n3 == "back" -- then fail "" -- else lift $ print $ n2++n3 data FailBack a = BackPoint a | NoBack a | GoBack deriving (Show,Typeable) instance (Serialize a) => Serialize (FailBack a ) where showp (BackPoint x)= insertString (pack iCanFailBack) >> showp x showp (NoBack x)= insertString (pack noFailBack) >> showp x showp GoBack = insertString (pack repeatPlease) readp = choice [icanFailBackp,repeatPleasep,noFailBackp] where noFailBackp = {-# SCC "deserialNoBack" #-} symbol noFailBack >> readp >>= return . NoBack icanFailBackp = {-# SCC "deserialBackPoint" #-} symbol iCanFailBack >> readp >>= return . BackPoint repeatPleasep = {-# SCC "deserialbackPlease" #-} symbol repeatPlease >> return GoBack iCanFailBack= "B" repeatPlease= "G" noFailBack= "N" newtype BackT m a = BackT { runBackT :: m (FailBack a ) } --instance Monad m => Monad (BackT m) where -- fail _ = BackT $ return GoBack -- return x = BackT . return $ NoBack x -- x >>= f = BackT $ loop -- where -- loop = do -- res<- do -- v <- runBackT x -- !> "loop" -- case v of -- NoBack y -> runBackT (f y) >>= return . Right -- !> "runback" -- BackPoint y -> do -- z <- runBackT (f y) -- !> "BACK" -- case z of -- GoBack -> return $ Left () -- !> "GoBack" -- other -> return $ Right other -- GoBack -> return $ Right GoBack -- case res of -- Left _ -> loop -- Right r -> return r instance Monad m => Monad (BackT m) where fail _ = BackT . return $ GoBack return x = BackT . return $ NoBack x x >>= f = BackT $ loop where loop = do v <- runBackT x -- !> "loop" case v of NoBack y -> runBackT (f y) -- !> "runback" BackPoint y -> do z <- runBackT (f y) -- !> "BACK" case z of GoBack -> loop -- !> "GoBack" other -> return other GoBack -> return $ GoBack --instance Monad m => Monad (BackT m) where -- fail _ = BackT $ return GoBack -- return x = BackT . return $ NoBack x -- x >>= f = BackT $ do -- v <- runBackT x -- case v of -- NoBack y -> runBackT (f y) -- BackPoint y -> loop -- where -- loop= do -- z <- runBackT (f y) -- case z of -- GoBack -> loop -- other -> return other -- GoBack -> return GoBack {-# NOINLINE breturn #-} -- | Use this instead of return to return from a computation with an ask statement -- -- This way when the user press the back button, the computation will execute back, to -- the returned code, according with the user navigation. breturn x= BackT . return $ BackPoint x -- !> "breturn" instance (MonadIO m) => MonadIO (BackT m) where liftIO f= BackT $ liftIO f >>= \ x -> return $ NoBack x instance (Monad m,Functor m) => Functor (BackT m) where fmap f g= BackT $ do mr <- runBackT g case mr of BackPoint x -> return . BackPoint $ f x NoBack x -> return . NoBack $ f x GoBack -> return $ GoBack {-# NOINLINE liftBackT #-} liftBackT f = BackT $ f >>= \x -> return $ NoBack x instance MonadTrans BackT where lift f = BackT $ f >>= \x -> return $ NoBack x instance MonadState s m => MonadState s (BackT m) where get= lift get -- !> "get" put= lift . put type WState view m = StateT (MFlowState view) m type FlowM view m= BackT (WState view m) data FormElm view a = FormElm [view] (Maybe a) deriving Typeable newtype View v m a = View { runView :: WState v m (FormElm v a) } instance (FormInput v, Monoid v,Serialize a) => Serialize (a,MFlowState v) where showp (x,s)= case mfDebug s of False -> showp x True -> showp(x, mfEnv s) readp= choice[nodebug, debug] where nodebug= readp >>= \x -> return (x, mFlowState0) debug= do (x,env) <- readp return (x,mFlowState0{mfEnv= env}) instance Functor (FormElm view ) where fmap f (FormElm form x)= FormElm form (fmap f x) instance (Monad m,Functor m) => Functor (View view m) where fmap f x= View $ fmap (fmap f) $ runView x instance (Functor m, Monad m) => Applicative (View view m) where pure a = View $ return (FormElm [] $ Just a) View f <*> View g= View $ f >>= \(FormElm form1 k) -> g >>= \(FormElm form2 x) -> return $ FormElm (form1 ++ form2) (k <*> x) instance (Functor m, Monad m) => Alternative (View view m) where empty= View $ return $ FormElm [] Nothing View f <|> View g= View $ f >>= \(FormElm form1 k) -> g >>= \(FormElm form2 x) -> return $ FormElm (form1 ++ form2) (k <|> x) instance (Monad m, Functor m) => Monad (View view m) where --View view m a-> (a -> View view m b) -> View view m b View x >>= f = View $ do FormElm form1 mk <- x case mk of Just k -> do FormElm form2 mk <- runView $ f k return $ FormElm (form1++ form2) mk Nothing -> return $ FormElm form1 Nothing return= View . return . FormElm [] . Just instance MonadTrans (View view) where lift f = View $ lift f >>= \x -> return $ FormElm [] $ Just x instance (Functor m, Monad m)=> MonadState (MFlowState view) (View view m) where get = View $ get >>= \x -> return $ FormElm [] $ Just x put st = View $ put st >>= \x -> return $ FormElm [] $ Just x instance (MonadIO m, Functor m) => MonadIO (View view m) where liftIO= lift . liftIO --instance Executable (View v m) where -- execute = runView --instance (Monad m, Executable m, Monoid view, FormInput view) -- => Executable (StateT (MFlowState