{-# LANGUAGE GADTs, EmptyDataDecls, FlexibleContexts #-} -- |Embedded array processing language: accelerate AST with de Bruijn indices -- -- Copyright (c) [2008..2009] Manuel M T Chakravarty, Gabriele Keller, Sean Lee -- -- License: BSD3 -- --- Description --------------------------------------------------------------- -- -- Scalar versus collective operations -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- The embedded array processing language is a two-level language. It -- combines a language of scalar expressions and functions with a language of -- collective array operations. Scalar expressions are used to compute -- arguments for collective operations and scalar functions are used to -- parametrise higher-order, collective array operations. The two-level -- structure, in particular, ensures that collective operations cannot be -- parametrised with collective operations; hence, we are following a flat -- data-parallel model. The collective operations manipulate -- multi-dimensional arrays whose shape is explicitly tracked in their types. -- In fact, collective operations cannot produce any values other than -- multi-dimensional arrays; when they yield a scalar, this is in the form of -- a 0-dimensional, singleton array. Similarly, scalar expression can -as -- their name indicates- only produce tuples of scalar, but not arrays. -- -- There are, however, two expression forms that take arrays as arguments. As -- a result scalar and array expressions are recursively dependent. As we -- cannot and don't want to compute arrays in the middle of scalar -- computations, array computations will always be hoisted out of scalar -- expressions. So that this is always possible, these array expressions may -- not contain any free scalar variables. To express that condition in the -- type structure, we use separate environments for scalar and array variables. -- -- Programs -- ~~~~~~~~ -- Collective array programs comprise closed expressions of array operations. -- There is no explicit sharing in the initial AST form, but sharing is -- introduced subsequently by common subexpression elimination and floating -- of array computations. -- -- Functions -- ~~~~~~~~~ -- The array expression language is first-order and only provides limited -- control structures to ensure that it can be efficiently executed on -- compute-acceleration hardware, such as GPUs. To restrict functions to -- first-order, we separate function abstraction from the main expression -- type. Functions are represented using de Bruijn indices. -- -- Parametric and ad-hoc polymorphism -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- The array language features paramatric polymophism (e.g., pairing and -- projections) as well as ad-hoc polymorphism (e.g., arithmetic operations). -- All ad-hoc polymorphic constructs include reified dictionaries (c.f., -- module 'Types'). Reified dictionaries also ensure that constants -- (constructor 'Const') are representable on compute acceleration hardware. -- -- The AST contains both reified dictionaries and type class constraints. -- Type classes are used for array-related functionality that is uniformly -- available for all supported types. In contrast, reified dictionaries are -- used for functionality that is only available for certain types, such as -- arithmetic operations. module Data.Array.Accelerate.AST ( -- * Typed de Bruijn indices Idx(..), -- * Accelerated array expressions OpenAcc(..), Acc, -- * Scalar expressions OpenFun(..), Fun, OpenExp(..), Exp, PrimConst(..), PrimFun(..) ) where -- friends import Data.Array.Accelerate.Type import Data.Array.Accelerate.Array.Data (ArrayElem) import Data.Array.Accelerate.Array.Representation import Data.Array.Accelerate.Array.Sugar (Elem, ElemRepr) -- Typed de Bruijn indices -- ----------------------- -- De Bruijn variable index projecting a specific type from a type -- environment. Type envionments are nested pairs (..((), t1), t2, ..., tn). -- data Idx env t where ZeroIdx :: Idx (env, t) t SuccIdx :: Idx env t -> Idx (env, s) t -- Array expressions -- ----------------- -- |Collective array computations parametrised over array variables -- represented with de Bruijn indices. -- -- * We have no fold, only scan which returns the fold result and scan array. -- We assume that the code generator is clever enough to eliminate any dead -- code, when only one of the two values is needed. -- -- * Scalar functions and expressions embedded in well-formed array -- computations cannot contain free scalar variable indices. The latter -- cannot be bound in array computations, and hence, cannot appear in any -- well-formed program. -- -- * The let-form is used to represent the sharing