The WeberLogic package

This is a package candidate release! Here you can preview how this package release will appear once published to the main package index (which can be accomplished via the 'maintain' link below). Please note that once a package has been published to the main package index it cannot be undone! Please consult the package uploading documentation for more information.

[maintain]

Warnings:

Logic interpreter


[Skip to ReadMe]

Properties

Versions0.1.0.0, 0.1.1, 0.1.2, 0.1.2
Change logNone available
Dependenciesbase (==4.6.*), parsec (==3.1.*) [details]
LicenseBSD3
AuthorCameron Brandon White
Maintainercameronbwhite90@gmail.com
CategoryMath
Home pagehttps://github.com/cameronbwhite/WeberLogic
ExecutablesWeberLogic
UploadedMon Mar 17 03:20:31 UTC 2014 by cameronbwhite

Modules

Downloads

Maintainers' corner

For package maintainers and hackage trustees


Readme for WeberLogic-0.1.2

[back to package description]

WeberLogic

Logic interpreter and parsing library

Install

cabal update
cabal install WeberLogic

Interpreter

$ ./WeberLogic
Enter Command
> truthTable: a&b+c->~a&b
'a'   'b'   'c'   | (((a&b)+c)->(~a&b))
True  True  True  | False
True  True  False | False
True  False True  | False
True  False False | True 
False True  True  | True 
False True  False | True 
False False True  | False
False False False | True 

Enter Command
> toNand: a&b->c 
(((((a|b)|(a|b))|((a|b)|(a|b)))|(((a|b)|(a|b))|((a|b)|(a|b))))|(c|c))

Enter Command
> toNor: a&b->c
(((((a/a)/(b/b))/((a/a)/(b/b)))/c)/((((a/a)/(b/b))/((a/a)/(b/b)))/c))

Library

The library contains two modules.

  1. WeberLogic.Parser
  2. WeberLogic.Actions

WeberLogic.Parser

The WeberLogic.Parser provides functions which read stings and return an abstract syntax tree (AST). The AST in implement with a data type called LogicExp and Letter.

WeberLogic.Actions

The WeberLogic.Actions modules provides functions which manipulate the LogicExp AST.

> import WeberLogic.Parser
> import WeberLogic.Actions

> mapM_ putStrLn $ truthTableStr $ readExp "A&B"
'a'   'b'   | (a&~b)
True  True  | False
True  False | True 
False True  | False
False False | False

> toNand $ readExp "A&~B" 
((a|(b|b))|(a|(b|b)))

> toNor $ readExp "A&~B" 
((a/a)/((b/b)/(b/b)))