module Data.Complex(module Data.Complex) where import Prelude infix 6 :+ data Complex a = !a :+ !a instance forall a . Eq a => Eq (Complex a) where (x :+ y) == (x' :+ y') = x == x' && y == y' -- parser bug instance forall a . Show a => Show (Complex a) where show (x :+ y) = show x ++ " :+ " ++ show y realPart :: forall a . Complex a -> a realPart (x :+ _) = x imagPart :: forall a . Complex a -> a imagPart (_ :+ y) = y conjugate :: forall a . Num a => Complex a -> Complex a conjugate (x:+y) = x :+ (- y) mkPolar :: forall a . Floating a => a -> a -> Complex a mkPolar r theta = r * cos theta :+ r * sin theta cis :: forall a . Floating a => a -> Complex a cis theta = cos theta :+ sin theta polar :: forall a . (RealFloat a) => Complex a -> (a,a) polar z = (magnitude z, phase z) magnitude :: forall a . (Ord a, Floating a) => Complex a -> a magnitude (x:+y) = -- slightly contorted to avoid overflow let ax = abs x ay = abs y mx = max ax ay mn = min ax ay r = mn / mx in mx * sqrt(1 + r*r) phase :: forall a . (RealFloat a) => Complex a -> a -- XXX phase (0 :+ 0) = 0 phase (x:+y) | x==0 && y==0 = 0 | otherwise = atan2 y x instance forall a . (RealFloat a) => Num (Complex a) where (x:+y) + (x':+y') = (x+x') :+ (y+y') (x:+y) - (x':+y') = (x-x') :+ (y-y') (x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x') negate (x:+y) = negate x :+ negate y abs z = magnitude z :+ 0 -- signum (0:+0) = 0 signum z@(x:+y) | x==0 && y==0 = 0 | otherwise = x/r :+ y/r where r = magnitude z fromInteger n = fromInteger n :+ 0 instance forall a . (RealFloat a) => Fractional (Complex a) where (x:+y) / (x':+y') = (x*x''+y*y'') / d :+ (y*x''-x*y'') / d where x'' = scaleFloat k x' y'' = scaleFloat k y' k = - max (exponent x') (exponent y') d = x'*x'' + y'*y'' fromRational a = fromRational a :+ 0 instance forall a . (RealFloat a) => Floating (Complex a) where pi = pi :+ 0 exp (x:+y) = expx * cos y :+ expx * sin y where expx = exp x log z = log (magnitude z) :+ phase z {- x ** y = case (x,y) of {- XXX (_ , (0:+0)) -> 1 :+ 0 ((0:+0), (exp_re:+_)) -> case compare exp_re 0 of GT -> 0 :+ 0 LT -> inf :+ 0 EQ -> nan :+ nan -} ((re:+im), (exp_re:+_)) | (isInfinite re || isInfinite im) -> case compare exp_re 0 of GT -> inf :+ 0 LT -> 0 :+ 0 EQ -> nan :+ nan | otherwise -> exp (log x * y) where inf = 1/0 nan = 0/0 -} sqrt z@(x:+y) | x==0 && y==0 = 0 | otherwise = u :+ (if y < 0 then - v else v) where (u,v) = if x < 0 then (v',u') else (u',v') v' = abs y / (u'*2) u' = sqrt ((magnitude z + abs x) / 2) sin (x:+y) = sin x * cosh y :+ cos x * sinh y cos (x:+y) = cos x * cosh y :+ (- (sin x) * sinh y) tan (x:+y) = (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(- sinx*sinhy)) where sinx = sin x cosx = cos x sinhy = sinh y coshy = cosh y sinh (x:+y) = cos y * sinh x :+ sin y * cosh x cosh (x:+y) = cos y * cosh x :+ sin y * sinh x tanh (x:+y) = (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx) where siny = sin y cosy = cos y sinhx = sinh x coshx = cosh x asin z@(x:+y) = y':+(- x') where (x':+y') = log (((- y):+x) + sqrt (1 - z*z)) acos z = y'':+(- x'') where (x'':+y'') = log (z + ((- y'):+x')) (x':+y') = sqrt (1 - z*z) atan z@(x:+y) = y':+(- x') where (x':+y') = log (((1 - y):+x) / sqrt (1+z*z)) asinh z = log (z + sqrt (1+z*z)) acosh z = log (z + (sqrt $ z+1) * (sqrt $ z - 1)) atanh z = 0.5 * log ((1.0+z) / (1.0-z)) log1p x@(a :+ b) | abs a < 0.5 && abs b < 0.5 , u <- 2*a + a*a + b*b = log1p (u/(1 + sqrt(u+1))) :+ atan2 (1 + a) b | otherwise = log (1 + x) expm1 x@(a :+ b) | a*a + b*b < 1 , u <- expm1 a , v <- sin (b/2) , w <- -2*v*v = (u*w + u + w) :+ (u+1)*sin b | otherwise = exp x - 1