discovered by common -- subexpression elimination as well as to control evaluation order. (We -- need to hoist array expressions out of scalar expressions - they occur in -- scalar indexing and in determining an arrays shape.) -- data OpenAcc aenv a where -- Local binding to represent sharing and demand explicitly; this is an -- eager(!) binding Let :: OpenAcc aenv (Array dim e) -- bound expression -> OpenAcc (aenv, Array dim e) (Array dim' e') -- the bound expr's scope -> OpenAcc aenv (Array dim' e') -- Variant of 'Let' binding (and decomposing) a pair Let2 :: OpenAcc aenv (Array dim1 e1, Array dim2 e2) -- bound expressions -> OpenAcc ((aenv, Array dim1 e1), Array dim2 e2) (Array dim' e') -- the bound expr's scope -> OpenAcc aenv (Array dim' e') -- Variable bound by a 'Let', represented by a de Bruijn index Avar :: Idx aenv (Array dim e) -> OpenAcc aenv (Array dim e) -- Array Inlet (Triggers Async Host->Device Transfer if Necessary) Use :: Array dim e -> OpenAcc aenv (Array dim e) -- Capture a Scalar (or a tuple of Scalars) in a Singleton Array Unit :: ArrayElem e => Exp aenv e -> OpenAcc aenv (Scalar e) -- Change the shape of an array without altering its contents -- > precondition: size dim == size dim' Reshape :: Ix dim => Exp aenv dim -- new shape -> OpenAcc aenv (Array dim' e) -- array to be reshaped -> OpenAcc aenv (Array dim e) -- Replicate an array across one or more dimensions as given by the first -- argument Replicate :: Ix dim => SliceIndex slix sl co dim -- slice type specification -> Exp aenv slix -- slice value specification -> OpenAcc aenv (Array sl e) -- data to be replicated -> OpenAcc aenv (Array dim e) -- Index a subarray out of an array; i.e., the dimensions not indexed are -- returned whole Index :: Ix sl => SliceIndex slix sl co dim -- slice type specification -> OpenAcc aenv (Array dim e) -- array to be indexed -> Exp aenv slix -- slice value specification -> OpenAcc aenv (Array sl e) -- Apply the given unary function to all elements of the given array Map :: ArrayElem e' => Fun aenv (e -> e') -> OpenAcc aenv (Array dim e) -> OpenAcc aenv (Array dim e') -- FIXME: generalise to mapFold -- Apply a given binary function pairwise to all elements of the given arrays. -- The length of the result is the length of the shorter of the two argument -- arrays. ZipWith :: ArrayElem e3 => Fun aenv (e1 -> e2 -> e3) -> OpenAcc aenv (Array dim e1) -> OpenAcc aenv (Array dim e2) -> OpenAcc aenv (Array dim e3) -- Fold of an array with a given *associative* function and its neutral -- element Fold :: Fun aenv (e -> e -> e) -- combination function -> Exp aenv e -- default value -> OpenAcc aenv (Array dim e) -- folded array -> OpenAcc aenv (Scalar e) -- FIXME: generalise to Gabi's mapFold -- Left-to-right prescan of a linear array with a given *associative* -- function and its neutral element; produces a rightmost fold value and a -- linear of the same shape (the fold value would be the rightmost element -- in a scan, as opposed to a prescan) Scan :: Fun aenv (e -> e -> e) -- combination function -> Exp aenv e -- default value -> OpenAcc aenv (Vector e) -- linear array -> OpenAcc aenv (Vector e, Scalar e) -- FIXME: generalised multi-dimensional scan? And/or a generalised mapScan? -- Generalised forward permutation is characterised by a permutation -- function that determines for each element of the source array where it -- should go in the target; the permutation can be between arrays of varying -- shape; the permutation function must be total. -- -- The target array is initialised from an array of default values (in case -- some positions in the target array are never picked by the permutation -- functions). Moroever, we have a combination function (in case some -- positions on the target array are picked multiple times by the -- permutation functions). The combination function needs to be -- /associative/ and /commutative/ . We drop every element for which the -- permutation function yields -1 (i.e., a tuple of -1 values). Permute :: Fun aenv (e -> e -> e) -- combination function -> OpenAcc aenv (Array dim' e) -- default values -> Fun aenv (dim -> dim') -- permutation function -> OpenAcc aenv (Array dim e) -- source array -> OpenAcc aenv (Array dim' e) -- Generalised multi-dimensional backwards permutation; the permutation can -- be between arrays of varying shape; the permutation function must be total Backpermute :: Ix dim' => Exp aenv dim' -- dimensions of the result -> Fun aenv (dim' -> dim) -- permutation function -> OpenAcc aenv (Array dim e) -- source array -> OpenAcc aenv (Array dim' e) -- |Closed array expression aka an array program -- type Acc a = OpenAcc () a -- Embedded expressions -- -------------------- -- |Function