module QIO.Shor where
import Data.Monoid as Monoid
import QIO.QIORandom
import QIO.QioSyn
import QIO.Qdata
import QIO.Qio
import QIO.QExamples
import QIO.QArith
import QIO.Qft
import System.Time
qftI :: QInt -> U
qftI (QInt i) = urev (qft i)
hadamardsI :: QInt -> U
hadamardsI (QInt xs) = hadamards xs
shorU :: QInt -> QInt -> Int -> Int -> U
shorU k i1 x n = hadamardsI k `mappend` modExp n x k i1 `mappend` qftI k
shor :: Int -> Int -> QIO Int
shor x n = do
i0 <- mkQ 0
i1 <- mkQ 1
applyU (shorU i0 i1 x n)
measQ i0
period :: Int -> Int -> Int
period m q = r where (_,r) = reduce (m,q)
factor :: Int -> QIO (Int,Int)
factor n | even n = return (2,2)
| otherwise = do x <- rand_coprime n
a <- shor x n
let xa = x^(half a)
in if odd a || xa == (n1) `mod` n || a == 0
then factor n
else return (gcd (xa+1) n,gcd (xa1) n)
runTime :: QIO a -> IO a
runTime a = do
start <- getClockTime
result <- run a
stop <- getClockTime
putStr ("The total time taken was " ++ (timeDiffToString (diffClockTimes stop start) ++ "\n"))
return result
factorV' :: Int -> IO (Int,Int)
factorV' n | even n = return (2,2)
| otherwise = do
start <- getClockTime
putStr ("Started at " ++ (show start) ++ "\n")
x <- run (rand_coprime n)
putStr ("Calling \"shor " ++ show x ++ " " ++ show n ++ "\"\n")
a <- run (shor x n)
stop <- getClockTime
putStr ("Shor took " ++ (timeDiffToString (diffClockTimes stop start)) ++ "\n")
putStr ("period a = " ++ show a)
let xa = x^(half a)
in do putStr (", giving xa = " ++ show xa ++ "\n")
if odd a || xa == (n1) `mod` n || (gcd (xa+1) n,gcd (xa1) n) == (1,n) || (gcd (xa+1) n,gcd (xa1) n) == (n,1) || (gcd (xa+1) n,gcd (xa1) n) == (1,1)
then do putStr "Recalling factorV\n"
factorV' n
else do putStr "Result: "
return (gcd (xa+1) n,gcd (xa1) n)
factorV :: Int -> IO ()
factorV n = do start <- getClockTime
(a,b) <- factorV' n
stop <- getClockTime
putStr ( "Factors of "
++ (show n)
++ " include "
++ (show a)
++ " and "
++ (show b)
++ ".\n The total time taken was "
++ (timeDiffToString (diffClockTimes stop start) ++ "\n"))
rand_coprime :: Int -> QIO Int
rand_coprime n = do x <- randomQIO (0,(length cps)1)
return (cps!!x)
where cps = [x | x <- [0..n], gcd x n == 1]
rand_co' :: Int -> QIO Int
rand_co' n = do
x <- randomQIO (2,n)
if gcd x n == 1 then return x else rand_co' n
half :: Int -> Int
half x = floor (fromIntegral x/2.0)
reduce :: (Int,Int) -> (Int,Int)
reduce (x,y) = if g == 1 then (x,y) else (floor ((fromIntegral x)/(fromIntegral g)),floor ((fromIntegral y)/(fromIntegral g)))
where g = gcd x y