TypeCompose-0.3: Type composition classes & instancesSource codeContentsIndex
Control.Compose
Portabilitysee LANGUAGE pragma
Stabilityexperimental
Maintainerconal@conal.net
Contents
Contravariant functors
Unary/unary composition
Type composition
Unary/binary
(->)/unary
Monoid constructors
Flip a binary constructor's type arguments
Type application
Identity
Constructor pairing
Unary
Binary
Arrow between two constructor applications
Augment other modules
Description
Various type constructor compositions and instances for them. Some come from "Applicative Programming with Effects" http://www.soi.city.ac.uk/~ross/papers/Applicative.html
Synopsis
type Unop a = a -> a
type Binop a = a -> a -> a
class Cofunctor acc where
cofmap :: (a -> b) -> acc b -> acc a
bicomap :: Cofunctor f => (a :<->: b) -> f a :<->: f b
newtype (g :. f) a = O {
unO :: g (f a)
}
type O = :.
biO :: g (f a) :<->: (g :. f) a
convO :: Functor g => (b :<->: g c) -> (c :<->: f a) -> b :<->: (g :. f) a
coconvO :: Cofunctor g => (b :<->: g c) -> (c :<->: f a) -> b :<->: (g :. f) a
inO :: (g (f a) -> g' (f' a')) -> (g :. f) a -> (g' :. f') a'
inO2 :: (g (f a) -> g' (f' a') -> g'' (f'' a'')) -> (g :. f) a -> (g' :. f') a' -> (g'' :. f'') a''
inO3 :: (g (f a) -> g' (f' a') -> g'' (f'' a'') -> g''' (f''' a''')) -> (g :. f) a -> (g' :. f') a' -> (g'' :. f'') a'' -> (g''' :. f''') a'''
fmapFF :: (Functor g, Functor f) => (a -> b) -> (g :. f) a -> (g :. f) b
fmapCC :: (Cofunctor g, Cofunctor f) => (a -> b) -> (g :. f) a -> (g :. f) b
cofmapFC :: (Functor g, Cofunctor f) => (b -> a) -> (g :. f) a -> (g :. f) b
cofmapCF :: (Cofunctor g, Functor f) => (b -> a) -> (g :. f) a -> (g :. f) b
newtype OO f (~>) a b = OO {
unOO :: f (a ~> b)
}
newtype FunA h a b = FunA {
unFunA :: h a -> h b
}
inFunA :: ((h a -> h b) -> h' a' -> h' b') -> FunA h a b -> FunA h' a' b'
inFunA2 :: ((h a -> h b) -> (h' a' -> h' b') -> h'' a'' -> h'' b'') -> FunA h a b -> FunA h' a' b' -> FunA h'' a'' b''
class FunAble h where
arrFun :: (a -> b) -> h a -> h b
firstFun :: (h a -> h a') -> h (a, b) -> h (a', b)
secondFun :: (h b -> h b') -> h (a, b) -> h (a, b')
(***%) :: (h a -> h b) -> (h a' -> h b') -> h (a, a') -> h (b, b')
(&&&%) :: (h a -> h b) -> (h a -> h b') -> h a -> h (b, b')
class Monoid_f m where
mempty_f :: forall a. m a
mappend_f :: forall a. m a -> m a -> m a
newtype Flip (~>) b a = Flip {
unFlip :: a ~> b
}
biFlip :: (a ~> b) :<->: Flip ~> b a
inFlip :: ((a ~> b) -> a' ~~> b') -> Flip ~> b a -> Flip ~~> b' a'
inFlip2 :: ((a ~> b) -> (a' ~~> b') -> a'' ~~~> b'') -> Flip ~> b a -> Flip ~~> b' a' -> Flip ~~~> b'' a''
inFlip3 :: ((a ~> b) -> (a' ~~> b') -> (a'' ~~~> b'') -> a''' ~~~~> b''') -> Flip ~> b a -> Flip ~~> b' a' -> Flip ~~~> b'' a'' -> Flip ~~~~> b''' a'''