abstraction -- data OpenFun env aenv t where Body :: OpenExp env aenv t -> OpenFun env aenv t Lam :: OpenFun (env, a) aenv t -> OpenFun env aenv (a -> t) -- |Function without free scalar variables -- type Fun aenv t = OpenFun () aenv t -- |Open expressions using de Bruijn indices for variables ranging over tuples -- of scalars and arrays of tuples. All code, except Cond, is evaluated -- eagerly. N-tuples are represented as nested pairs. -- data OpenExp env aenv t where -- Variable index, ranging only over tuples or scalars Var :: ArrayElem t => Idx env t -> OpenExp env aenv t -- Constant values Const :: Elem t => t -- not converted to ElemRepr yet -> OpenExp env aenv (ElemRepr t) -- Tuples Pair :: (Elem s, Elem t) => s {- dummy to fix the type variable -} -> t {- dummy to fix the type variable -} -> OpenExp env aenv (ElemRepr s) -> OpenExp env aenv (ElemRepr t) -> OpenExp env aenv (ElemRepr (s, t)) Fst :: (Elem s, Elem t) => s {- dummy to fix the type variable -} -> t {- dummy to fix the type variable -} -> OpenExp env aenv (ElemRepr (s, t)) -> OpenExp env aenv (ElemRepr s) Snd :: (Elem s, Elem t) => s {- dummy to fix the type variable -} -> t {- dummy to fix the type variable -} -> OpenExp env aenv (ElemRepr (s, t)) -> OpenExp env aenv (ElemRepr t) -- Conditional expression (non-strict in 2nd and 3rd argument) Cond :: OpenExp env aenv (ElemRepr Bool) -> OpenExp env aenv t -> OpenExp env aenv t -> OpenExp env aenv t -- Primitive constants PrimConst :: Elem t => PrimConst t -> OpenExp env aenv (ElemRepr t) -- Primitive scalar operations PrimApp :: (Elem a, Elem r) => PrimFun (a -> r) -> OpenExp env aenv (ElemRepr a) -> OpenExp env aenv (ElemRepr r) -- Project a single scalar from an array -- the array expression cannot contain any free scalar variables IndexScalar :: OpenAcc aenv (Array dim t) -> OpenExp env aenv dim -> OpenExp env aenv t -- Array shape -- the array expression cannot contain any free scalar variables Shape :: OpenAcc aenv (Array dim e) -> OpenExp env aenv dim -- |Expression without free scalar variables -- type Exp aenv t = OpenExp () aenv t -- |Primitive GPU constants -- data PrimConst ty where -- constants from Bounded PrimMinBound :: BoundedType a -> PrimConst a PrimMaxBound :: BoundedType a -> PrimConst a -- constant from Floating PrimPi :: FloatingType a -> PrimConst a -- |Primitive scalar operations -- data PrimFun sig where -- operators from Num PrimAdd :: NumType a -> PrimFun ((a, a) -> a) PrimSub :: NumType a -> PrimFun ((a, a) -> a) PrimMul :: NumType a -> PrimFun ((a, a) -> a) PrimNeg :: NumType a -> PrimFun (a -> a) PrimAbs :: NumType a -> PrimFun (a -> a) PrimSig :: NumType a -> PrimFun (a -> a) -- operators from Integral & Bits PrimQuot :: IntegralType a -> PrimFun ((a, a) -> a) PrimRem :: IntegralType a -> PrimFun ((a, a) -> a) PrimIDiv :: IntegralType a -> PrimFun ((a, a) -> a) PrimMod :: IntegralType a -> PrimFun ((a, a) -> a) PrimBAnd :: IntegralType a -> PrimFun ((a, a) -> a) PrimBOr :: IntegralType a -> PrimFun ((a, a) -> a) PrimBXor :: IntegralType a -> PrimFun ((a, a) -> a) PrimBNot :: IntegralType a -> PrimFun (a -> a) -- FIXME: add shifts -- operators from Fractional, Floating, RealFrac & RealFloat PrimFDiv :: FloatingType a -> PrimFun ((a, a) -> a) PrimRecip :: FloatingType a -> PrimFun (a -> a) -- FIXME: add operations from Floating, RealFrac & RealFloat -- relational and equality operators PrimLt :: ScalarType a -> PrimFun ((a, a) -> Bool) PrimGt :: ScalarType a -> PrimFun ((a, a) -> Bool) PrimLtEq :: ScalarType a -> PrimFun ((a, a) -> Bool) PrimGtEq :: ScalarType a -> PrimFun ((a, a) -> Bool) PrimEq :: ScalarType a -> PrimFun ((a, a) -> Bool) PrimNEq :: ScalarType a -> PrimFun ((a, a) -> Bool) PrimMax :: ScalarType a -> PrimFun ((a, a) -> a ) PrimMin :: ScalarType a -> PrimFun ((a, a) -> a ) -- logical operators PrimLAnd :: PrimFun ((Bool, Bool) -> Bool) PrimLOr :: PrimFun ((Bool, Bool) -> Bool) PrimLNot :: PrimFun (Bool -> Bool) -- character conversions PrimOrd :: PrimFun (Char -> Int) PrimChr :: PrimFun (Int -> Char) -- FIXME: use IntegralType? -- floating point conversions PrimRoundFloatInt :: PrimFun (Float -> Int) PrimTruncFloatInt :: PrimFun (Float -> Int) PrimIntFloat :: PrimFun (Int -> Float) -- FIXME: variants for other integer types (and also for Double) -- ALSO: need to use overloading -- FIXME: conversions between various integer types -- should we have an overloaded functions like 'toInt'? -- (or 'fromEnum' for enums?) PrimBoolToInt :: PrimFun (Bool -> Int) -- FIXME: what do we want to do about Enum? succ and pred are only -- moderatly useful without user-defined enumerations, but we want -- the range constructs for arrays (but that's not scalar primitives)