view) m) where -- execute f= execute $ evalStateT f mFlowState0 -- | Cached widgets operate with widgets in the Identity monad, but they may perform IO using the execute instance -- of the monad m, which is usually the IO monad. execute basically \"sanctifies\" the use of unsafePerformIO for a transient purpose -- such is caching. This is defined in "Data.TCache.Memoization". The user can create his -- own instance for his monad. -- -- With `cachedWidget` it is possible to cache the rendering of a widget as a ByteString (maintaining type safety) --, permanently or for a certain time. this is very useful for complex widgets that present information. Specially it they must access to databases. -- -- @ -- import Mflow.Wai.XHtm.All -- import Some.Time.Library -- main= run 80 waiMessageFlow [(noscript, time)] -- time=do ask $ cachedWidget \"time\" 5 -- $ wlink () bold << \"the time is \" ++ show (execute giveTheTime) ++ \" click here\" -- time -- @ -- -- this pseudocode would update the time every 5 seconds. The execution of the IO computation -- giveTheTime must be executed inside the cached widget to avoid unnecesary IO executions. cachedWidget ::(Show a,MonadIO m,Typeable view, Monoid view , FormInput view, Typeable a, Functor m, Executable m ) => String -- ^ The key of the cached object for the retrieval -> Int -- ^ Timeout of the caching. Zero means sessionwide -> View view Identity a -- ^ The cached widget, in the Identity monad -> View view m a -- ^ The cached result cachedWidget key t mf = View $ StateT $ \s -> do let(FormElm form _, seq)= execute $ cachedByKey key 0 $ proc mf s{mfCached=True} let(FormElm _ mx2, s2) = execute $ runStateT (runView mf) s{mfSequence= seq,mfCached=True} -- !> ("mfSequence s1="++ show(mfSequence s1)) !> ("mfSequence s="++ show(mfSequence s)) !> ("mfSequence s'="++ show(mfSequence s')) let s''= s{validated = validated s2} return (FormElm form mx2, s'') where proc mf s= runStateT (runView mf) s>>= \(r,_) -> return (r,mfSequence s) -- | A FormLet instance class (Functor m, MonadIO m) => FormLet a m view where digest :: Maybe a -> View view m a --wrender -- :: Widget a1 a m v => a1 -> StateT (MFlowState v) m ([v], Maybe a) -- --wrender x =do -- (FormElm frm x) <- runView (widget x) -- return (frm, x) -- Minimal definition: either (wrender and wget) or widget --class (Functor m, MonadIO m) => Widget a b m view | a -> b view where -- wrender :: a -> WState view m [view] -- wrender x =do -- (FormElm frm (_ :: Maybe b)) <- runView (widget x) -- return frm -- wget :: a -> WState view m (Maybe b) -- wget x= runView (widget x) >>= \(FormElm _ mx) -> return mx -- widget :: a -> View view m b -- widget x = View $ do -- form <- wrender x -- got <- wget x -- return $ FormElm form got --instance FormLet a m view => Widget (Maybe a) a m view where -- widget = digest {- | Execute the @FlowM view m@ monad. It is used as parameter of `hackMessageFlow` `waiMessageFlow` or `addMessageFlows` @main= do forkIO $ run 80 $ waiMessageFlow [(\"noscript\",transient $ runFlow mainf)] adminLoop @ -} runFlow :: (FormInput view, Monoid view, Monad m) => FlowM view m () -> Token -> m () runFlow f = \ t -> evalStateT (runBackT $ backp >> f) mFlowState0{mfToken=t} >> return () where -- to restart the flow in case of going back before the first page of the flow backp = breturn() step :: (Serialize a, Typeable view, FormInput view, Monoid view, MonadIO m, Typeable a) => FlowM view m a -> FlowM view (Workflow m) a step f= do s <- get BackT $ do (r,s') <- lift . WF.step $ runStateT (runBackT f) s -- when recovery of a workflow, the MFlow state is not considered when( mfSequence s' >0) $ put s' return r --stepDebug -- :: (Serialize a, -- Typeable view, -- FormInput view, -- Monoid view, -- MonadIO m, -- Typeable a) => -- FlowM view m a -- -> FlowM view (Workflow m) a --stepDebug f= BackT $ do -- s <- get -- (r, s') <- lift $ do -- (r',stat)<- do -- rec <- isInRecover -- case rec of -- True ->do (r', s'') <- getStep 0 -- return (r',s{mfEnv= mfEnv (s'' `asTypeOf`s)}) -- False -> return (undefined,s) -- (r'', s''') <- WF.stepDebug $ runStateT (runBackT f) stat >>= \(r,s)-> return (r, s) -- return $ (r'' `asTypeOf` r', s''' ) -- put s' -- return r getParam1 :: (Monad m, MonadState (MFlowState v) m, Typeable a, Read a, FormInput v) => String -> Params -> [v] -> m (FormElm v a) getParam1 par req form= r where r= case lookup par req of Just x -> maybeRead x Nothing -> return $ FormElm form Nothing getType :: m (FormElm v a) -> a getType= undefined x= getType r maybeRead str= do if typeOf x == (typeOf ( undefined :: String)) then return . FormElm form . Just $ unsafeCoerce str else case readsPrec 0 $ str of [(x,"")] -> return . FormElm form $ Just x _ -> do modify $ \s -> s{validated= True} let err= inred . fromString $ "can't read \"" ++ str ++ "\" as type " ++ show (typeOf x) return $ FormElm (err:form) Nothing -- | Validates a form or widget result against a validating procedure -- -- @getOdd= getInt Nothing `validate` (\x -> return $ if mod x 2==0 then Nothing else Just "only odd numbers, please")@ validate :: (FormInput view, Monad m) => View view m a -> (a -> WState view m (Maybe String)) -> View view m a validate formt val= View $ do FormElm form mx <- (runView formt) case mx of Just x -> do me <- val x modify (\s -> s{validated= True}) case me of Just str -> --FormElm form mx' <- generateForm [] (Just x) noValidate return $ FormElm ( inred (fromString str) : form) Nothing Nothing -> return $ FormElm [] mx _ -> return $ FormElm form mx -- | Actions are callbacks that are executed when a widget is validated. -- It is useful when the widget is inside widget containers that know nothing about his content. -- It returns a result that can be significative or, else, be ignored with '<**' and '**>'. -- An action may or may not initiate his own dialog with the user via `ask` waction :: (FormInput view, Monad m) => View view m a -> (a -> FlowM view m b) -> View view m b waction formt act= View $ do FormElm form mx <- (runView formt) case mx of Just x -> do modify (\s -> s{validated= True}) clearEnv br <- runBackT $ act x case br of GoBack -> do modify (\s -> s{validated= False}) return $ FormElm form Nothing NoBack r -> return . FormElm form $ Just r BackPoint r -> return . FormElm form $ Just r -- bad. no backpoints _ -> return $ FormElm form Nothing -- | A modifier get the result and the rendering of a widget and change them. -- -- This modifier, when logged, changes a login-password-register widget with a display username. -- -- @userFormOrName= `userWidget` Nothing `userFormLine` \`wmodify\` f -- where -- f _ justu\@(Just u) = return ([`fromString` u], justu) -- user validated, display and return user -- f felem Nothing = do -- us <- `getCurrentUser` -- if us == `anonymous` -- then return (felem, Nothing) -- user not logged, present the form -- else return([`fromString` us], Just us) -- already logged, display and return user@ wmodify :: (Monad m, FormInput v) => View v m a -> ([v] -> Maybe a -> WState v m ([v], Maybe b)) -> View v m b wmodify formt act = View $ do FormElm f mx <- runView formt (f',mx') <- act f mx return $ FormElm f' mx' instance (FormInput view, FormLet a m view , FormLet b m view ) => FormLet (a,b) m view where digest mxy = do let (x,y)= case mxy of Nothing -> (Nothing, Nothing); Just (x,y)-> (Just x, Just y) (,) <$> digest x <*> digest y instance (FormInput view, FormLet a m view , FormLet b m view,FormLet c m view ) => FormLet (a,b,c) m view where digest mxy = do let (x,y,z)= case mxy of Nothing -> (Nothing, Nothing, Nothing); Just (x,y,z)-> (Just x, Just y,Just z) (,,) <$> digest x <*> digest y <*> digest z -- | display a text box and return a String getString :: (FormInput view,Monad m) => Maybe String -> View view m String getString = getTextBox -- | display a text box and return an Integer (if the value entered is not an Integer, fails the validation) getInteger :: (FormInput view, Functor m, MonadIO m) => Maybe Integer -> View view m Integer getInteger = getTextBox -- | display a text box and return a Int (if the value entered is not an Int, fails the validation) getInt :: (FormInput view, Functor m, MonadIO m) => Maybe Int -> View view m Int getInt = getTextBox -- | display a password box getPassword :: (FormInput view, Monad m) => View view m String getPassword = getParam Nothing "password" Nothing -- | implement a radio button that perform a submit when pressed. -- the parameter is the name of the radio group getRadioActive :: (FormInput view, Functor m, MonadIO m) => String -> String -> View view m String getRadioActive n v= View $ do st <- get put st{needForm= True} let env = mfEnv st FormElm form mn <- getParam1 n env [] return $ FormElm [finput n "radio" v ( isJust mn && v== fromJust mn) (Just "this.form.submit()")] mn -- | implement a radio button -- the parameter is the name of the radio group getRadio :: (FormInput view, Functor m, MonadIO m) => String -> String -> View view m String getRadio n v= View $ do st <- get put st{needForm= True} let env = mfEnv st FormElm f mn <- getParam1 n env [] return $ FormElm (f++[finput n "radio" v ( isJust mn && v== fromJust mn) Nothing]) mn -- | display a text box and return the value entered if it is readable( Otherwise, fail the validation) getCheckBox :: (FormInput view, Functor m, MonadIO m) => String -> Bool -> View view m String getCheckBox v checked= View $ do n <- getNewName st <- get put st{needForm= True} let env = mfEnv st FormElm f mn <- getParam1 n env [] return $ FormElm (f++[finput n "checkbox" v ( checked || (isJust mn && v== fromJust mn)) Nothing]) mn -- get a parameter form the las received response getEnv :: MonadState (MFlowState view) m => String -> m(Maybe String) getEnv n= gets mfEnv >>= return . lookup n getTextBox :: (FormInput view, Monad m, Typeable a, Show a, Read a) => Maybe a -> View view m a getTextBox ms = getParam Nothing "text" ms getParam :: (FormInput view, Monad m, Typeable a, Show a, Read a) => Maybe String -> String -> Maybe a -> View