Data.Heap.Binary
provides a binary min-heap. Balance is maintained through descendant counting.
- data Ord n => BinaryHeap n
- head :: Ord a => BinaryHeap a -> a
- tail :: Ord a => BinaryHeap a -> BinaryHeap a
- merge :: Ord a => BinaryHeap a -> BinaryHeap a -> BinaryHeap a
- singleton :: Ord a => a -> BinaryHeap a
- empty :: Ord a => BinaryHeap a
- null :: Ord a => BinaryHeap a -> Bool
- fromList :: Ord a => [a] -> BinaryHeap a
- toList :: Ord a => BinaryHeap a -> [a]
- insert :: Ord a => a -> BinaryHeap a -> BinaryHeap a
Documentation
data Ord n => BinaryHeap n Source
Ord n => Eq (BinaryHeap n) | |
Ord n => Ord (BinaryHeap n) | |
(Ord n, Show n) => Show (BinaryHeap n) |
head :: Ord a => BinaryHeap a -> aSource
O(1). head
returns the element root of the heap.
tail :: Ord a => BinaryHeap a -> BinaryHeap aSource
O(lg n). tail
discards the root of the heap and merges the subtrees.
merge :: Ord a => BinaryHeap a -> BinaryHeap a -> BinaryHeap aSource
merge
consumes two binary heaps and merges them.
singleton :: Ord a => a -> BinaryHeap aSource
O(1). singleton
consumes an element and constructs a singleton heap.
empty :: Ord a => BinaryHeap aSource
O(1). empty
produces an empty heap.
null :: Ord a => BinaryHeap a -> BoolSource
O(1).
fromList :: Ord a => [a] -> BinaryHeap aSource
O(n). fromList
constructs a binary heap from an unsorted list.
toList :: Ord a => BinaryHeap a -> [a]Source
O(n lg n).
insert :: Ord a => a -> BinaryHeap a -> BinaryHeap aSource
O(lg n).