{-# OPTIONS_GHC -fglasgow-exts -fallow-undecidable-instances #-} module QIO.QIORandom where import Data.Monoid as Monoid import QIO.QioSyn import QIO.Qdata import QIO.Qio import Complex -- complex numbers type CC = Complex RR rX :: RR -> Rotation rX r (x,y) = if x==y then (cos (r/2):+0) else (0:+ (-(sin (r/2)))) rY :: RR -> Rotation rY r (x,y) = if x==y then (cos (r/2):+0) else (s * sin (r/2):+0) where s = if x then 1 else -1 hadamards :: [Qbit] -> U hadamards [] = mempty hadamards (q:qs) = uhad q `mappend` hadamards qs pow2 :: Int -> Int pow2 x = pow2' x 0 pow2' :: Int -> Int -> Int pow2' x y | 2^(y+1) > x = 2^y | otherwise = pow2' x (y+1) weightedU :: RR -> Qbit -> U weightedU ps q | sqrt ps <= 1 = rot q (rX (2*(acos (sqrt ps)))) | otherwise = error ("weightedU: Invalid Probability: " ++ show ps) weightedBool :: RR -> QIO Bool weightedBool pf = do q <- mkQbit False applyU (weightedU pf q) measQ q rlf :: [Bool] -> [Bool] rlf (False:bs) = rlf bs rlf bs = bs rlf_l :: Int -> [Bool] rlf_l x = rlf (reverse (int2bits x)) rlf_n :: Int -> Int rlf_n x = length (rlf_l x) trim :: Int -> [Qbit] -> [Qbit] trim x qbs = drop ((length qbs)-(rlf_n x)) qbs randomU :: Int -> [Qbit] -> U randomU max qbs = randomU' max (trim max qbs) randomU' :: Int -> [Qbit] -> U randomU' _ [] = mempty randomU' 0 _ = mempty randomU' max (q:qbs) = weightedU (fromIntegral ((max+1)-p)/fromIntegral (max+1)) q `mappend` condQ q (\x -> if x then (randomU (max-p) qbs) else (hadamards qbs)) where p = pow2 max randomQInt :: Int -> QIO QInt randomQInt max = do qbs <- mkQ (reverse (int2bits max)) applyU (randomU max qbs) return (QInt (reverse qbs)) randomQIO :: (Int,Int) -> QIO Int randomQIO (min,max) = do q <- randomInt (max-min) return (q + min) randomInt :: Int -> QIO Int randomInt max = do q <- randomQInt max measQ q random :: Int -> QIO Int random x = randomInt (x-1) dice :: IO Int dice = do x <- run (randomInt 5) return (x+1) inf_dice :: IO [Int] inf_dice = do x <- dice y <- inf_dice return (x:y) dice_rolls :: Int -> IO [Int] dice_rolls 0 = return [] dice_rolls y = do x <- dice xs <- dice_rolls (y-1) return (x:xs) occs :: [Int] -> (Int,Int,Int,Int,Int,Int) occs rs = (rs' rs 1,rs' rs 2,rs' rs 3,rs' rs 4,rs' rs 5,rs' rs 6) rs' :: [Int] -> Int -> Int rs' rs x = length ([y|y<-rs,y==x]) probs' :: Int -> IO (Int,Int,Int,Int,Int,Int) probs' x = do xs <- dice_rolls x return (occs xs) probs :: Int -> IO (RR,RR,RR,RR,RR,RR) probs x = do (a,b,c,d,e,f) <- probs' x return (fromIntegral a/x',fromIntegral b/x',fromIntegral c/x',fromIntegral d/x',fromIntegral e/x',fromIntegral f/x') where x' = fromIntegral x