view m a getParam look type1 mvalue = View $ do tolook <- case look of Nothing -> getNewName Just n -> return n let nvalue= case mvalue of Nothing -> "" Just v -> let typev= typeOf v in if typev==typeOf (undefined :: String) then unsafeCoerce v else if typev==typeOf (undefined :: String) then unsafeCoerce v else if typev==typeOf (undefined :: ByteString) then unsafeCoerce v else show v form= [finput tolook type1 nvalue False Nothing] st <- get let env = mfEnv st put st{needForm= True} getParam1 tolook env form getNewName :: MonadState (MFlowState view) m => m String getNewName= do st <- get let n= mfSequence st put $ st{mfSequence= n+1} let pref= if mfCached st then 'c' else 'p' return $ pref : (show n) getCurrentName :: MonadState (MFlowState view) m => m String getCurrentName= do st <- get let parm = mfSequence st return $ if mfCached st then "c" else "p"++show parm -- | display a multiline text box and return its content getMultilineText :: (FormInput view, Monad m) => String -> View view m String getMultilineText nvalue = View $ do tolook <- getNewName env <- gets mfEnv let form= [ftextarea tolook nvalue] getParam1 tolook env form --instance (MonadIO m, Functor m, FormInput view) => FormLet Bool m view where -- digest mv = getBool b "True" "False" -- where -- b= case mv of -- Nothing -> Nothing -- Just bool -> Just $ case bool of -- True -> "True" -- False -> "False" -- | display a dropdown box with the two values (second (true) and third parameter(false)) -- . With the value of the first parameter selected. getBool :: (FormInput view, Monad m) => Bool -> String -> String -> View view m Bool getBool mv truestr falsestr= View $ do tolook <- getNewName st <- get let env = mfEnv st put st{needForm= True} r <- getParam1 tolook env $ [fselect tolook(foption1 truestr mv `mappend` foption1 falsestr (not mv))] return $ fmap fromstr r -- case mx of -- Nothing -> return $ FormElm f Nothing -- Just x -> return . FormElm f $ fromstr x where fromstr x= if x== truestr then True else False -- | display a dropdown box with the options in the first parameter is optionally selected -- . It returns the selected option. getSelect :: (FormInput view, Monad m,Typeable a, Read a) => View view m (MFOption a) -> View view m a getSelect opts = View $ do tolook <- getNewName st <- get let env = mfEnv st put st{needForm= True} FormElm form mr <- (runView opts) getParam1 tolook env [fselect tolook $ mconcat form] data MFOption a= MFOption -- | set the option for getSelect. Options are concatenated with `<|>` setOption n v = setOption1 n v False -- | set the selected option for getSelect. Options are concatenated with `<|>` setSelectedOption n v= setOption1 n v True setOption1 :: (FormInput view, Monad m, Typeable a, Show a) => a -> view -> Bool -> View view m (MFOption a) setOption1 nam val check= View $ do st <- get let env = mfEnv st put st{needForm= True} let n= if typeOf nam== typeOf(undefined :: String) then unsafeCoerce nam else show nam return . FormElm [foption n val check] $ Just MFOption -- | Enclose Widgets in some formating. -- @view@ is intended to be instantiated to a particular format -- -- This is a widget, which is table with some links. it returns an Int -- -- > import MFlow.Forms.XHtml -- > -- > tableLinks :: View Html Int -- > tableLinks= table ! [border 1,thestyle "width:20%;margin-left:auto;margin-right:auto"] -- > <<< caption << "choose an item" -- > ++> thead << tr << concatHtml[ th << bold << "item", th << bold << "times chosen"] -- > ++> (tbody -- > <<< (tr <<< td <<< wlink 0 (bold <<"iphone") <++ td << ( bold << "One") -- > <|> tr <<< td <<< wlink 1 (bold <<"ipad") <++ td << ( bold << "Two") -- > <|> tr <<< td <<< wlink 2 (bold <<"ipod") <++ td << ( bold << "Three")) -- > ) (<<<) :: (Monad m, Monoid view) => (view ->view) -> View view m a -> View view m a (<<<) v form= View $ do FormElm f mx <- runView form return $ FormElm [v $ mconcat f] mx infixr 5 <<< -- | Useful for the creation of pages using two or more views. -- For example 'HSP' and 'Html'. -- Because both have ConvertTo instances to ByteString, then it is possible -- to mix them via 'normalize': -- -- > normalize widget <+> normalize widget' -- -- is equivalent to -- -- > widget .<+>. widget' normalize ::(Monad m, ToByteString v) => View v m a -> View ByteString m a normalize f= View $ StateT $ \s ->do (FormElm fs mx, s') <- runStateT (runView f) $ unsafeCoerce s -- the only diference between the states of the two views is mfHeader -- which don't affect to runState return $ (FormElm (map toByteString fs ) mx,unsafeCoerce s') class ToByteString a where toByteString :: a -> ByteString instance ToByteString a => ToHttpData a where toHttpData = toHttpData . toByteString instance ToByteString ByteString where toByteString= id -- | Append formatting code to a widget -- -- @ getString "hi" <++ H1 << "hi there"@ (<++) :: (Monad m) => View v m a -> v -> View v m a (<++) form v= View $ do FormElm f mx <- runView form return $ FormElm ( f ++ [ v]) mx infixr 6 <++ , .