module MicroHs.Lex( Token(..), showToken, tokensLoc, LexState, lexTopLS, popLayout, ) where import Prelude hiding(lex) import Data.Char import Data.List import MicroHs.Ident import Text.ParserComb(TokenMachine(..)) import Compat data Token = TIdent SLoc [String] String -- identifier | TString SLoc String -- String literal | TChar SLoc Char -- Char literal | TInt SLoc Integer -- Integer literal | TRat SLoc Rational -- Rational literal (i.e., decimal number) | TSpec SLoc Char -- one of ()[]{},`; -- for synthetic {} we use <>, also -- . for record selection -- ~ for lazy -- ! for strict -- NOT YET @ for type app | TError SLoc String -- lexical error | TBrace SLoc -- {n} in the Haskell report | TIndent SLoc -- in the Haskell report | TEnd | TRaw [Token] deriving (Show) showToken :: Token -> String showToken (TIdent _ ss s) = intercalate "." (ss ++ [s]) showToken (TString _ s) = show s showToken (TChar _ c) = show c showToken (TInt _ i) = show i showToken (TRat _ d) = show d showToken (TSpec _ c) | c == '<' = "{ layout" | c == '>' = "} layout" | otherwise = [c] showToken (TError _ s) = s showToken (TBrace _) = "TBrace" showToken (TIndent _) = "TIndent" showToken TEnd = "EOF" showToken (TRaw _) = "TRaw" incrLine :: SLoc -> SLoc incrLine (SLoc f l _) = SLoc f (l+1) 1 addCol :: SLoc -> Int -> SLoc addCol (SLoc f l c) i = SLoc f l (c + i) tabCol :: SLoc -> SLoc tabCol (SLoc f l c) = SLoc f l (((c + 7) `quot` 8) * 8) mkLocEOF :: SLoc mkLocEOF = SLoc "" (-1) 0 getCol :: SLoc -> Col getCol (SLoc _ _ c) = c --------- -- | Take a location and string and produce a list of tokens lex :: SLoc -> String -> [Token] lex loc (' ':cs) = lex (addCol loc 1) cs lex loc ('\n':cs) = tIndent (lex (incrLine loc) cs) lex loc ('\r':cs) = lex loc cs lex loc ('\t':cs) = lex (tabCol loc) cs -- TABs are a dubious feature, but easy to support lex loc ('{':'-':cs) = skipNest (addCol loc 2) 1 cs lex loc ('-':'-':cs) | isComm rs = skipLine (addCol loc $ 2+length ds) cs where (ds, rs) = span (== '-') cs isComm [] = True isComm (d:_) = not (isOperChar d) lex loc (d:cs) | isLower_ d = case span isIdentChar cs of (ds, rs) -> tIdent loc [] (d:ds) (lex (addCol loc $ 1 + length ds) rs) lex loc cs@(d:_) | isUpper d = upperIdent loc loc [] cs lex loc ('0':x:cs) | toLower x == 'x' = hexNumber loc cs lex loc cs@(d:_) | isDigit d = number loc cs lex loc ('.':cs@(d:_)) | isLower_ d = TSpec loc '.' : lex (addCol loc 1) cs lex loc (c:cs@(d:_)) | (c == '!' || c == '~') && (d == '(' || isIdentChar d) = TSpec loc c : lex (addCol loc 1) cs lex loc (d:cs) | isOperChar d = case span isOperChar cs of (ds, rs) -> TIdent loc [] (d:ds) : lex (addCol loc $ 1 + length ds) rs lex loc (d:cs) | isSpec d = TSpec loc d : lex (addCol loc 1) cs lex loc ('"':cs) = case takeChars loc (TString loc) '"' (addCol loc 1) [] cs of (t, loc', rs) -> t : lex loc' rs lex loc ('\'':cs) = let tchar [c] = TChar loc c tchar _ = TError loc "Illegal