type OI = Flip (->) (IO ())
class ToOI sink where
toOI :: sink b -> OI b
newtype f :$ a = App {
unApp :: f a
}
type App = :$
biApp :: f a :<->: App f a
inApp :: (f a -> f' a') -> App f a -> App f' a'
inApp2 :: (f a -> f' a' -> f'' a'') -> App f a -> App f' a' -> App f'' a''
newtype Id a = Id {
unId :: a
}
biId :: a :<->: Id a
inId :: (a -> b) -> Id a -> Id b
newtype (f :*: g) a = Prod {
unProd :: (f a, g a)
}
biProd :: (f a, g a) :<->: (f :*: g) a
convProd :: (b :<->: f a) -> (c :<->: g a) -> (b, c) :<->: (f :*: g) a
(***#) :: (a -> b -> c) -> (a' -> b' -> c') -> (a, a') -> (b, b') -> (c, c')
($*) :: (a -> b, a' -> b') -> (a, a') -> (b, b')
inProd :: ((f a, g a) -> (f' a', g' a')) -> (f :*: g) a -> (f' :*: g') a'
inProd2 :: ((f a, g a) -> (f' a', g' a') -> (f'' a'', g'' a'')) -> (f :*: g) a -> (f' :*: g') a' -> (f'' :*: g'') a''
inProd3 :: ((f a, g a) -> (f' a', g' a') -> (f'' a'', g'' a'') -> (f''' a''', g''' a''')) -> (f :*: g) a -> (f' :*: g') a' -> (f'' :*: g'') a'' -> (f''' :*: g''') a'''
newtype (f ::*:: g) a b = Prodd {
unProdd :: (f a b, g a b)
}
inProdd :: ((f a b, g a b) -> (f' a' b', g' a' b')) -> (f ::*:: g) a b -> (f' ::*:: g') a' b'
inProdd2 :: ((f a b, g a b) -> (f' a' b', g' a' b') -> (f'' a'' b'', g'' a'' b'')) -> (f ::*:: g) a b -> (f' ::*:: g') a' b' -> (f'' ::*:: g'') a'' b''
newtype Arrw (~>) f g a = Arrw {
unArrw :: f a ~> g a
}
type :->: = Arrw (->)
biFun :: (f a -> g a) :<->: (f :->: g) a
convFun :: (b :<->: f a) -> (c :<->: g a) -> (b -> c) :<->: (f :->: g) a
inArrw :: ((f a ~> g a) -> f' a' ~> g' a') -> Arrw ~> f g a -> Arrw ~> f' g' a'
inArrw2 :: ((f a ~> g a) -> (f' a' ~> g' a') -> f'' a'' ~> g'' a'') -> Arrw ~> f g a -> Arrw ~> f' g' a' -> Arrw ~> f'' g'' a''
inArrw3 :: ((f a ~> g a) -> (f' a' ~> g' a') -> (f'' a'' ~> g'' a'') -> f''' a''' ~> g''' a''') -> Arrw ~> f g a -> Arrw ~> f' g' a' -> Arrw ~> f'' g'' a'' -> Arrw ~> f''' g''' a'''
biConst :: a :<->: Const a b
inConst :: (a -> b) -> Const a u -> Const b v
inConst2 :: (a -> b -> c) -> Const a u -> Const b v -> Const c w
inConst3 :: (a -> b -> c -> d) -> Const a u -> Const b v -> Const c w -> Const d x
biEndo :: (a -> a) :<->: Endo a
inEndo :: (Unop a -> Unop a') -> Endo a -> Endo a'
Documentation
type Unop a = a -> aSource
Unary functions
type Binop a = a -> a -> aSource
Binary functions
Contravariant functors
class Cofunctor acc whereSource
Contravariant functors. often useful for acceptors (consumers, sinks) of values.
Methods
cofmap :: (a -> b) -> acc b -> acc aSource
show/hide Instances
Arrow ~> => Cofunctor (Flip ~> b)
(Arrow ~>, Functor f, Cofunctor g) => Cofunctor (Arrw ~> f g)
bicomap :: Cofunctor f => (a :<->: b) -> f a :<->: f bSource
Bijections on contravariant functors
Unary/unary composition
newtype (g :. f) a Source