<++. infixr 6 ++> , .++>. -- | Prepend formatting code to a widget -- -- @bold << "enter name" ++> getString Nothing @ (++>) :: (Monad m, Monoid view) => view -> View view m a -> View view m a html ++> digest = (html `mappend`) <<< digest type Name= String type Type= String type Value= String type Checked= Bool type OnClick= Maybe String -- | Minimal interface for defining the basic form combinators in a concrete rendering. -- defined in this module. see "MFlow.Forms.XHtml" for the instance for @Text.XHtml@ and MFlow.Forms.HSP for an instance -- form Haskell Server Pages. class Monoid view => FormInput view where inred :: view -> view fromString :: String -> view flink :: String -> view -> view flink1:: String -> view flink1 verb = flink verb (fromString verb) finput :: Name -> Type -> Value -> Checked -> OnClick -> view ftextarea :: String -> String -> view fselect :: String -> view -> view foption :: String -> view -> Bool -> view foption1 :: String -> Bool -> view foption1 val msel= foption val (fromString val) msel formAction :: String -> view -> view addAttributes :: view -> Attribs -> view -- | add attributes to the form element -- if the view has more than one element, it is applied to the first infix 8 FormLet User m view where -- digest muser= -- (User <$> getString ( userName <$> muser) -- <*> getPassword) -- `validate` userValidate newtype Lang= Lang String data MFlowState view= MFlowState{ mfSequence :: Int, mfCached :: Bool, prevSeq :: [Int], onInit :: Bool, validated :: Bool, -- mfUser :: String, mfLang :: Lang, mfEnv :: Params, needForm :: Bool, hasForm :: Bool, -- mfServer :: String, -- mfPath :: String, -- mfPort :: Int, mfToken :: Token, mfkillTime :: Int, mfSessionTime :: Integer, mfCookies :: [Cookie], mfHeader :: view -> view, mfDebug :: Bool } deriving Typeable stdHeader v = v mFlowState0 :: (FormInput view, Monoid view) => MFlowState view mFlowState0= MFlowState 0 False [] True False (Lang "en") [] False False (error "token of mFlowState0 used") 0 0 [] stdHeader False -- | Set the header-footer that will enclose the widgets. It must be provided in the -- same formatting than them, altrough with normalization to byteStrings can be used any formatting -- -- This header uses XML trough Haskell Server Pages () -- -- @ -- setHeader $ \c -> -- \ -- \ -- \ my title \ -- \) -- \ -- \ -- \<% c %\> -- \ -- \ -- @ -- -- This header uses "Text.XHtml" -- -- @ -- setHeader $ \c -> -- `thehtml` -- << (`header` -- << (`thetitle` << title +++ -- `meta` ! [`name` \"Keywords\",content \"sci-fi\"])) +++ -- `body` ! [`style` \"margin-left:5%;margin-right:5%\"] c -- @ -- -- This header uses both. It uses byteString tags -- -- @ -- setHeader $ \c -> -- `bhtml` [] $ -- `btag` "head" [] $ -- (`toByteString` (thetitle << title) `append` -- `toByteString` ) `append` -- `bbody` [(\"style\", \"margin-left:5%;margin-right:5%\")] c -- @ setHeader :: Monad m => (view -> view) -> FlowM view m () setHeader header= do fs <- get put fs{mfHeader= header} -- | return the current header getHeader :: Monad m => FlowM view m (view -> view) getHeader= gets mfHeader -- | Set an HTTP cookie setCookie :: MonadState (MFlowState view) m => String -- ^ name -> String -- ^ value -> String -- ^ path -> Maybe Integer -- ^ Max-Age in seconds. Nothing for a session cookie -> m () setCookie n v p me= do modify $ \st -> st{mfCookies= (n,v,p,fmap show me):mfCookies st } -- | Set 1) the timeout of the flow execution since the last user interaction. -- Once passed, the flow executes from the begining. 2). In persistent flows -- it set the session state timeout for the flow, that is persistent. If the -- flow is not persistent, it has no effect. -- -- `transient` flows restart anew. -- persistent flows (that use `step`) restart at the las saved execution point, unless -- the session time has expired for the user. setTimeouts :: Monad m => Int -> Integer -> FlowM view m () setTimeouts kt st= do fs <- get put fs{ mfkillTime= kt, mfSessionTime= st} getWFName :: MonadState (MFlowState view) m => m String getWFName = do fs <- get return . twfname $ mfToken fs getCurrentUser :: MonadState (MFlowState view) m=> m String getCurrentUser = return . tuser =<< gets mfToken type UserStr= String type PasswdStr= String -- | Is an example of login\/register validation form needed by 'userWidget'. In this case -- the form field appears in a single line. it shows, in sequence, entries for the username, -- password, a button for loging, a entry to repeat password necesary for registering -- and a button for registering. -- The user can build its own user login\/validation forms by modifying this example -- -- @ userFormLine= -- (User \<\$\> getString (Just \"enter user\") \<\*\> getPassword \<\+\> submitButton \"login\") -- \<\+\> fromString \" password again\" \+\> getPassword \<\* submitButton \"register\" -- @ userFormLine :: (FormInput view, Monoid view, Functor m, Monad m) => View view m (Maybe(Maybe (UserStr,PasswdStr), Maybe String), Maybe