Char literal" in case takeChars loc tchar '\'' (addCol loc 1) [] cs of -- XXX head of (t, loc', rs) -> t : lex loc' rs lex loc (d:_) = [TError loc $ "Unrecognized input: " ++ show d] lex _ [] = [] hexNumber :: SLoc -> String -> [Token] hexNumber loc cs = case span isHexDigit cs of (ds, rs) -> TInt loc (readHex ds) : lex (addCol loc $ length ds + 2) rs number :: SLoc -> String -> [Token] number loc cs = case span isDigit cs of (ds, rs) | null rs || not (head rs == '.') || (take 2 rs) == ".." -> let i = read ds in TInt loc i : lex (addCol loc $ length ds) rs | otherwise -> case span isDigit (tail rs) of (ns, rs') -> let s = ds ++ '.':ns mkD x r = TRat loc (readRational x) : lex (addCol loc $ length x) r in case expo rs' of Nothing -> mkD s rs' Just (es, rs'') -> mkD (s ++ es) rs'' where expo (e:'-':xs@(d:_)) | toLower e == 'e' && isDigit d = Just ('e':'-':as, bs) where (as, bs) = span isDigit xs expo (e:'+':xs@(d:_)) | toLower e == 'e' && isDigit d = Just ('e':'+':as, bs) where (as, bs) = span isDigit xs expo (e: xs@(d:_)) | toLower e == 'e' && isDigit d = Just ('e': as, bs) where (as, bs) = span isDigit xs expo _ = Nothing -- Skip a {- -} style comment skipNest :: SLoc -> Int -> String -> [Token] skipNest loc 0 cs = lex loc cs skipNest loc n ('{':'-':cs) = skipNest (addCol loc 2) (n + 1) cs skipNest loc n ('-':'}':cs) = skipNest (addCol loc 2) (n - 1) cs skipNest loc n ('\n':cs) = skipNest (incrLine loc) n cs skipNest loc n ('\t':cs) = skipNest (tabCol loc) n cs skipNest loc n ('\r':cs) = skipNest loc n cs skipNest loc n (_:cs) = skipNest (addCol loc 1) n cs skipNest loc _ [] = [TError loc "Unclosed {- comment"] -- Skip a -- style comment skipLine :: SLoc -> String -> [Token] skipLine loc cs@('\n':_) = lex loc cs skipLine loc (_:cs) = skipLine loc cs skipLine _ [] = [] -- | Takes a list of tokens and produces a list of tokens. If the first token in -- the input list is a TIndent, the input is returned unaltered. Otherwise, a -- TIndent is prepended to the input list tIndent :: [Token] -> [Token] tIndent ts@(TIndent _ : _) = ts tIndent ts = TIndent (tokensLoc ts) : ts takeChars :: SLoc -> (String -> Token) -> Char -> SLoc -> String -> String -> (Token, SLoc, String) takeChars oloc _ c loc _ [] = (TError oloc ("Unmatched " ++ [c]), loc, []) takeChars oloc fn c loc str ('\\':cs) = let skipGap l (' ' :rs) = skipGap (addCol l 1) rs skipGap l ('\n':rs) = skipGap (incrLine l) rs skipGap l ('\r':rs) = skipGap l rs skipGap l ('\t':rs) = skipGap (tabCol l) rs skipGap l ('\\':rs) = takeChars oloc fn c (addCol l 1) str rs skipGap l rs = (TError oloc "Bad string gap", l, rs) in case cs of '&':rs -> takeChars oloc fn c (addCol loc 2) str rs d:_ | isSpace d -> skipGap loc cs _ -> case decodeChar cs of (d, m, rs) -> takeChars oloc fn c (addCol loc m) (d:str) rs takeChars _ fn c loc str (d:cs) | c == d = (fn (reverse str), addCol loc 1, cs) takeChars oloc fn c loc str (d:cs) = takeChars oloc fn c (addCol loc 1) (d:str) cs decodeChar :: String -> (Char, Int, String) decodeChar ('n':cs) = ('\n', 1, cs) decodeChar ('a':cs) = ('\a', 1, cs) decodeChar ('b':cs) = ('\b', 1, cs) decodeChar ('f':cs) = ('\f', 1, cs) decodeChar ('r':cs) = ('\r', 1, cs) decodeChar ('t':cs) = ('\t', 1, cs) decodeChar ('v':cs) = ('\v', 1, cs) decodeChar ('x':cs) = conv 16 1 0 cs decodeChar ('o':cs) = conv 8 1 0 cs decodeChar ('^':c:cs) | '@' <= c && c <= '_' = (chr (ord c - ord '@'), 2, cs) decodeChar (cs@(c:_)) | isDigit c = conv 10 0 0 cs decodeChar (c1:c2:c3:cs) | Just c <- lookup [c1,c2,c3] ctlCodes = (c, 3, cs) decodeChar (c1:c2:cs) | Just c <- lookup [c1,c2] ctlCodes = (c, 2, cs) decodeChar (c :cs) = (c, 1, cs) decodeChar [] = ('X', 0, []) -- Nobody uses these, but it's part of the Haskell Report so... ctlCodes :: [(String, Char)] ctlCodes = [("NUL", '\NUL'), ("SOH", '\SOH'), ("STX", '\STX'), ("ETX", '\ETX'), ("EOT", '\EOT'), ("ENQ", '\ENQ'), ("ACK", '\ACK'), ("BEL", '\BEL'), ("BS", '\BS'), ("HT", '\HT'), ("LF", '\LF'), ("VT", '\VT'), ("FF", '\FF'), ("CR", '\CR'), ("SO", '\SO'), ("SI", '\SI'), ("DLE", '\DLE'), ("DC1", '\DC1'), ("DC2", '\DC2'), ("DC3", '\DC3'), ("DC4", '\DC4'), ("NAK", '\NAK'), ("SYN", '\SYN'), ("ETB", '\ETB'), ("CAN", '\CAN'), ("EM", '\EM'), ("SUB", '\SUB'), ("ESC", '\ESC'), ("FS", '\FS'), ("GS", '\GS'), ("RS", '\RS'), ("US", '\US'), ("SP", '\SP'), ("DEL", '\DEL')] conv :: Int -> Int -> Int -> String -> (Char, Int, String) conv b k r (c:ds) | isHexDigit c, let { n = digitToInt c }, n < b = conv b (k+1) (r * b + n) ds conv _ k r ds = (chr r, k, ds) isSpec :: Char -> Bool isSpec c = elem c specChars where specChars :: String specChars = "()[],{}`;" upperIdent :: SLoc -> SLoc -> [String] -> String -> [Token] --upperIdent l c qs acs | trace (show (l, c, qs, acs)) False = undefined upperIdent loc sloc qs acs = case span isIdentChar acs of (ds, rs) -> case rs of '.':cs@(d:_) | isUpper d -> upperIdent (addCol loc $ 1 + length ds) sloc (ds:qs) cs | isLower d -> ident isIdentChar | isOperChar d -> ident isOperChar where { ident p = case span p cs of (xs, ys) -> tIdent sloc (reverse (ds:qs)) xs (lex (addCol loc $ 1 + length ds + length xs) ys) } _ -> TIdent sloc (reverse qs) ds : lex (addCol loc $ length ds) rs tIdent :: SLoc -> [String] -> String -> [Token] -> [Token] tIdent loc qs kw ats | elem kw ["let", "where", "do", "of"] = ti : tBrace ats | otherwise = ti : ats where ti = TIdent loc qs kw tBrace ts@(TSpec _ '{' : _) = ts tBrace ts@(TIndent _ : TSpec _ '{' : _) = ts tBrace (TIndent _ : ts) = TBrace (tokensLoc ts) : ts tBrace ts = TBrace (tokensLoc ts) : ts tokensLoc :: [Token] -> SLoc tokensLoc (TIdent loc _ _:_) = loc tokensLoc (TString loc _ :_) = loc tokensLoc (TChar loc _ :_) = loc tokensLoc (TInt loc _ :_) = loc tokensLoc (TRat loc _ :_) = loc tokensLoc (TSpec loc _ :_) = loc tokensLoc (TError loc _ :_) = loc tokensLoc (TBrace