Composition of unary type constructors

There are (at least) two useful Monoid instances, so you'll have to pick one and type-specialize it (filling in all or parts of g and/or f).

    -- standard Monoid instance for Applicative applied to Monoid
    instance (Applicative (g :. f), Monoid a) => Monoid ((g :. f) a) where
      { mempty = pure mempty; mappend = liftA2 mappend }
    -- Especially handy when g is a Monoid_f.
    instance Monoid (g (f a)) => Monoid ((g :. f) a) where
      { mempty = O mempty; mappend = inO2 mappend }

Corresponding to the first and second definitions above,

    instance (Applicative g, Monoid_f f) => Monoid_f (g :. f) where
      { mempty_f = O (pure mempty_f); mappend_f = inO2 (liftA2 mappend_f) }
    instance Monoid_f g => Monoid_f (g :. f) where
      { mempty_f = O mempty_f; mappend_f = inO2 mappend_f }

Similarly, there are two useful Functor instances and two useful Cofunctor instances.

    instance (  Functor g,   Functor f) => Functor (g :. f) where fmap = fmapFF
    instance (Cofunctor g, Cofunctor f) => Functor (g :. f) where fmap = fmapCC
    instance (Functor g, Cofunctor f) => Cofunctor (g :. f) where cofmap = cofmapFC
    instance (Cofunctor g, Functor f) => Cofunctor (g :. f) where cofmap = cofmapCF

However, it's such a bother to define the Functor instances per composition type, I've left the fmapFF case in. If you want the fmapCC one, you're out of luck for now. I'd love to hear a good solution. Maybe someday Haskell will do Prolog-style search for instances, subgoaling the constraints, rather than just matching instance heads.

Constructors
O
unO :: g (f a)
show/hide Instances
Applicative f => Lambda f (Flip (->) o :. f)
Applicative f => Lambda f (f :. Flip (->) o)
(Functor g, Functor f) => Functor (g :. f)
(Functor (g :. f), Applicative g, Applicative f) => Applicative (g :. f)
Title_f g => Title_f (g :. f)
(Functor h, Copair f) => Copair (h :. f)
type O = :.Source
Compatibility synonym
biO :: g (f a) :<->: (g :. f) aSource
newtype bijection
convO :: Functor g => (b :<->: g c) -> (c :<->: f a) -> b :<->: (g :. f) aSource
Compose a bijection, Functor style
coconvO :: Cofunctor g => (b :<->: g c) -> (c :<->: f a) -> b :<->: (g :. f) aSource
Compose a bijection, Cofunctor style
inO :: (g (f a) -> g' (f' a')) -> (g :. f) a -> (g' :. f') a'Source
Apply a unary function within the O constructor.
inO2 :: (g (f a) -> g' (f' a') -> g'' (f'' a'')) -> (g :. f) a -> (g' :. f') a' -> (g'' :. f'') a''Source
Apply a binary function within the O constructor.
inO3 :: (g (f a) -> g' (f' a') -> g'' (f'' a'') -> g''' (f''' a''')) -> (g :. f) a -> (g' :. f') a' -> (g'' :. f'') a'' -> (g''' :. f''') a'''Source
Apply a ternary function within the O constructor.
fmapFF :: (Functor g, Functor f) => (a -> b) -> (g :. f) a -> (g :. f) bSource
Used for the Functor :. Functor instance of Functor
fmapCC :: (Cofunctor g, Cofunctor f) => (a -> b) -> (g :. f) a -> (g :. f) bSource
Used for the Cofunctor :. Cofunctor instance of Functor
cofmapFC :: (Functor g, Cofunctor f) => (b -> a) -> (g :. f) a -> (g :. f) bSource
Used for the Functor :. Cofunctor instance of Functor
cofmapCF :: (Cofunctor g, Functor f) => (b -> a) -> (g :. f) a -> (g :. f) bSource
Used for the Cofunctor :. Functor instance of Functor
Type composition
Unary/binary
newtype OO f (~>) a b Source
Composition of type constructors: unary with binary. Called StaticArrow in [1].
Constructors
OO
unOO :: f (a ~> b)
show/hide Instances
(Applicative f, Arrow ~>) => Arrow (OO f ~>)
(->)/unary
newtype FunA h a b Source
Common pattern for Arrows.
Constructors
FunA
unFunA :: h a -> h b
show/hide Instances
FunAble h => Arrow (FunA h)
inFunA :: ((h a -> h b) -> h' a' -> h' b') -> FunA h a b -> FunA h' a' b'Source
Apply unary function in side a FunA representation.
inFunA2 :: ((h a -> h b) -> (h' a' -> h' b') -> h'' a'' -> h'' b'') -> FunA h a b -> FunA h' a' b' -> FunA h'' a'' b''Source
Apply binary function in side a FunA representation.
class FunAble h whereSource
Support needed for a FunA to be an Arrow.
Methods
arrFunSource
::
=> a -> b
-> h a -> h bfor arr
firstFun :: (h a -> h a') -> h (a, b) -> h (a', b)Source
secondFun :: (h b -> h b') -> h (a, b) -> h (a, b')Source
(***%) :: (h a -> h b) -> (h a' -> h b') -> h (a, a') -> h (b, b')Source
(&&&%) :: (h a -> h b) -> (h a -> h b') -> h a -> h (b, b')Source
show/hide Instances
Monoid constructors
class Monoid_f m whereSource

Simulates universal constraint forall a. Monoid (f a).