String) userFormLine= ((,) <$> getString (Just "enter user") getPassword submitButton "login") <+> fromString " password again" ++> getPassword View view m (Maybe(Maybe (UserStr,PasswdStr), Maybe String), Maybe String) userLogin= ((,) <$> fromString "Enter User: " ++> getString Nothing fromString " Enter Pass: " ++> getPassword submitButton "login") <+> noWidget <* noWidget -- | empty widget that return Nothing. May be used as \"empty boxes\" inside larger widgets noWidget :: (FormInput view, Monad m) => View view m a noWidget= View . return $ FormElm [] Nothing -- | render the Show instance of the parameter and return it. It is useful -- for displaying information wrender :: (Monad m, Show a, FormInput view) => a -> View view m a wrender x= View . return $ FormElm [fromString $ show x] (Just x) -- | Wether the user is logged or is anonymous isLogged :: MonadState (MFlowState v) m => m Bool isLogged= do rus <- return . tuser =<< gets mfToken return . not $ rus == anonymous -- | It creates a widget for user login\/registering. If a user name is specified -- in the first parameter, it is forced to login\/password as this specific user. -- Otherwise, if the user is already logged, the widget does not appear -- If the user press the register button, the user/password is registered and the -- user userWidget :: ( MonadIO m, Functor m , FormInput view, Monoid view ) => Maybe String -> View view m (Maybe(Maybe (UserStr,PasswdStr), Maybe String), Maybe String) -> View view m String userWidget muser formuser= wform formuser `validate` val muser `waction` login where val _ (Nothing,_) = return $ Just "Plese fill in the user/passwd to login, or user/passwd/passwd to register" val mu (Just (Just us , Just _), Nothing)= if isNothing mu || isJust mu && fromJust mu == fst us then userValidate us else return $ Just "wrong user for the operation" val mu (Just (Just us , Just _), Just p)= if isNothing mu || isJust mu && fromJust mu == fst us then if length p > 0 && snd us== p then return Nothing else return $ Just "The passwords do not match" else return $ Just "wrong user for the operation" val _ _ = return $ Just "Please fill in the fields for login or register" login (Just (Just (u,p) , Just _), Nothing)= do let uname= u st <- get let t = mfToken st t'= t{tuser= uname} moveState (twfname t) t t' put st{mfToken= t'} liftIO $ deleteTokenInList t liftIO $ addTokenToList t' setCookie cookieuser uname "/" Nothing -- !> "setcookie" return uname login (Just (Just us@(u,p) , Just _), Just _)= do userRegister u p login (Just (Just us , Just p), Nothing) -- | If not logged, perform login. otherwise return the user -- -- @getUserSimple= getUser Nothing userFormLine@ getUserSimple :: ( FormInput view, Monoid view, Typeable view , ToHttpData view , MonadIO m, Functor m) => FlowM view m String getUserSimple= getUser Nothing userFormLine -- | Very basic user authentication. The user is stored in a cookie. -- it looks for the cookie. If no cookie, it ask to the user for a `userRegister`ed -- user-password combination. -- The user-password combination is only asked if the user has not logged already -- otherwise, the stored username is returned. -- -- @getUser mu form= ask $ userWidget mu form@ getUser :: ( FormInput view, Monoid view, Typeable view , ToHttpData view , MonadIO m, Functor m) => Maybe String -> View view m (Maybe(Maybe (UserStr,PasswdStr), Maybe String), Maybe String) -> FlowM view m String getUser mu form= ask $ userWidget mu form --instance (MonadIO m, Functor m, m1 ~ m, b ~ a) -- => Widget(View view m1 b) a m view where -- widget = id -- | Join two widgets in the same page -- the resulting widget, when `ask`ed with it, returns a either one or the other -- -- > r <- ask widget widget1 <+> widget widget2 -- > case r of (Just x, Nothing) -> .. (<+>) , mix :: Monad m => View view m a -> View view m b -> View view m (Maybe a, Maybe b) mix digest1 digest2= View $ do FormElm f1 mx' <- runView digest1 FormElm f2 my' <- runView digest2 return $ FormElm (f1++f2) $ case (mx',my') of (Nothing, Nothing) -> Nothing other -> Just other infixr 2 <+>, .<+>. (<+>) = mix infixr 3 <**, **>, .**>., .<**. -- | The first elem result (even if it is not validated) is discarded, and the secod is returned -- . This contrast with the applicative operator '*>' which fails the whole validation if -- the validation of the first elem fails. -- . The first element is displayed however, as in the case of '*>' (**>) :: (Functor m, Monad m) => View view m a -> View view m b -> View view m b (**>) form1 form2 = valid form1 *> form2 -- | The second elem result (even if it is not validated) is discarded, and the first is returned -- . This contrast with the applicative operator '<*' which fails the whole validation if -- the validation of the second elem fails. -- . The first element is displayed however, as in the case of '<*' (<**) :: (Functor m, Monad m) => View view m a -> View view m b -> View view m a (<**) form1 form2 = form1 <* valid form2 valid form= View $ do FormElm form mx <- runView form return $ FormElm form $ Just undefined -- | It is the way to interact with the user. -- It takes a widget and return the user result -- If the environment has the result, ask don't ask to the user. -- To force asking in any case, put an `clearEnv` statement before -- in the FlowM monad ask :: ( ToHttpData view, FormInput view, Monoid view, MonadIO m, Typeable view) => View view m b -> FlowM view m b ask x = do st1 <- get let st= st1{hasForm= False, needForm= False,validated= False} put st FormElm forms mx <- lift $ runView x -- !