loc :_) = loc tokensLoc (TIndent loc :_) = loc tokensLoc _ = mkLocEOF readHex :: String -> Integer readHex = foldl (\ r c -> r * 16 + toInteger (digitToInt c)) 0 -- | This is the magical layout resolver, straight from the Haskell report. -- https://www.haskell.org/onlinereport/haskell2010/haskellch10.html#x17-17800010.3 -- The first argument to layoutLS is the input token stream. -- The second argument is a stack of "layout contexts" (indentations) where a synthetic '{' has been inserted. -- In the report this is a list-to-list function, but it's encoded differently here. -- The function returns a the next token, and the state of the layout conversion. -- The reason is that to implement the Note 5 rule we need to manipulate the state, -- namely to pop the context stack. And this has to be initiated from the parser. -- There are 3 commands that the state can be given: -- Next generate the next token (and new state) -- Pop pop the context stack -- Raw return the rest of the tokens, unprocessed newtype LexState = LS (Cmd -> (Token, LexState)) data Cmd = Next | Raw | Pop layoutLS :: [Token] -> [Int] -> Cmd -> (Token, LexState) layoutLS ts ms Raw = (TRaw ts, LS $ layoutLS ts ms ) layoutLS ts mms Pop = case (mms, ts) of (m:ms,_:_) | m/=0 -> ( TEnd, LS $ layoutLS ts ms ) _ -> (TError l "syntax error", LS $ layoutLS [] [] ) where l = tokensLoc ts layoutLS tts@(TIndent x : ts) mms@(m : ms) _ | n == m = (TSpec (tokensLoc ts) ';', LS $ layoutLS ts mms ) | n < m = (TSpec (tokensLoc ts) '>', LS $ layoutLS tts ms ) where {n = getCol x} layoutLS (TIndent _ : ts) ms _ = layoutLS ts ms Next layoutLS (TBrace x : ts) mms@(m : _) _ | n > m = (TSpec (tokensLoc ts) '<', LS $ layoutLS ts (n:mms)) where {n = getCol x} layoutLS (TBrace x : ts) [] _ | n > 0 = (TSpec (tokensLoc ts) '<', LS $ layoutLS ts [n]) where {n = getCol x} layoutLS (TBrace x : ts) ms _ = (TSpec (tokensLoc ts) '<', LS $ layoutLS (TSpec (tokensLoc ts) '>' : TIndent x : ts) ms) layoutLS (t@(TSpec _ '}') : ts) (0 : ms) _ = ( t, LS $ layoutLS ts ms ) layoutLS ( (TSpec l '}') : _) _ _ = (TError l "layout error }",LS $ layoutLS [] [] ) layoutLS (t@(TSpec _ '{') : ts) ms _ = ( t, LS $ layoutLS ts (0:ms)) layoutLS (t : ts) ms _ = ( t, LS $ layoutLS ts ms ) layoutLS [] (_ : ms) _ = (TSpec mkLocEOF '>' , LS $ layoutLS [] ms ) layoutLS [] [] _ = (TEnd , LS $ layoutLS [] [] ) instance TokenMachine LexState Token where tmNextToken (LS f) = f Next tmRawTokens (LS f) = case f Raw of (TRaw ts, _) -> ts _ -> undefined -- Used for Note 5. popLayout :: LexState -> LexState popLayout (LS f) = snd (f Pop) -- Insert TBrace if no 'module'/'{' lexStart :: [Token] -> [Token] lexStart ts = case skip ts of TIdent _ [] "module" : _ -> ts TSpec _ '{' : _ -> ts rs -> TBrace (tokensLoc ts) : rs where skip (TIndent _ : rs) = rs skip rs = rs lexTopLS :: FilePath -> String -> LexState lexTopLS f s = LS $ layoutLS (lexStart $ lex (SLoc f 1 1) s) []