See Simulating Quantified Class Constraints (http://flint.cs.yale.edu/trifonov/papers/sqcc.pdf) Instantiate this schema wherever necessary:

   instance Monoid_f f where { mempty_f = mempty ; mappend_f = mappend }
Methods
mempty_f :: forall a. m aSource
mappend_f :: forall a. m a -> m a -> m aSource
show/hide Instances
Flip a binary constructor's type arguments
newtype Flip (~>) b a Source
Flip type arguments
Constructors
Flip
unFlip :: a ~> b
show/hide Instances
ToOI OI
Lambda IO OI
Lambda Id (Flip (->) o)
Monoid o => Monoid_f (Flip (->) o)
Arrow ~> => Cofunctor (Flip ~> b)
Title o => Title_f (Flip (->) o)
Arrow ~> => Copair (Flip ~> o)
(Arrow ~>, Monoid_f (Flip ~> o)) => Pair (Flip ~> o)
(Applicative (~> a), Monoid o) => Monoid (Flip ~> o a)
biFlip :: (a ~> b) :<->: Flip ~> b aSource
newtype bijection
inFlip :: ((a ~> b) -> a' ~~> b') -> Flip ~> b a -> Flip ~~> b' a'Source
inFlip2 :: ((a ~> b) -> (a' ~~> b') -> a'' ~~~> b'') -> Flip ~> b a -> Flip ~~> b' a' -> Flip ~~~> b'' a''Source
inFlip3 :: ((a ~> b) -> (a' ~~> b') -> (a'' ~~~> b'') -> a''' ~~~~> b''') -> Flip ~> b a -> Flip ~~> b' a' -> Flip ~~~> b'' a'' -> Flip ~~~~> b''' a'''Source
type OI = Flip (->) (IO ())Source
(-> IO ()) as a Flip. A Cofunctor.
class ToOI sink whereSource
Convert to an OI.
Methods
toOI :: sink b -> OI bSource
show/hide Instances
Type application
newtype f :$ a Source

Type application We can also drop the App constructor, but then we overlap with many other instances, like [a]. Here's a template for App-free instances.