> "runWidget" st' <- mx `seq` get case mx of Just x -> do put st'{prevSeq= mfSequence st: prevSeq st',onInit= True ,mfEnv=[]} breturn x -- !> "just x" _ -> if not (validated st') && not (onInit st') && hasParams (mfSequence st') ( mfEnv st') -- !> (show $ validated st') !> (show $ onInit st') then do put st'{mfSequence= head1 $ prevSeq st' ,prevSeq= tail1 $ prevSeq st' } fail "" -- !> "repeatPlease" else do let header= mfHeader st' t= mfToken st' cont = case (needForm st', hasForm st') of (True, False) -> header $ formAction (twfname t) $ mconcat forms _ -> header $ mconcat forms let HttpData ctype c s= toHttpData cont liftIO . sendFlush t $ HttpData ctype (mfCookies st' ++ c) s put st{mfCookies=[], onInit= False, mfToken= t } -- !> ("after "++show ( mfSequence st')) receiveWithTimeouts ask x where head1 []=0 head1 xs= head xs tail1 []=[] tail1 xs= tail xs hasParams seq= not . null . filter (\(p,_) -> let tailp = tail p in (head p== 'p' || head p == 'c') && and (map isNumber tailp) && read tailp <= seq) -- | True if the flow is going back (as a result of the back button pressed in the web browser). -- Usually this chech is nos necessary unless conditional code make it necessary -- -- @menu= do -- mop <- getGoStraighTo -- case mop of -- Just goop -> goop -- Nothing -> do -- r \<- `ask` option1 \<|> option2 -- case r of -- op1 -> setGoStraighTo (Just goop1) >> goop1 -- op2 -> setGoStraighTo (Just goop2) >> goop2@ -- -- This pseudocode would execute the ask of the menu once. But if the user press the -- back button he will see again the menu. To let him choose other option, the code -- has to be change to -- -- @menu= do -- mop <- getGoStraighTo -- back <- `goingBack` -- case (mop,back) of -- (Just goop,False) -> goop -- _ -> do -- r \<- `ask` option1 \<|> option2 -- case r of -- op1 -> setGoStraighTo (Just goop1) >> goop1 -- op2 -> setGoStraighTo (Just goop2) >> goop2@ goingBack :: MonadState (MFlowState view) m => m Bool goingBack = do st <- get return $ not (validated st) && not (onInit st) -- | Clears the environment clearEnv :: MonadState (MFlowState view) m => m () clearEnv= do st <- get put st{ mfEnv= []} receiveWithTimeouts :: MonadIO m => FlowM view m () receiveWithTimeouts= do st <- get let t= mfToken st t1= mfkillTime st t2= mfSessionTime st req <- return . getParams =<< liftIO ( receiveReqTimeout t1 t2 t) put st{mfEnv= req} -- | wrap a widget of form element within a form-action element. ---- Usually it is done automatically by the @Wiew@ monad. wform :: (Monad m, FormInput view, Monoid view) => View view m b -> View view m b wform x = View $ do FormElm form mr <- (runView $ x ) st <- get let t = mfToken st put st{hasForm= True} let form1= formAction ( twfname t) $ mconcat form return $ FormElm [form1] mr resetButton :: (FormInput view, Monad m) => String -> View view m () resetButton label= View $ return $ FormElm [finput "reset" "reset" label False Nothing] $ Just () submitButton :: (FormInput view, Monad m) => String -> View view m String submitButton label= getParam Nothing "submit" $ Just label --insertView view= View $ return $ FormElm [view] $ Just () -- --infix 3 +> --view +> widget= (insertView view) *> widget -- --infix 3 <+ --widget <+ view = widget <* insertView view -- | creates a link wiget. A link can be composed with other widget elements, wlink :: (Typeable a, Read a, Show a, MonadIO m, Functor m, FormInput view) => a -> view -> View view m a wlink x v= View $ do verb <- getWFName name <- getNewName env <- gets mfEnv let showx= if typeOf x== typeOf (undefined :: String) then unsafeCoerce x else show x toSend = flink (verb ++ "?" ++ name ++ "=" ++ showx) v getParam1 name env [toSend] --instance (Widget a b m view, Monoid view) => Widget [a] b m view where -- widget xs = View $ do -- forms <- mapM(\x -> (runView $ widget x )) xs -- let vs = concatMap (\(FormElm v _) -> v) forms -- res = filter isJust $ map (\(FormElm _ r) -> r) forms -- res1= if null res then Nothing else head res -- return $ FormElm [mconcat vs] res1 -- | Concat a list of widgets of the same type, to return a single result wconcat :: (Monoid view, MonadIO m, Functor m)=> [View view m a] -> View view m a wconcat xs= View $ do forms <- mapM(\x -> (runView x )) xs let vs = concatMap (\(FormElm v _) -> [mconcat v]) forms res = filter isJust $ map (\(FormElm _ r) -> r) forms res1= if null res then Nothing else head res return $ FormElm vs res1 -- | intersperse a widget in a list of widgets. the results is a 2-tuple of both types (|*>) :: (MonadIO m, Functor m,Monoid view) => View view m r -> [View view m r'] -> View view m (Maybe r,Maybe r') (|*>) x xs= View $ do FormElm fxs rxs <- runView $ wconcat xs FormElm fx rx <- runView $ x return $ FormElm (fx ++ intersperse (mconcat fx) fxs ++ fx) $ case (rx,rxs) of (Nothing, Nothing) -> Nothing other -> Just other infixr 5 |*>, .|*>. -- | Put a widget above and below other. Useful for navigation links in a page. (|+|) :: (Functor m, Monoid view, MonadIO m) => View view m r -> View view m r' -> View view m (Maybe r, Maybe r') (|+|) w w'= w |*> [w'] infixr 1 |+|, .|+|. -- | Flatten a binary tree of tuples of Maybe results produced by the \<+> operator -- into a single tuple with the same elements in the same order. -- This is useful for easing matching. For example: -- -- @ res \<- ask $ wlink1 \<+> wlink2 wform \<+> wlink3 \<+> wlink4@ -- -- @res@ has type: -- -- @Maybe (Maybe (Maybe (Maybe (Maybe a,Maybe b),Maybe c),Maybe d),Maybe e)@ -- -- but @flatten res@ has type: -- -- @ (Maybe a, Maybe b, Maybe c, Maybe d, Maybe e)@ flatten :: Flatten (Maybe tree) list => tree -> list flatten res= doflat $ Just res class Flatten tree list where doflat :: tree -> list type Tuple2 a b= Maybe (Maybe a, Maybe b) type Tuple3 a b c= Maybe ( (Tuple2 a b), Maybe c) type Tuple4 a b c d= Maybe ( (Tuple3 a b c), Maybe d) type Tuple5 a b c d e= Maybe ( (Tuple4 a b c d), Maybe e) type Tuple6 a b c d e f= Maybe ( (Tuple5 a b c d e), Maybe f) instance Flatten (Tuple2 a b) (Maybe a, Maybe b) where doflat (Just(ma,mb))= (ma,mb) doflat Nothing= (Nothing,Nothing) instance Flatten (Tuple3 a b c) (Maybe a, Maybe b,Maybe c) where doflat (Just(mx,mc))= let(ma,mb)= doflat mx in (ma,mb,mc) doflat Nothing= (Nothing,Nothing,Nothing) instance Flatten (Tuple4 a b c d) (Maybe a, Maybe b,Maybe c,Maybe d) where doflat (Just(mx,mc))= let(ma,mb,md)= doflat mx in (ma,mb,md,mc) doflat Nothing= (Nothing,Nothing,Nothing,Nothing) instance Flatten (Tuple5 a b c d e) (Maybe a, Maybe b,Maybe c,Maybe d,Maybe e) where doflat (Just(mx,mc))= let(ma,mb,md,me)= doflat mx in (ma,mb,md,me,mc) doflat Nothing= (Nothing,Nothing,Nothing,Nothing,Nothing) instance Flatten (Tuple6 a b c d e f) (Maybe a, Maybe b,Maybe c,Maybe d,Maybe e,Maybe f) where doflat (Just(mx,mc))= let(ma,mb,md,me,mf)= doflat mx in (ma,mb,md,me,mf,mc) doflat Nothing= (Nothing,Nothing,Nothing,Nothing,Nothing,Nothing) -- | > (.<<.) w x = w $ toByteString x (.<<.) :: (ToByteString view) => (ByteString -> ByteString) -> view -> ByteString (.<<.) w x = w $ toByteString x -- | > (.<+>.) x y = normalize x <+> normalize y (.<+>.) :: (Monad m, ToByteString v, ToByteString v1) => View v m a -> View v1 m b -> View ByteString m (Maybe a, Maybe b) (.<+>.) x y = normalize x <+> normalize y -- | > (.|*>.) x y = normalize x |*> map normalize y (.|*>.) :: (Functor m, MonadIO m, ToByteString v, ToByteString v1) => View v m r -> [View v1 m r'] -> View ByteString m (Maybe r, Maybe r') (.|*>.) x y = normalize x |*> map normalize y -- | > (.|+|.) x y = normalize x |+| normalize y (.|+|.) :: (Functor m, MonadIO m, ToByteString v, ToByteString v1) => View v m r -> View v1 m r' -> View ByteString m (Maybe r, Maybe r') (.|+|.) x y = normalize x |+| normalize y -- | > (.**>.) x y = normalize x **> normalize y (.**>.) :: (Monad m, Functor m, ToByteString v, ToByteString v1) => View v m a -> View v1 m b -> View ByteString m b (.**>.) x y = normalize x **> normalize y -- | > (.<**.) x y = normalize x <** normalize y (.<**.) :: (Monad m, Functor m, ToByteString v, ToByteString v1) => View v m a -> View v1 m b -> View ByteString m a (.<**.) x y = normalize x <** normalize y -- | > (.<|>.) x y= normalize x <|> normalize y (.<|>.) :: (Monad m, Functor m, ToByteString v, ToByteString v1) => View v m a -> View v1 m a -> View ByteString m a (.<|>.) x y= normalize x <|> normalize y -- | > (.<++.) x v= normalize x <++ toByteString v (.<++.) :: (Monad m, ToByteString v, ToByteString v') => View v m a -> v' -> View ByteString m a (.<++.) x v= normalize x <++ toByteString v -- | > (.++>.) v x= toByteString v ++> normalize x (.++>.) :: (Monad m, ToByteString v, ToByteString v') => v -> View v' m a -> View ByteString m a (.++>.) v x= toByteString v ++> normalize x instance FormInput ByteString where inred = btag "b" [("style", "color:red")] finput n t v f c= btag "input" ([("type", t) ,("name", n),("value", v)] ++ if f then [("checked","true")] else [] ++ case c of Just s ->[( "onclick", s)]; _ -> [] ) "" ftextarea name text= btag "textarea" [("name", name)] $ pack text fselect name options= btag "select" [("name", name)] options foption value content msel= btag "option" ([("value", value)] ++ selected msel) content where selected msel = if msel then [("selected","true")] else [] addAttributes tag attrs = error "addAttributes not implemented for ByteString" formAction action form = btag "form" [("action", action),("method", "post")] form fromString = pack flink v str = btag "a" [("href", v)] str