   instance (Applicative f, Monoid a) => Monoid (f a) where
     mempty  = pure mempty
     mappend = liftA2 mappend
Constructors
App
unApp :: f a
show/hide Instances
(Applicative f, Monoid m) => Monoid (App f m)
type App = :$Source
Compatibility synonym for (:$).
biApp :: f a :<->: App f aSource
newtype bijection
inApp :: (f a -> f' a') -> App f a -> App f' a'Source
inApp2 :: (f a -> f' a' -> f'' a'') -> App f a -> App f' a' -> App f'' a''Source
Identity
newtype Id a Source
Identity type constructor. Until there's a better place to find it. I'd use Control.Monad.Identity, but I don't want to introduce a dependency on mtl just for Id.
Constructors
Id
unId :: a
show/hide Instances
biId :: a :<->: Id aSource
newtype bijection
inId :: (a -> b) -> Id a -> Id bSource
Constructor pairing
Unary
newtype (f :*: g) a Source
Pairing of unary type constructors
Constructors
Prod
unProd :: (f a, g a)
show/hide Instances
(Functor f, Functor g) => Functor (f :*: g)
(Monoid_f f, Monoid_f g) => Monoid_f (f :*: g)
(Copair f, Copair g) => Copair (f :*: g)
(Pair f, Pair g) => Pair (f :*: g)
(Lambda src snk, Lambda dom' ran') => Lambda (src :*: dom') (snk :*: ran')
Eq ((,) (f a) (g a)) => Eq ((f :*: g) a)
Ord ((,) (f a) (g a)) => Ord ((f :*: g) a)
Show ((,) (f a) (g a)) => Show ((f :*: g) a)
biProd :: (f a, g a) :<->: (f :*: g) aSource
newtype bijection
convProd :: (b :<->: f a) -> (c :<->: g a) -> (b, c) :<->: (f :*: g) aSource
Compose a bijection
(***#) :: (a -> b -> c) -> (a' -> b' -> c') -> (a, a') -> (b, b') -> (c, c')Source
Combine two binary functions into a binary function on pairs
($*) :: (a -> b, a' -> b') -> (a, a') -> (b, b')Source
A handy combining form. See '(***#)' for an sample use.
inProd :: ((f a, g a) -> (f' a', g' a')) -> (f :*: g) a -> (f' :*: g') a'Source
Apply unary function inside of f :*: g representation.
inProd2 :: ((f a, g a) -> (f' a', g' a') -> (f'' a'', g'' a'')) -> (f :*: g) a -> (f' :*: g') a' -> (f'' :*: g'') a''Source
Apply binary function inside of f :*: g representation.
inProd3 :: ((f a, g a) -> (f' a', g' a') -> (f'' a'', g'' a'') -> (f''' a''', g''' a''')) -> (f :*: g) a -> (f' :*: g') a' -> (f'' :*: g'') a'' -> (f''' :*: g''') a'''Source
Apply ternary function inside of f :*: g representation.
Binary
newtype (f ::*:: g) a b Source
Pairing of binary type constructors
Constructors
Prodd
unProdd :: (f a b, g a b)
show/hide Instances
(Arrow f, Arrow f') => Arrow (f ::*:: f')
Eq ((,) (f a b) (g a b)) => Eq ((f ::*:: g) a b)
Ord ((,) (f a b) (g a b)) => Ord ((f ::*:: g) a b)
Show ((,) (f a b) (g a b)) => Show ((f ::*:: g) a b)
inProdd :: ((f a b, g a b) -> (f' a' b', g' a' b')) -> (f ::*:: g) a b -> (f' ::*:: g') a' b'Source
Apply binary function inside of f :*: g representation.
inProdd2 :: ((f a b, g a b) -> (f' a' b', g' a' b') -> (f'' a'' b'', g'' a'' b'')) -> (f ::*:: g) a b -> (f' ::*:: g') a' b' -> (f'' ::*:: g'') a'' b''Source
Apply binary function inside of f :*: g representation.
Arrow between two constructor applications
newtype Arrw (~>) f g a Source
Arrow-like type between type constructors (doesn't enforce Arrow (~>) here).
Constructors
Arrw
unArrw :: f a ~> g a
show/hide Instances
Applicative f => Lambda f (f :->: Const o)
(Arrow ~>, Cofunctor f, Functor g) => Functor (Arrw ~> f g)
(Arrow ~>, Functor f, Cofunctor g) => Cofunctor (Arrw ~> f g)
(Arrow ~>, Unpair f, Pair g) => Pair (Arrw ~> f g)
(Arrow ~>, Unlambda f f', Lambda g g') => Lambda (Arrw ~> f g) (Arrw ~> f' g')
Monoid (~> (f a) (g a)) => Monoid (Arrw ~> f g a)
type :->: = Arrw (->)Source
biFun :: (f a -> g a) :<->: (f :->: g) aSource
newtype bijection
convFun :: (b :<->: f a) -> (c :<->: g a) -> (b -> c) :<->: (f :->: g) aSource
Compose a bijection
inArrw :: ((f a ~> g a) -> f' a' ~> g' a') -> Arrw ~> f g a -> Arrw ~> f' g' a'Source
Apply unary function inside of Arrw representation.
inArrw2 :: ((f a ~> g a) -> (f' a' ~> g' a') -> f'' a'' ~> g'' a'') -> Arrw ~> f g a -> Arrw ~> f' g' a' -> Arrw ~> f'' g'' a''Source
Apply binary function inside of Arrw (~>) f g representation.
inArrw3 :: ((f a ~> g a) -> (f' a' ~> g' a') -> (f'' a'' ~> g'' a'') -> f''' a''' ~> g''' a''') -> Arrw ~> f g a -> Arrw ~> f' g' a' -> Arrw ~> f'' g'' a'' -> Arrw ~> f''' g''' a'''Source
Apply ternary function inside of Arrw (~>) f g representation.
Augment other modules
biConst :: a :<->: Const a bSource
newtype bijection
inConst :: (a -> b) -> Const a u -> Const b vSource
inConst2 :: (a -> b -> c) -> Const a u -> Const b v -> Const c wSource
inConst3 :: (a -> b -> c -> d) -> Const a u -> Const b v -> Const c w -> Const d xSource
biEndo :: (a -> a) :<->: Endo aSource
newtype bijection
inEndo :: (Unop a -> Unop a') -> Endo a -> Endo a'Source
Convenience for partial-manipulating functions
Produced by Haddock version 2.3.0